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INTRODUCTION 
 
 

This volume aggregates a set of notions which introduce the fundamentals of quantitative financial analysis in 
a clear and concise way, providing a very practical approach, as demonstrated by the discussion of numerous 
case studies. All material can be freely used, quoting the source. Slides can be downloaded from the author’s 
website and the codes, if not protected by copyright, are available upon request. A specific background is not 
strictly required for the reader, although basic notions of economics and statistics would be recommended. The 
book is divided into eight sections and each of them has a chapter structure. Below is a brief summary of the 
covered topics: 
 
Part I: Fixed Income Instruments 
 
The first chapter is a summary of the main concepts of financial mathematics underlying quantitative analysis, 
up to the modeling of the interest rates term structure. 
The second chapter shows the different types of bonds present in the financial markets, together with the 
assessment of the risks that an analyst must manage. 
The third part explores the heart of quantitative analysis, introducing the best practices for estimating the fair 
value of a bond, together with its risk measures (duration, modified duration and convexity). 
 
Part II: Futures and Forwards 
 
After the description of the basic concepts for understanding this category of derivatives, the second chapter 
introduces the specific quantitative analysis of these instruments, with a particular focus on pricing and hedging. 
 
Part III: Options 
 
Given the inherent variety of topics connected to options, this section has been thoroughly covered. In addition 
to the description of the standard pay-off, the first chapter deals with the foundations of this derivative and 
introduces the mathematical properties, including the put-call parity. 
The second chapter concerns the pricing of plain-vanilla options. The well-known Black-Scholes-Merton 
pricing framework has been introduced, showing how it can be applied to options written on different 
underlyings (equity, index, rates, futures and currencies). In addition to the fair value, the sensitivities (Greeks) 
are also estimated. 
The third chapter deals with option strategies: combinations of plain-vanilla options with underlying and with 
other options, in order to create specific hedging and trading strategies. Among the strategies, covered call, 
protective put, bull/bear spread, butterfly spread, straddle, strip, strap and strangle are covered. 
The fourth chapter reviews the main non-standard (i.e. exotic) options, characterized by special pay-offs. The 
lognormal pricing framework is extended to these types of options; among them: forward start, cliquet, digital, 
chooser, compound and path-dependent (barrier, Asian and lookback) options. 



 

viii 

Not all options can be adequately priced using a closed formula. For those characterized by particularly non-
linear pay-offs or by early exercise features, a numerical methodology has to be implemented.  
Chapter 5 is therefore dedicated to binomial stochastic trees, particularly useful for dealing with derivatives 
characterized by the possibility of being exercised in advance, while chapter 6 is dedicated to the Monte Carlo 
technique, which is considered suitable for representing any type of pay-off, thanks to its flexibility. The working 
principle, the internal consistency, the pricing estimation, and the computation of the most important risk 
measures are illustrated for both algorithms. Once the reader has become confident on the correct approach 
for the quantitative analysis of the derivative, it is time to focus on the inputs of the model. 
Finally, Chapter 7 centers on determining the inputs for the previously exposed techniques. A particular focus 
has been given to the estimation of volatility (both historical and implied) and to the correlation. 
 
Part IV: Swaps 
 
Similarly to the previous scheme, the section dedicated to swaps is divided into two parts: the first chapter 
describes the fundamentals of the different types of swaps, while the second deals with the quantitative analysis 
of the instrument. Particular attention is paid to Interest Rate Swaps (IRS) and Currency Swaps. Two distinct 
valuation approaches are provided, i.e. considering the derivative as a portfolio of forward contracts, or as two 
positions (one long and one short) in two bonds. The second chapter concludes with the derivation of long-
term spot rates from Interest Rate Swaps, a process known as swap curve stripping. 
 
Part V: Credit Derivatives 
 
This section consists of only one chapter in which Credit Default Swaps (CDS) are presented. It describes how 
premiums can be used to compute risk-adjusted discount factors in a fixed income instrument pricing context. 
The chapter ends with an introduction of the most popular models among analysts for the pricing of these 
derivatives. 
 
Part VI: Inflation 
 
This section covers the main inflation-linked derivatives: Zero-Coupon Inflation-Indexed Swap (ZCIIS) and 
Year-on-Year Inflation-Indexed Swap (YYIIS). The standard market approach is presented to simulate the 
prospective values of the CPI preparatory to the pricing of these instruments with particular focus on the 
modeling of seasonality. The chapter concludes with the case study of “BTP Italia”, an exotic security linked 
to Italian inflation characterized by a non-standard pay-off. 
 
Part VII: Aggregate Risk Measures 
 
The risk measures discussed so far have addressed the single instrument and can hardly be extended to a 
portfolio, characterized by instruments of a different financial nature. Considering this need, the most common 
approaches to estimating Value-at-Risk have been introduced: parametric, full-evaluation, Monte Carlo 
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backward and forward looking. The Expected Shortfall and the importance of conducting stress tests and back 
tests are briefly presented as well. 
 
Part VIII: Credit Risk 
 
The first chapter analyzes the determinants of the Demand and Supply of credit and provides a summary for 
the core elements that constitute a mortgage/loan: interest rate, repayment plans, mode of extinction, amount 
and Loan-to-Value, guarantees, duration and the Global effective annual rate. 
The second chapter focuses on the definition and on the mathematical models for estimating counterparty risk, 
which can be interpreted by its nature as a hybrid between financial risk and credit risk. 
In particular, it has been shown that the probability of default can be inferred from Credit Default Swap (CDS) 
premiums, listed bond spreads or stock prices using the KMV (Kealhofer, Merton and Vasicek) model. 
The last part of the chapter highlights the structural limits of counterparty risk, validating the need to provide 
a more complete definition of credit risk. Credit risk is based on three pillars: the probability of default (PD), 
the Loss Given Default (LGD) and the Exposure at Default (EAD). An effectual discussion is dedicated to 
each of these three important components. 
The third chapter presents the statistical approaches that allow the estimation of PD starting from historical 
data (not necessarily market data), among which, the Altman's Z-Score, the Logit-Probit and the CreditGrades 
models are covered. 
The fourth chapter introduces the regression models suitable for estimating and forecasting the Loss Given 
Default. 
The fifth chapter deals with the estimation and the predictive models for EAD. In this context, a Monte Carlo 
model is introduced for the determination of the Credit Valuation Adjustment (CVA) with particular attention 
to the modeling of the Expected Exposure to the various future time buckets. Once the reader has acquired 
the required knowledge for a correct credit measurement, we move on to the concept of rating systems. 
The sixth chapter introduces Rating Agencies and provides the basic notions for creating transition matrices. 
The Cohort approach and the Hazard approach are adequately discussed with the relative methods of 
calculating confidence intervals. 
The seventh chapter deals with credit risk managed not on a single position, but at portfolio level. In this phase 
asset correlation has to be presented and, to this end, the Moment matching and the Maximum Likelihood 
approaches are explained. An example of estimating a Monte Carlo VaR and a C-VaR is also provided in the 
credit context. 
The part dealing with credit concludes with the main methods for validating credit models. Among those, the 
Cumulative Accuracy Profile (CAP), the Receiver Operating Characteristics (ROC), the binomial test and the 
Brier Score are covered. 
 
At the end of each chapter, further food for thought is provided through a bibliography of reference papers or 
books, which allow useful insights into each topic covered. 
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PART I: FIXED INCOME INSTRUMENTS 
 
 

Chapter 1 – Time Value of Money 
 
The value of money at different times 
The simple interest 
The compound interest 
Simple versus compound interest 
Present and future value 
Convertible rates 
Continuous compounding 
Equivalent rates 
Spot and forward rates 
Interest rates term structure 
Interpolation methods 
Non linear parametric models 
Feed forward shallow ANN curve fitting 
Curve stripping 
Risk free rates 
Different shapes for interest rates term structures 
Theories on the expected curve forms 
IR term structure: an essential tool for analysis 
Curve movements and strategies 
Curve shift 
Curve twist 
Curve butterfly 
 
Chapter 2 – Bonds 
 
Straight bullet bonds 
Listing conventions 
Accrued interest 
Day-count conventions 
Business day conventions 
Structured bonds 
Callable bonds 
Puttable bonds 
Sinkable bonds 
Zero coupon bonds 

 
 
 
 
Stripped bonds 
Perpetual bonds 
Income bonds 
Convertible bonds 
Warrants 
Covered bonds 
Step-up and Step-down bonds 
Indexed bonds 
Capped and floored bonds 
Leveraged and deleveraged bonds 
Inflation-indexed bonds 
Bonds with embedded exotic options 
Mixed rate and drop lock bonds 
Extendible bonds 
Bull & Bear bonds 
Reverse floaters 
Classification based on issuers 
Classification based on collateral 
Issuer’s credit worthiness 
Rating System 
Pure and speculative risks 
Insolvency risk 
Migration risk 
Settlement risk 
Price/interest risk 
Reinvestment risk 
Liquidity/negotiability risk 
Exchange/currency risk 
Inflation/monetary risk 
 
Chapter 3 – Quantitative Analysis 
 
Bond pricing 
Fair Value levels 
Bond Yield 
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Yield to Maturity and Expected Return 
ESG factors and “Greenium” estimation 
Annuity formulas 
Perpetual bond pricing 
Price and reinvestment risk 
Weighted Average Maturity (WAM) 
Weighted Average Cash Flow (WACF) 
Macaulay Duration 
Modified Duration 
Fischer and Weil Duration 
Convexity 
First and second order price approximation 
Immunization 
Fixed income portfolio sensitivity 
Asset and Liability Management 
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I.1 TIME VALUE OF MONEY 
 
 

The time value of money principle states that any amount of money today is worth more than the same 
amount tomorrow. This statement is based on a number of reasons, which can be summarized with the 
consideration that the present is certain and known, while the future is not. For example, in the presence of the 
inflation phenomenon it means that the same product that costs €100 today may be worth more than €100 
after a year. 
In addition, leaving out inflation, there is an intrinsic “opportunity cost” in deferring a sale: the desired object 
may not only be more expensive afterwards, but it may even no longer be available. 
Philosophically, current consumption is often considered to be preferable to deferred gratification. 
It is therefore necessary to add an appropriate incentive to equalize this gap: this incentive is represented by the 
interest rate. 
Economically, it can be said that the presence of an interest is justified by the need to compensate for the loss 
of utility linked to the existence of risk. Interest rates are usually expressed on an annual basis, and they express 
the remuneration to be paid by the borrower to the lender. There are different types of interest rates: the simple 
and the compound interest rate. 
The simple interest rate assumes that no interest is received on the interest earned. It can be computed using 
the formula: 
 

Simple Interest = initial value * interest rate * Time (Eq. I.1) 
 

The initial value is constituted by the principal on which interest is paid over a defined period of time. 
Following the most widespread convention, the interest rate is expressed per annum, thus the time must be in 
year fractions. For example, the simple interest calculated on €10,000 invested at 6% p.a. after 9 years is equal 
to: 10,000 * 0.06 * 9 = € 5,400. 
However, the formula is too rough, in the real world the payments received as interest are usually re-invested 
in order to earn more in the following periods. 
The compound interest assumes that the interest is being re-invested. It can therefore be seen as the simple 
interest to which the interest calculated on the previous interest amount is added. This concept can be expressed 
in mathematical terms using: 
 

Compound interest = Simple interest + interest earned on interest (Eq. I.2) 
 

The easiest formula for calculating compound interest on an initial amount over a given time period is given 
by: 
 

Compound interest = initial value * [(1+interest rate)T - 1] (Eq. I.3) 
 

Following the previous example, the compound interest calculated on €10,000 invested at 6% p.a. after 9 years 
is equal to:  € 10,000 * [(1 + 0.06)9 - 1] = € 6,894.78959. 
The same result can be obtained applying directly the definition of compound interest, and again, the accrued 
interest at the end of the ninth year is € 6,894.78959. 
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Year 
Amount at the 

beginning of the period [A] 
Simple Interest [6%] 

[B]=0.06*[A] 

Amount at the 
end of the period 

[C]=[A]+[B] 

1 10000.00000 600.00000 10600.00000 

2 10600.00000 636.00000 11236.00000 

3 11236.00000 674.16000 11910.16000 

4 11910.16000 714.60960 12624.76960 

5 12624.76960 757.48618 13382.25578 

6 13382.25578 802.93535 14185.19112 

7 14185.19112 851.11147 15036.30259 

8 15036.30259 902.17816 15938.48075 

9 15938.48075 956.30884 16894.78959 

 
Table I.1 The compound interest rate 

 
The significant discrepancy is also evident between the method of calculating simple interest compared to the 
compound one which in our example amounts to € 1,494.78959. 
 

Time 
[A] 

Simple Interest 
[B] 

Compound Interest 
[C] 

Discrepancy 
[D] 

0.25 150.00 146.74 -3.26 

0.5 300.00 295.63 -4.37 

0.75 450.00 446.71 -3.29 

1 600.00 600.00 0.00 

1.25 750.00 755.54 5.54 

1.5 900.00 913.37 13.37 

1.75 1050.00 1073.51 23.51 

2 1200.00 1236.00 36.00 

2.25 1350.00 1400.88 50.88 

2.5 1500.00 1568.17 68.17 

[B]=10,000*0.06*[A]; [C]=10,000*((1+0.06)^[A]-1); [D]=[C]–[B]  

 
Table I.2 Simple versus Compound interest rate 
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Figure I.1 Simple versus Compound Interest 
 
 

 
  

Figure I.2 Simple versus Compound Interest Discrepancy 
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The future value of a certain amount of money is therefore given by: 
 

Future value = Present value + Interest (Eq. I.4) 
 

In the case of a simple regime, the future value is equal to: 
 

Future value = Present value + Present value * interest rate * T 
                            = Present value (1+interest rate * T) (Eq. I.5) 
 

In the case of a compound regime, the future value is equal to: 
 

Future value = Present value + Present value * [(1+interest rate)T - 1] 
                               = Present value * (1+[(1+interest rate)T - 1]) 
                               = Present value * (1+interest rate)T (Eq. I.6) 

 

The process of determining the future value of a payment or a series of cash flows using the concept of 
compound interest is called compounding and such procedure is certainly the most widespread in financial 
practice. On the other hand, the process of determining the present value of a future payment or a series of 
cash flows is called discounting. The present value is obtained by inverting the previous formulas, therefore, 
in the case of a simple regime, the present value is equal to: 
 

Present value = Future value / [(1+interest rate*T)] (Eq. I.7) 
 

and in the case of a compound regime, it is equal to: 
 

Present value = Future value / [(1+interest rate)T] (Eq. I.8) 
 

The interest rate used to discount future cash flows is called discount rate, while the quantity 1/[(1+interest 
rate*T)] in simple regime and 1/[(1+interest rate)T] in compound regime is defined as the discount factor. 
Clearly, the present value of a future cash flow is inversely proportional to both the rate and the time period. 
It is good to know both interest regimes, but it should be highlighted that it is standard market practice to use 
the compound regime. 
 
Let us consider € 100 in a deposit with an interest rate of 6% per annum. 
 
At the end of the first year, we have: 
 
€ 100 *(1+0.06) = € 106 
 
At the end of the second year, we have: 
 
€ 106 *(1+0.06) = € 112.36 
 
which an be equivalently written as: 
 
€ 100*(1+0.06)2= € 112.36 
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As the interest rate increases and the time period increases (T>1), a compound interest rate regime allows for 
greater accumulation of money, since compound interests, compared to simple ones, follow a power law. In 
the previous case, by parameterizing the time, the following relations hold:  
100 * 1.06 * T for the simple interest and 100 * (1.06)T for the compound interest. 
The compounding process can take place more frequently than annually in which case the interest accrues m 
times during the year, for n years. 
A convertible rate ic is generally derived from the annual rate, according to the relationship: ic = i / m. 
For the calculation of the future value, the same formulas presented in the case of a simple/compound regime 
can be applied, adjusting the time period at which the convertible rate is defined. Therefore: 
 

Future Value = Present Value*(1+ ic * m * n), in simple regime (Eq. I.9) 
Future Value = Present Value*(1+ ic)(m * n), in compound regime (Eq. I.10) 

 

For example, let us consider € 100 in a deposit with an interest rate of 6% per year that is paid not annually, as 
in the previous case, but every six months. 

Therefore: i = 0.06, m=2, n=1 → ic =i/m=0.06/2=0.03 
Future Value = € 100*(1+0.03*2*1) = € 106, in simple regime 
Future Value = € 100*(1.03)2*1 = € 106.09, in compound regime. 
 
Compound regime: 
 

Period Present Value iC m Future Value 

Year 1 100 0.03 2 106.09 
 

Period Present Value iC m Future Value 

Semester 1 100 0.03 1 103.0 

Semester 2 103 0.03 1 106.9 

 
Simple regime: 
 

Period Present Value iC m Future Value 

Semester 1 100 0.03 1 103.0 

Semester 2 100 0.03 2 106.0 
 

Period Present Value iC m Future Value 

Semester 1 100 0.06 0.5 103.0 

Semester 2 100 0.06 1 106.0 

 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

8 

Let us consider an annual rate i and suppose to divide the year into m periods, and at the end of each period, 
a fraction of the interest for the entire year equal to iC = i / m is paid, and is then immediately reinvested. 
 

M(n)=C(1+i/m)(n*m) (Eq. I.11) 
 

where M is the future value, C is the initial amount of money (Present value) and n is the number of years. 

Going to the limit for m which tends to infinity (𝑚 → ∞), we have the case in which a continuous flow of 
payments is reinvested continuously. 
 

𝑀(𝑛) = lim
𝑚→∞

𝐶 (1 +
𝑖

𝑚
)

𝑛⋅𝑚
 (Eq. I.12) 

 

Setting 𝜅 =
𝑚

𝑖
 and remembering the Nepero limit: lim

𝑥→∞
(1 +

1

𝑥
)

𝑥
= 𝑒 = exp(1) = 2.71828 we reach: 

 

𝑀(𝑛) = lim
𝜅→∞

𝐶 (1 +
1

𝜅
)

𝜅⋅𝑖⋅𝑛
= lim

𝜅→∞
𝐶 ⋅ [(1 +

1

𝜅
)

𝜅
]

𝑖⋅𝑛

= 𝐶𝑒𝑖⋅𝑛 (Eq. I.13) 
 

Future value = Present value * exp(i*n) (Eq. I.14) 
 

Present value = Future value * exp(-i*n)  (Eq. I.15) 
 

i is generally expressed on an annual basis and n in year fraction, while exp(-i*n) is the discount factor. 
 

Two rates are defined as equivalent if they provide the same future amount when applied to the same capital 
for the same period of time. 
Starting from the convertible capitalization formulas and considering a yearly time horizon (n = 1), the 
following relationships hold: 
 

In simple regime (Eq. I.16)  In compound regime (Eq. I.17) 
 

(1+ iA)=(1+im * m)   (1+ iA)=(1+im)m 
iA= im * m    iA = (1+im)m – 1; 
im= iA /m    im = (1+ iA)(1/m) – 1 

 
Where: iA is the annual rate; im is the periodic rate; and m indicates the number of times in which interest is 
capitalized during the year. 
 

In order to correctly determine an interest rate, it is necessary to specify 
three different dates: 
The Commitment date is the date on which the borrower and the 
lender agree on the interest rate. 
The Lending date is the effective date on which the amount of money 
is lent.  
The Repayment date is the effective date on which the amount of 
money is returned. 
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The spot rate (or zero rate), denoted by R0,t is defined as the annual interest rate received on a zero-coupon 
security which expires at time t. The spot rate is therefore the interest rate required to lend the money from 
time 0 to t if there is a single final payment, including the principal and the interest accrued. As known, the 
yield is typically expressed per annum. 
 
The two main characteristics of spot rates are the facts that  the commitment date coincides with the lending 
date and that the repayment date is unique. 
 
Let us take a bond, as an example, which requires an initial investment of € 800 and returning a capital of € 
1,000 after 3 years. 
 
The 3y spot rate, R0,3  is equal to: 
 
800=1000/(1+R0,3)3 

 

R0,3 = (1000/800)1/3 – 1 
 

R0,3 =7.7217% 
 
With this available data, no direct inferences can be made on the 1- or 2-year spot rates, thus the only solution 
is to perform an interpolation starting from the 3y zero rate. 
The forward rate, denoted by Ft,h, is the interest rate of a bond whose commitment date does not occur at 
time 0, but is instead deferred in t. 
If a 2-year contract is entered into today starting in one 
year, the annualized interest rate from year 1 to year 3 
(i.e. from year t to h) is a forward rate, Ft=1,h=3. 
Forward rates are characterized by the fact that the 
commitment date is today, but the lending date is 
postponed, and here again, the repayment date is unique. 
 
Forward rates are interest rates on loans or bonds that provide for a single payment to the investor after h-t 
years from the lending date. Let us be more specific through an example: a bond provides for an initial 
investment of € 850 to be paid in one year and after 3 years, from the date of stipulation, it returns a capital 
equal to € 1,000. 
 
The forward rate between t=1y and h=3y, F1,3  is: 
 

850=1000/(1+F1,3)2 

 

F1,3 = (1000/850)1/2 – 1 
 

F1,3 =8.4652% 
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The relationship between spot rates and forward rates between two time periods t1 and t2 is the following: 

 
(1 + 𝑅0,𝑡1)

𝑡1
(1 + 𝐹𝑡1,𝑡2)

𝑡2−𝑡1
= (1 + 𝑅0,𝑡2)

𝑡2
 (Eq. I.18) 

 

𝐹𝑡1,𝑡2 = √
(1+𝑅0,𝑡2)

𝑡2

(1+𝑅0,𝑡1)
𝑡1

𝑡2−𝑡1

− 1 = [
(1+𝑅0,𝑡2)

𝑡2

(1+𝑅0,𝑡1)
𝑡1]

1

𝑡2−𝑡1
− 1 (Eq. I.19) 

 
 
By construction, a spot rate can be seen as the geometric mean of the implicit consecutive forwards: 
 

(1 + 𝑅0,𝑡) = [(1 + 𝑅0,1)(1 + 𝐹1,2)(1 + 𝐹2,3) .  .  . (1 + 𝐹𝑡−1,𝑡)]
1

𝑡  (Eq. I.20) 

 
Let us make a few more examples. 
 

We have 𝑅0,1𝑌 = 1.5%  p.a. ,  𝑅0,3𝑌 = 2.5%  p.a., and we wish to calculate 𝐹1𝑌,3𝑌: 
 

(1 + 𝑅0,1)
1

(1 + 𝐹1,3)
3−1

= (1 + 𝑅0,3)
3
  

 

(1 + 𝐹1,3)
2

 =
(1+𝑅0,3)

3

(1+𝑅0,1)
1  → 𝐹1,3 = (

(1+𝑅0,3)
3

(1+𝑅0,1)
1)

1

2

− 1  

 

 𝐹1,3 = (
(1+0.025)3

(1+0.015)1)

1

2
− 1 = √

1.0253

1.015
− 1 = 3.004% 

 

We have 𝐹1𝑌,3𝑌 = 3.004%  p.a. ,  𝑅0,3𝑌 = 2.5%  p.a., and we wish to 

calculate 𝑅0,1𝑌: 
 

(1 + 𝑅0,1)
1

(1 + 𝐹1,3)
3−1

= (1 + 𝑅0,3)
3
  

 

1 + 𝑅0,1 = 
(1+𝑅0,3)

3

(1+𝐹1,3)
2 → 𝑅0,1 = 

(1+𝑅0,3)
3

(1+𝐹1,3)
2 − 1 

 

𝑅0,1 = 
(1+0.025)3

(1+0.03004)2 − 1 = 
(1.025)3

(1.03004)2 − 1 = 1.5% 
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We have 𝑅0,1𝑌 = 1.5%  p.a. , 𝐹1𝑌,3𝑌 = 3.004%  p.a., and we wish 

to calculate 𝑅0,3𝑌: 
 

(1 + 𝑅0,1)
1

(1 + 𝐹1,3)
3−1

= (1 + 𝑅0,3)
3
  

(1 + 𝑅0,3) = [(1 + 𝑅0,1)
1

(1 + 𝐹1,3)
2

]

1

3
  

𝑅0,3 = [(1.015)1(1.03004)2]
1

3 − 1 = √1.076897
3

− 1 = 2.5%   
 
 

On the other hand, knowing 𝑅0,1𝑌 = 1.5%, 𝑅0,2𝑌 = 2.1% and 𝑅0,3𝑌 = 2.5%, is it possible to exactly 

determine 𝐹1.5𝑌,2.5𝑌?  

 
The answer in this case is negative, as there is no mathematical 
formula that allows to calculate it, but we can use an 

approximation to estimate 𝐹1.5𝑌,2.5𝑌. 

 
 

The key idea is thus to perform an interpolation on the known 
zero rates. 

 
In order to apply the known formula that links spot rates and the implied forward rates, 𝑅0,1.5𝑌 and 𝑅0,2.5𝑌 

should be estimated through interpolation. 
 

Linear Interpolation – 𝑅0,1.5𝑌  
 

𝑅0,1.5 = 𝑅0,1 +
𝑅0,2−𝑅0,1

𝑡2−𝑡1
(𝑡1.5 − 𝑡1)  

𝑅0,1.5 = 0.015 +
0.021−0.015

2−1
(1.5 − 1)  

𝑅0,1.5 = 0.018 = 1.8%  
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Linear Interpolation – 𝑅0,2.5𝑌  
 

𝑅0,2.5 = 𝑅0,2 +
𝑅0,3−𝑅0,2

𝑡3−𝑡2
(𝑡2.5 − 𝑡2)  

𝑅0,2.5 = 0.021 +
0.025−0.021

3−2
(2.5 − 2)  

𝑅0,2.5 = 0.023 = 2.3%  

 

 
 

Forward Computation – 𝐹1.5𝑌,2.5𝑌  
 

(1 + 𝑅0,1.5)
1.5

(1 + 𝐹1.5,2.5)
2.5−1.5

= (1 + 𝑅0,2.5)
2.5

   
 

𝐹1.5,2.5 = [
(1+𝑅0,2.5)

2.5

(1+𝑅0,1.5)
1.5]

1

2.5−1.5

− 1 =
1.0232.5

1.0181.5 − 1 = 3.0546%  

 

The aim of the computation of a forward rate is to find the future interest rate 𝐹1,2 for the time period (𝑡1, 𝑡2), 

(where 𝑡1 and 𝑡2 are expressed in years), given the spot rate 𝑅0,1 for the time period (0, 𝑡1) and the other spot 

rate 𝑅0,2 for time period (0, 𝑡2). For doing this we have used the property that the proceeds from investing at 

rate 𝑅0,1 for time period (0, 𝑡1) and then reinvesting those proceeds at rate 𝐹1,2 for time period (𝑡1, 𝑡2) is equal 

to the proceeds from investing at rate 𝑅0,2 for time period (0, 𝑡2). It is worth to note that the mathematical 

relationship used in the previous examples supposes that we are dealing with yearly compounded rates. Under 
this assumption, the formulas are: 
 

(1 + 𝑅0,1)
𝑡1

(1 + 𝐹1,2)
𝑡2−𝑡1

= (1 + 𝑅0,2)
𝑡2

 → 𝐹1,2 = (
(1+𝑅0,2)

𝑡2

(1+𝑅0,1)
𝑡1

)

1

𝑡2−𝑡1
− 1 (Eq. I.21) 

 

The discount factor formula for a generic period (0, 𝑡), Δ𝑡, expressed in years, and rate 𝑅0,𝑡 for this period is: 
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𝐷𝐹(0, 𝑡) =
1

(1+𝑅0,𝑡)
Δ𝑡

. 

The forward rate can also be expressed in terms of discount factors: 𝐹1,2 = (
𝐷𝐹(0,𝑡1)

𝐷𝐹(0,𝑡2)
)

1

𝑡2−𝑡1 − 1. 

For completeness’ sake, we also report the other formulas for simple rates and continuously compounded rates. 
Under the simple rate calculation mode, the relation for the forward rate is: 
 

(1 + 𝑅0,1𝑡1) (1 + 𝐹1,2(𝑡2 − 𝑡1)) = 1 + 𝑅0,2𝑡2 → 𝐹1,2 =
1

𝑡2−𝑡1
(

1+𝑅0,2𝑡2

1+𝑅0,1𝑡1
− 1) (Eq. I.22) 

 

The discount factor formula for a generic period (0, 𝑡), Δ𝑡, expressed in years, and rate 𝑅0,𝑡 for this period is: 

𝐷𝐹(0, 𝑡) =
1

(1+𝑅0,𝑡Δ𝑡)
. 

 

Here, again, the forward rate can be expressed in terms of discount factors: 𝐹1,2 =
1

𝑡2−𝑡1
(

𝐷𝐹(0,𝑡1)

𝐷𝐹(0,𝑡2)
− 1). 

 

On the other hand, under the continuously compounded rate calculation mode, the relation for the forward 
rate is: 
 

𝑒𝑟0,2𝑡2 = 𝑒𝑟0,1𝑡1 ⋅ 𝑒𝑓1,2(𝑡2−𝑡1)
→ 𝑒𝑟0,2𝑡2 = 𝑒𝑟0,1𝑡1+𝑓1,2(𝑡2−𝑡1)

→ ln(𝑒𝑟0,2𝑡2) = ln(𝑒𝑟0,1𝑡1+𝑓1,2(𝑡2−𝑡1)) → 
 

𝑟0,2𝑡2 = 𝑟0,1𝑡1 + 𝑓1,2(𝑡2 − 𝑡1) → 𝑓1,2(𝑡2 − 𝑡1) = 𝑟0,2𝑡2 − 𝑟0,1𝑡1 → 𝑓1,2 =
𝑟0,2𝑡2−𝑟0,1𝑡1

𝑡2−𝑡1
 (Eq. I.23) 

 

The discount factor formula for a generic period (0, 𝑡), Δ𝑡, expressed in years, and rate 𝑟0,𝑡 for this period is: 

𝐷𝐹(0, 𝑡) = 𝑒−𝑟𝑡Δ𝑡 . 
 

In this case, using discount factors, the forward rate can be expressed as follows: 

𝑓1,2 =
ln(𝐷𝐹(0,𝑡1))−ln(𝐷𝐹(0,𝑡2))

𝑡2−𝑡1
=

− ln(
𝐷𝐹(0,𝑡2)

𝐷𝐹(0,𝑡1)
)

𝑡2−𝑡1
. 

 
We can define the Interest rates term structure as a curve model consisting of spot rates rearranged by 
increasing time to maturity, and this is graphically represented in the below Cartesian plane [t, Rt]. 

 
The dots in the plane represent the known zero rates. 
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Given that markets in the real world are not complete, a relationship between them has to be specified in order 
to be able to compute forward rates and discount factors for every possible future date, ti . 
Depending on the purposes, we can choose an interpolation methodology (linear, cubic spline, piecewise 
polynomial), a non-linear parametric model (such as Nelson-Siegel or Svensson model) or aim for a Machine 
Learning model (such as a shallow Artificial Neural Network). Let us examine the three different alternatives. 
 

Interpolation methodology 
 

In this case, we start from the spot rates, and we implement an interpolation with the aim to calculate the zero 
rates for the desired period. 
Based on the available points, we can choose a more precise methodology than the linear one. 
It is anyway worth to note that it is common practice to use the linear interpolation between spot rates for 
pricing a financial instrument (see the previous example). 
 

Non-linear parametric models 
 

The analysis of term structures is essential for a wide variety of implementations, including understanding the 
dynamics of the markets, making forecasts on interest rates, managing portfolios, and building hedging 
strategies. 
Therefore, many researchers propose analytical functions for the description of the relationship of the zero 
rates starting from the historical shapes assumed by these curves. 

The most wide-spread representations are the Nelson-Siegel (1987), 𝑦𝑁𝑆 and the  Svensson model (1994), 𝑦𝑆𝑉 . 
 
 

𝑦𝑁𝑆(𝑡, 𝛽, 𝜏) = 𝛽0 + 𝛽1 {
𝜏1

𝑡
[1 − exp (−

𝑡

𝜏1
)]} + 𝛽2 {

𝜏1

𝑡
[1 − exp (−

𝑡

𝜏1
)] − exp (−

𝑡

𝜏1
)} (Eq. I.24) 

 
 

𝑦𝑆𝑉(𝑡, 𝛽, 𝜏) = 𝛽0 + 𝛽1 {
𝜏1

𝑡
[1 − exp (−

𝑡

𝜏1
)]} + 𝛽2 {

𝜏1

𝑡
[1 − exp (−

𝑡

𝜏1
)] − exp (−

𝑡

𝜏1
)} +  

                        +𝛽3 {
𝜏2

𝑡
[1 − exp (−

𝑡

𝜏2
)] − exp (−

𝑡

𝜏2
)}  (Eq. I.25) 

 
 

Where: 𝑦 is the interest rates term structure model, 𝑡 is the time to maturity (independent variable of the fitting 

problem),  𝛽 is the array of the linear parameters and 𝜏 is the array of the non-linear parameters.  
 

Machine Learning models 
 

The third alternative is constituted by Machine Learning techniques, which are very flexible and suitable for 
even the most difficult regression problems, thanks to their “bottom-up” approach. 
Unluckily the “black-box” effect is one of the major cons of this approach, therefore it is considered a good 
practice to adopt ML only when the canonical standard statistical models do not reach the target performance 
or when they fail.  
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Term 6 MO 7 MO 8 MO 9 MO 10 MO 11 MO 12 MO 15 MO 18 MO 

Zero Rate 0.7751 0.8506 0.9326 1.0049 1.049 1.1013 1.1446 1.2528 1.3362 

Term 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8 Y 9 Y 10 Y 

Zero Rate 1.3954 1.4657 1.5148 1.5712 1.6231 1.669 1.7182 1.7657 1.812 

Term 11 Y 12 Y 15 Y 20 Y 25 Y 
Interest rates term structure 

Zero Rate 1.8581 1.8993 1.9627 1.8684 1.7343 

 
Table I.3 Interest rates term structure data 

 
 

 
Figure I.3 Zero rates (on the left) and Interest rates term structure using a piece-wise model (on the right) 
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Figure I.4 Interest rates term structure using a linear model (on the left) and a cubic model (on the right) 
 
 

 
 

Figure I.5 Interest rates term structure using the non linear parametric model of Svensson. 

  Parameters: 𝛽0 = −0.0087,  𝛽1 = 0.0094, 𝛽2 = 0.0389, 𝛽3 = 0.0848,  𝜏1 = 0.968, 𝜏2 = 10.07 
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Figure I.6 A One-layered Static ANN with three neurons gives an overall fitting error below 0.02% 
 

The Interest rates term structure is essential for the derivation of zero-rates and, consequently the discount 
factors, but, as known, markets are not complete, and it is rare to have zero coupons directly quoted for every 
maturity, especially in the mid-long term. Thus, the process used to convert market rates (par rates) into zero 
rates is the bootstrap or curve stripping. 
 

Market rates can be quoted starting from different financial instruments and depending on the maturities we 
have: 
 

- Short-term: deposit, cash rates (up to 18 months) or bonds. 
- Mid-term: Forward Rate Agreements – FRA contracts and Futures (up to 2-3 years) or bonds. 
- Long-term: Interest Rates Swaps – IRS (up to 50 years) or bonds. 
 

The instruments that are used to imply the zero rates and, consequently, the interest rates term structure, must 
be chosen among the most representative, i.e. the most liquid and they must be characterized by the same 
level of creditworthiness.  

The chosen financial instruments, the granulometry of the yield curve and the model that represents the interest 
rates term structure is subjected to audit and must be declared to Regulators. 
The curve stripping process can be summarized as shown: 
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Figure I.7 Curve stripping procedure 
 
 
Curve Stripping – Deposit and Cash rates – Money Market (spot lag: 2 days) 
 
 

 
 

 

Case Start Date End Date Par Rate 

A 0 1 day 2.31 

B 1 day 2 days 2.345 

C 2 days 1 week 2.375 

D 2 days 2 weeks 2.381 

E 2 days 3 weeks 2.391 

F 2 days 1 month 2.4351 

 
 

Table I.4 Market Data for the Curve Stripping. Financial Instruments: Deposits and Cash rates 

Let us examine various cases. 
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Case A – t1 

The Par rate 2.31% p.a. is a Zero Rate (𝑅0,𝑡1). 

Consequently, we can directly use it for deriving the 

Discount Factor, 𝐷𝐹0,𝑡1 

𝐷𝐹0,𝑡1 =
1

(1+𝑅0,𝑡1)
1

365

=
1

(1+0.0231)
1

365

= 0.999937  

Case B – t2 

(1 + 𝑅0,𝑡1)
𝑡1

(1 + 𝐹𝑡1,𝑡2)
𝑡2−𝑡1

= (1 + 𝑅0,𝑡2)
𝑡2

  

𝑅0,𝑡2 = [(1 + 𝑅0,𝑡1)
𝑡1

(1 + 𝐹𝑡1,𝑡2)
𝑡2−𝑡1

]

1

𝑡2 − 1  

𝑅0,𝑡2 = [(1 + 0.0231)
1

365(1 + 0.02345)
1

365]

365

2
− 1  

𝑅0,𝑡2 = [(1.0231)0.002739 ⋅ (1.02345)0.002739]182.5 − 1  

𝑅0,𝑡2 = 2.3269%,  

𝐷𝐹0,𝑡2 =
1

(1+𝑅0,𝑡2)
𝑡2

=
1

(1+0.023269)
2

365

= 0.999874  

Case C – t3  

(1 + 𝑅0,𝑡2)
𝑡2

(1 + 𝐹𝑡2,𝑡3)
𝑡3−𝑡2

= (1 + 𝑅0,𝑡3)
𝑡3

  

𝑅0,𝑡3 = [(1 + 𝑅0,𝑡2)
𝑡2

(1 + 𝐹𝑡2,𝑡3)
𝑡3−𝑡2

]

1

𝑡3
− 1  

𝑅0,𝑡3 = [(1 + 0.023269)
2

365(1 + 0.02375)
7−2

365]

365

7
− 1  

𝑅0,𝑡3 = [(1.023269)0.005479 ⋅ (1.02375)0.013699]52.14286 − 1  
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𝑅0,𝑡3 = 2.36119%,  

𝐷𝐹0,𝑡3 =
1

(1+𝑅0,𝑡3)
𝑡3 =

1

(1+0.0236119)
7

365

= 0.999553  

Case D – t4 

𝑅0,𝑡4 = [(1 + 𝑅0,𝑡2)
𝑡2

(1 + 𝐹𝑡2,𝑡4)
𝑡4−𝑡2

]

1

𝑡4
− 1  

𝑅0,𝑡4 = [(1 + 0.023269)
2

365(1 + 0.02381)
14−2

365 ]

365

14
− 1 =

2.37324%  

𝐷𝐹0,𝑡4 =
1

(1+𝑅0,𝑡4)
𝑡4 =

1

(1+0.0237324)
14

365

= 0.999101  

Case E – t5 

𝑅0,𝑡5 = [(1 + 𝑅0,𝑡2)
𝑡2

(1 + 𝐹𝑡2,𝑡5)
𝑡5−𝑡2

]

1

𝑡5
− 1  

𝑅0,𝑡5 = [(1 + 0.023269)
2

365(1 + 0.02391)
21−2

365 ]

365

21
− 1 =

2.38487%  

𝐷𝐹0,𝑡5 =
1

(1+𝑅0,𝑡5)
𝑡5 =

1

(1+0.0238487)
21

365

= 0.998645  

Case F – t6 

𝑅0,𝑡6 = [(1 + 𝑅0,𝑡2)
𝑡2

(1 + 𝐹𝑡2,𝑡6)
𝑡6−𝑡2

]

1

𝑡6
− 1  

𝑅0,𝑡5 = [(1 + 0.023269)
2

365(1 + 0.024351)
30−2

365 ]

365

30
− 1 = 2.42787%  

𝐷𝐹0,𝑡5 =
1

(1+𝑅0,𝑡5)
𝑡5 =

1

(1+0.0242787)
30

365

= 0.998030  



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

21 

Case Start Date End Date 
Time to Maturity 

[Years] 
Par Rates 

[%] 
Zero Rates 

[%] Discount Factors 

A 0 1 day 0.002740 2.31 2.31 0.999937 

B 1 day 2 days 0.005479 2.345 2.3269 0.999874 

C 2 days 1 week 0.019178 2.375 2.3612 0.999553 

D 2 days 2 weeks 0.038356 2.381 2.3732 0.999101 

E 2 days 3 weeks 0.057534 2.391 2.3849 0.998645 

F 2 days 1 month 0.082192 2.4351 2.4279 0.998030 

 
Table I.5 The stripped curve – Par rates, Zero rates and Discount Factors 

 

In the example we have used an ACT/365-day basis convention for estimating the year fraction t. Typically 

the convention to be adopted depends on the financial characteristics of the instrument. 

Curve Stripping – Zero Coupon bonds 

In this case, the yield of the zero coupon bond can be directly used for building the interest rates term structure. 

Case Tenor Market Price Yield 

ZC_A 3 Months 99.972 0.1121% 

ZC_B 6 Months 99.749 0.5039% 

ZC_C 1 Year 99.052 0.9571% 
 

Table I.6 Zero Coupon bonds stripping 
 

𝑃𝑟𝑖𝑐𝑒 =
𝐹𝑎𝑐𝑒 𝐴𝑚𝑜𝑢𝑛𝑡

(1+𝑌𝑖𝑒𝑙𝑑)𝑇  → 𝑌𝑖𝑒𝑙𝑑 = (
𝐹𝑎𝑐𝑒 𝐴𝑚𝑜𝑢𝑛𝑡

𝑃𝑟𝑖𝑐𝑒
)

1

𝑇
− 1 (Eq. I.26) 

 

𝑌𝑖𝑒𝑙𝑑𝐴 = (
100

99.972
)

1

0.25
− 1 = 0.1121%; 𝑌𝑖𝑒𝑙𝑑𝐵 = (

100

99.749
)

1

0.5
− 1 = 0.5039% and 𝑌𝑖𝑒𝑙𝑑𝐶 = 0.9571%  

 
It is interesting to note that the Market Price of a zero coupon bond, expressed on a 100% basis (Face Amount 
= 100%), is the discount factor. 
 

Present value = Future value / [(1+interest rate)T] = Future value * Discount Factor (Eq. I.27) 
 

The Present value is the quoted market price, and the future value is equal to 1. For this reason, a popular 

notation for representing the discount factor between two dates is 𝑃(𝑡0, 𝑡1), where typically 𝑡0 = 0.  
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Generally speaking, economists view the spot rate curve as the pure time value of money. 
 

Given that a nominal interest rate can be broken down into three components, it follows that there are more 
than one interest rates term structures for a single fixed reference currency. 
 

Nominal Interest Rate = Real I.R. + Inflation premium + risk premium (Eq. I.28) 
 

The real interest rate is the compensation given to the investor for the future procrastination of the 
consumption of the loaned money (time value of money). 
 

The inflation premium, as the name suggests, is intended as the additional quantity required by the investor 
to protect his future purchasing power. 
 

The third component, i. e., the risk premium protects the investor against all the potential risks that may be 
incurred over the period of time considered (default risk, market risk, interest rate risk ....) 
 

The “risk-free” curve is thus the term structure that best expresses the pure time value of money and it is 
theoretically unique in terms of currency and tenor of the reference rate. 
For example, the ESTR (Euro Short-term rate) curve is normally taken as the risk-free curve for the Euro area. 
 
On the other hand, we should consider that risk is present in every yield calculated from the return of a zero 
coupon. Therefore, the following cases are observed on the market: 
 

- Higher yield curves for issuers that have lower credit quality and lower yield curves for issuers that have a 
higher rating. 
 

- Higher yield curves for callable bonds compared to equivalents without optionality.  
 

- Lower yield curves for puttable bonds compared to equivalents without optionality. 
 

The Interest rates term structure shape can assume four classified canonical forms: 
 

- Positively sloped term structure 
 

- Negatively sloped term structure 
 

- Flat 
 

- Humped term structure 
 

The part of the curve formed by short maturities is mainly influenced by monetary policy, while the part with 
longer maturities is more sensitive to inflationary factors. 
An upward sloping curve indicates strong economic times, while flat or downwards shows the opposite. 
To  try and explain the shape of the interest rates term structure three main theories have been developed: 
 

- Expectation hypothesis 
 

- Liquidity preference 
 

- Market segmentation theory 
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Figure I.8 A humped interest rates term structure. Source: Bloomberg® 

 

  

 

 

Figure I.9 A positively sloped interest rates term structure. Source: Bloomberg® 

  

 

 

 

Figure I.10 A negatively sloped interest rates term structure. Source: Bloomberg® 
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Figure I.11 A Yield curve flattening of the US zero curves. Source: Refinitiv - Datastream®.  

Reference Date: 29th March 2022 

Let us examine those three theories. According to the Expectation hypothesis, the shape of the curve reflects 
the market’s opinion on future levels of interest rates. Therefore, the implied forward rate on the curve that 
can be observed today is an unbiased estimation of the future spot rate: Ft,h =E(Rt,h). 
This formulation presents some criticalities though. In fact, if it were accepted that future spot rates are equal 
to the forward rates that can be calculated today, it would imply that each bond can be perfectly replaced by 
any other bond, regardless of the latter’s maturity. Cox, Ingersoll and Ross had formally demonstrated the 
internal inconsistency of this statement by highlighting that it can be consistent with the financial equilibrium 
only for short time intervals. This scaled-down version is known as the Local Expectations hypothesis. 
The son theory is the Liquidity preference theory, which states that investors prefer to hold more liquid 
securities and, consequently, characterized by a shorter duration. In order to induce an investor to buy longer-
term securities, it becomes thus necessary to offer an additional risk premium: a liquidity or term premium. 
In this case,  two factors come into play: 
 

- The future expected short-term spot rate, in accordance with the local expectations hypothesis; and 
- A positive premium for liquidity. 
 

We can express this in mathematical terms: 
 

Ft,t+1 = E(Rt,t+1) + Lt,t+1  for  t > 0 and  Lt,t+1  > 0 (Eq. I.29) 
 

According to this theory, the longer the maturities, the greater the premium required for liquidity. Consequently, 
interest rates term structures should mostly be with a positive slope. 
 

Finally, the third theory, the market segmentation or preferred habitat theory considers as if there were as 
many parallel and distinct markets as there are maturities making up the term structure. In such context, each 
investor, according to their preference and risk appetite, decides on which maturity to operate; money is 
considered as a commodity and the meeting point between supply and demand for a given expiration constitutes 
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the interest rate. In accordance with this theory, each point of the spot curve is given by a distinct market that 
reflects the investor’s preferences of the moment. In this case, then, the sign of the risk premium, Пt,t+1, for an 
investor who wants to invest in a desired maturity t has no a priori definable sign: 
 

Ft,t+1 = E (Rt,t+1) + Пt,t+1 (Eq. I.30) 
 

This theory allows to explain all the forms that a term structure can take: 
 

- If the curve has a positive slope, investors prefer to invest in the short-term segment. 
- In the presence of a negative slope, investors prefer to invest over the long term. 
- If the curve is flat, it is indifferent. 
- The term structure can admit humps depending on the preferences in the different market segments. 
 

The interest rates term structure is obviously an essential tool for many sectors related to the banking activity. 
We can cite the departments that use it daily for their analyzes: 
 

- Risk Management (stress test, sensitivity, future projections) 
- Asset and Liability Management, ALM (what-if analysis on financial statements) 
- Financial Engineering (pricing, fair value estimation, hedging strategies) 
- Wealth Management (customized structured products design) 
- Regulatory (Supervisory bodies – ECB, Bank of Italy, Internal Audit – requests to conduct scenarios under 
particular or extreme conditions of market inputs) 
- Trading (comparison between theoretical and market prices, market expectations on rates) 
 

Given its importance, it is essential to define the relevant parameters to be set before use, which are firstly, the 
market instruments for implying the spot rates, and the number of points to use (i.e., the granulometry) for 
defining the term structure. Then, the kind of model/interpolation to adopt if a value is not directly provided 
by the market is also to be defined, and finally, the curve to use for discounting the future cash-flows also has 
to be determined, since it must reflect the counterparty risk. 
 

In accordance with the literature, the movements of an interest rate curve have been classified and labeled as 
follows: 
 

Shift: when they refer to parallel movements of the yield curve. 
Twist: if they refer to changes in the slope of the curve. 
Butterfly: when the rates in the short and long term move in the same direction, while those in the medium 
term move in the opposite direction. 
 

The yield curve strategies use the distribution of the fixed-income portfolio maturities in order to take advantage 
of expected future movements of the zero rates. The yield curve strategies that a portfolio manager can pursue 
are typically categorized into three groups: 
 

Bullet strategy: the bond portfolio is concentrated in a single maturity (i.e. in a single point of the interest rates 
term structure). 
Barbell strategy: the portfolio is concentrated in the two extremes of the yield curve. 
Ladder strategy: the portfolio has maturities equally spaced on the curve. 
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Figure I.12 Curve movements: shift. Source: Bloomberg® 

 

Figure I.13 Curve movements: twist. Source: Bloomberg® 
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Figure I.14 Curve movements: butterfly. Source: Bloomberg® 
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I.2 BONDS 
 
 

Bonds are debt securities issued by companies or public bodies that give the holder the right to the 
reimbursement of a sum of money lent to the issuer plus accrued interest. The normal practice for a standard 
bond (straight bullet) provides that upon maturity, the issuer pays the creditor the entire principal in a single 
solution, while periodic payments are paid on a regular basis (hence the term fixed income) typically quarterly, 
semi-annual or yearly for the interest. 
These earnings received by the investor are called coupons and a failure to pay a coupon to the bondholder is 
considered an event of default. 
It is substantially the legal structure that provides for the differentiation between the nominal value of a bond 
(or the principal that must be paid at maturity) and the coupons (which are to be considered as the payment of 
interest), and such distinction has fiscal repercussions in those countries that apply a different tax scheme based 
on the origin of financial income: capital gains tax or income tax. 
As known, from a purely financial point of view, a bond is a series of cash flows. 
In a straight bullet bond (or a standard bond whose principal is repaid in full at maturity) the cash-flows are 
equally spaced, and they are characterized by the same amount, with a final followed by and higher one paid 
at maturity. 
As shown in the figure, the coupons are represented by have regular flows, while the final disbursement 
represents the payment of the last coupon together with the repayment of the principal. 
 

 

 
Figure I.15 Cash Flow example for a Straight Bullet Bond 
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Figure I.16 Straight bullet bond. Source: Bloomberg® 
 
The price of a bond constitutes the market value at which it is currently traded, and it is generally quoted as 
a percentage of the nominal amount (face or par value). 
Therefore, in order to convert the market price of a bond into a monetary amount, it is sufficient to multiply 
the face value by the percentage and divide the result by 100. For example, if a bond with a par value of EUR 
5,000 traded at 98.71, its value is: 
 

(98.71 * 5000) /100= EUR 4,935.5 
 

Certain bonds, with particular reference to those issued by the US Treasury (American Treasury bonds or 
American T-bonds), are quoted as a percentage of their face value and in 32ths of a percentage. Thus, a T-
bond quoted 102-14 means that its market price is equal to: 
 

102 + 14/32 = 102 + 0.4375 = 102.4375. 
 

This pricing method derives from the trading convention of adopting the 1/32nd of a point (in decimal 0.03125) 
as the minimum allowed price variation for this type of financial instrument. 
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  Figure I.17 Listing Conventions. Source: Bloomberg® 
 
Comparing the prices of two bonds may not be straightforward because the coupon payment dates vary from 
bond to bond. Consequently, prices are generally quoted net of accrued interest. Practically, however, when 
a bond is bought between two payment dates, the investor also pays, in addition to the market price, the 
accrued interest, pro rata temporis. When a security is traded, the coupon quota already accrued in the time 
interval between the last coupon payment date and the date of purchase of the security is taken into account, 
in accordance with the relevant day count convention. This calculation is fair because the bond holder will 
receive the full coupon on the following payment date. 
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The price at which the bond is traded is called Tel Quel (or full purchase price or gross price or dirty price) and 
it is given by the sum of the Quoted price (or flat price or clean price) plus the accrued interest. 
 

Full Price of bond = Quoted price + Accrued Interest (Eq. I.31) 
 

For example, we want to buy the previously described straight bullet bond (5%) on 19th August 2022 for an 
amount equal to EUR 1,000,000. This security is traded at 101.1202, the previous coupon payment was on 22nd 
December 2021. The coupon is paid yearly.  
 

Clean Price = 101.1202% 
Accrued Interest = 5% * 240/365 = 3.287671% 
Dirty Price = 101.1202% + 3.287671% = 104.407871% 
Total Amount to be paid = Dirty Price * Face Amount = EUR 1,000,000 * 104.407871% = EUR 
1,044,078.71. 
 
 

 
 

Figure I.18 Clean and Dirty Prices 
 
The day-count convention is the system used to consider days when calculating the interest accrued between 
two consecutive payment dates. Each financial instrument has its own methodology which varies, for example, 
depending on the type of bond, the interest rate (fixed or floater) or the country in which it has been issued. 
The numerous day calculation rules are standardized and codified and the most common are: 
 

ACT/ACT or Actual/Actual: effective days on effective days. The numerator is given by the number of 
effective days between two dates, while the denominator is 365 for the non-leap year, otherwise 366. 
 

ACT/360 or Actual/360: effective days on 360 days. The numerator is given by the number of effective days 
between two dates, while the denominator is 360. 
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ACT/365 or Actual/365: effective days on 365 days. The numerator is given by the number of effective days 
between two dates, while the denominator is 365. 
 

30/360 or 30 on 360 days. Each month has 30 days and each year has 360 days.  

 
For Swiss bonds and Eurobonds, it is usually assumed that a year consists of 360 days, or 12 months of 30 days 
each (Day Basis: 30/360).  
 

The formula for calculating the accrued interest is then: 
 

Accrued Interest = C*(30*m+d)/360 (Eq. I.32) 
 

Where C is the coupon rate, m the number of months and d days since the payment of the last coupon. 
Here is an example related to a Swiss bond: 
 

Trading Date: 23rd August 2022 
C = 0.5% 
m = 2 (from 30th May 2022  to 30th July 2022)  
d = 23 (from 30th July 2022 to 23rd August 2022) 
Accrued Interest = 0.5%*(30*2+23)/360 = 0.115278%  
Face Amount = CHF 1,000,000 
Accrued = CHF 1,152.78 

 

 
 

Figure I.19 Day-count convention and Accrued Interest – Swiss Bond. Source: Bloomberg® 
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For bonds issued by the US Treasury, the ACT/ACT day basis is usually adopted. The formula for calculating 
the accrued interest, in this case, can be rewritten as: 
 

Accrued Interest = C / 2 * (Exact number of days since the last coupon / Exact number of days 
between coupons) (Eq. I.33) 

 

When the coupon is paid every six months, as in this case, the coupon rate expressed on an annual basis must 
be halved. Here comes an example of a US Treasury bond: 
 
Trading Date: 23rd August 2022 
C = 2.875% 
num = 100 (from 15th May 2022 to 23rd August 2022)  
den = 184 (from 15th May 2022 to 15th November 2022) 
Accrued Interest = 2.875% / 2 * 100/184 = 0.78125%  
Face Amount = USD 1,000,000 
Accrued = USD 7,812.5 
 

 
 

Figure I.20 Day-count convention and Accrued Interest – US Treasury Bond. Source: Bloomberg® 
 

Certain bullet straight bonds may have an irregular first coupon (Short or Long). This does not change the 
calculation rules for the accrued interest. As shown in the picture, the other coupon payment dates are regular 
till the maturity of the bond. Here is an example of such a case: 
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Trading Date: 23rd August 2022 
C = 2.15% 
num = 175 (from 1st Mar 2022 to 23rd August 2022)  
den = 184 (from1st Mar 2022 to 1st September 2022) 
Accrued Interest = 2.15% / 2 * 175/184 = 1.02242% 
Face Amount = EUR 1,000,000 
Accrued = EUR 1,022.42 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure I.21 Day-count convention and Accrued Interest – Italian bond 

For bonds issued by US companies (corporate bonds), the basis is 30/360 and the payment frequency is usually 
half-yearly. Thus the formula for calculating the accrued interest is: 
 

Accrued Interest = (C/2)*(30*m+d)/180 (Eq. I.34) 
 

Where C is the coupon rate, m the number of months and d days since the payment of the last coupon. Here 
is an example regarding a US corporate bond: 
 

Trading Date: 23rd August 2022 
C = 4.125% 
m = 4 (from 9th April 2022 to 9th August 2022)  
d = 14 (from 9th August 2022 to 23rd  August 2022) 
Accrued Int. = 4.125% /2*(30*4+14)/180 = 1.535417%  
Face Amount = USD 1,000,000 
Accrued = USD 15,354.17 
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Figure I.22 Day-count convention and Accrued Interest – US Company 

  

 

Figure I.23 Bloomberg® module check. 

If the coupon payment date falls on a public holiday, the type of adjustment to be made, in accordance with 
the target calendar, must be contractually specified. As with all other terms, the business day conventions are 
also codified and the most important are indicated here: 
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Following: the date is adjusted to the following business day. 
Preceding: the date is adjusted to the previous business day. 
Modified Following: the adjusted date is the following business day unless it would then fall in the following 
month in which case, it is adjusted to the previous business day. 
 

  

Figure I.24 Covered Bond Prospectus. Source: Bloomberg® 

There is a large variety of fixed income securities on financial markets, and these can be classified in different 
ways, either based on their structure, their numerous types of maturities, repayments or their coupons. In this 
section, we describe the most important classifications. 
 

A bond that periodically pays fixed interest and repays the notional at maturity is called a straight bond (or as 
previously mentioned bullet bond). 
A callable bond gives the issuer the right to repurchase the security on a certain date (call date) at a 
predetermined price (call price). 
The call price is often equal to the par value plus a premium (call premium): the lower the premium, the 
greater the reliability of the issuer. 
There are particular features typical of these bonds, for example, callable bonds from issuers with an excellent 
credit profile - high-quality issuers - can be called “at par”, i.e.  at 100. 
Obviously, the call dates and the respective call prices must be specified on the prospectus drafted at the issue 
of the security. 
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Figure I.25 European Callable bond. Source: Bloomberg® 

The option that makes a bond “repurchasable” by the issuer only on certain specific dates (discrete dates) is 
called the European Call. If the issuer has the right to buy back the security at any time starting from a certain 
date at a predetermined price, it is called American Call. In cases when interest rates fall sharply on the market, 
the callable bond issuer can exercise the call option allowing for refinancing by issuing new bonds, at a later 
date, at a lower fixed coupon rate. Therefore, a callable bond protects the issuer from being forced to pay high 
coupons when interest rates fall. On the other hand, Puttable bonds are the opposite of callable bonds: in this 
case the holder of the bond has the right to sell the bond to the issuer at a predetermined price (put price). 
The presence of the put increases the value of the bond in favor of the investor as it ensures that the security 
cannot be traded below the put price. Bullet bonds are bonds that are not callable. 
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Figure I.26 Bermudan Callable bond. Source: Bloomberg® 

 

 

Figure I.27 Puttable bond. Source: Bloomberg® 
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Certain bonds may include an amortization plan (sinking-fund provision) which requires the issuer to pay the 
principal not in a single payment at maturity, but at each coupon payment. The Sinker percentage is defined 
as the percentage of the bond which is amortized before maturity. Let us consider as an example a ten-year 
sinkable bond, with a coupon equal to 2% paid annually, 1,000 Euro of nominal value and a sinker percentage 
of 90%. The cash-flows are summarized in Table I.7. 
 

Time 
Total amount 

due 
Interest payment 2% 

[A] 
Sinking payment 

[B] 
Principal Repayment 

[C] 
Total annual payment 

[A+B+C] 

1 1000 20 100 0 120 

2 900 18 100 0 118 

3 800 16 100 0 116 

4 700 14 100 0 114 

5 600 12 100 0 112 

6 500 10 100 0 110 

7 400 8 100 0 108 

8 300 6 100 0 106 

9 200 4 100 0 104 

10 100 2 0 100 102 

 
Table I.7 Total annual payment for a Sinkable bond 
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Figure I.28 Sinkable bond. Source: Bloomberg® 

The Zero-coupon bond is a type of bond which pays no interest during its whole lifetime. These bonds 
generally repay the face value (100%), but are typically issued below par, therefore the financial return of this 
type of security is derived from the differential between these two prices according to the well-known 
relationship: 

𝑌𝑖𝑒𝑙𝑑 =  √
𝑓𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒

𝑖𝑠𝑠𝑢𝑒 𝑝𝑟𝑖𝑐𝑒

𝑇
− 1 = (

𝑓𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒

𝑖𝑠𝑠𝑢𝑒 𝑝𝑟𝑖𝑐𝑒
)

1

𝑇
− 1 (Eq. I.35) 

Where 𝑇 is expressed in year fractions. As an example, a zero-coupon issued at 45.73% and which redeems at 
par (i.e. at 100%), with a duration of 25 years, yields the following interest at maturity: (100/45.73)^(1/25)-1 = 
3.179%. 

The concept of zero-coupon bonds is central to all financial analysis and risk management. It constitutes a 
building block for financial engineering, since any bond made up of cash flows can be broken down into a 
series of zero coupons. Besides, this type of financial instrument is also essential to derive the spot (or zero-
curve) interest rate curve from which the discount factors necessary to discount future cash flows are calculated. 
 

Let us make an example and use the above formula: 
 

Bid/Ask Price = 98.931/98.961 
Reference Date = 24th August 2022 
Maturity Date = 14th August 2023 
Day Basis = ACT/360 
T = 355/360 = 0.98611 

𝑌𝑖𝑒𝑙𝑑 = (
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒

𝑃𝑟𝑖𝑐𝑒
)

1

𝑇
− 1; 𝑌𝑖𝑒𝑙𝑑𝐵𝐼𝐷 = (

100

98.931
)

1

0.98611
− 1 = 1.096%; 𝑌𝑖𝑒𝑙𝑑𝐴𝑆𝐾 = 1.065%  
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Figure I.29 Zero Coupon bond. Source: Bloomberg® 

A concept derived from zero-coupons is that of Stripped Bonds, which are zero-coupon bonds artificially 
created from risk-free government bonds. Such concept dates back from the eighties, when the first strips were 
synthesized by Wall Street companies, initially from American government bonds (US Treasury bonds), which 
soon became widespread enough to be created by the same government issuers. Nowadays, there are strips on 
the market made from French bonds (French OATs – Obligations Assimilables du Trésor), United Kingdom 
(UK GILTs – Government Issued Long Term Stocks) and American bonds (US Treasuries), all sponsored 
and managed by government issuers themselves. 

 

Figure I.30 Stripped Bonds. Source: Bloomberg® 
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Perpetual bonds (or undated bonds) are securities whose issuer pays interest at a fixed rate “forever”, without 
the principal being ever repaid. These bonds include issues that are quite dated, even centuries old, such as 
those issued by the Canadian and British governments as war loans.  
Although more recently, other issuers, especially in the banking sector, have also issued undated bonds with 
embedded call options. 
 

Income bonds are securities that pay interests only if the company’s profits are sufficiently high. In this 
particular case, failure to pay a coupon is not considered as an event of default. 
Another peculiarity of these bonds is that the holders have the priority to be remunerated through the payment 
of the coupon before the distribution of dividends to the ordinary shareholders of the company. 
 

Another typology is constituted by Convertible bonds, securities that are placed in an intermediate position 
between a stock and a bond. In fact, these financial instruments offer their subscriber the right to remain a 
creditor of the issuing company (therefore to maintain the status of bondholder), or to convert the bonds, 
within certain time frames (conversion periods) and on the basis of pre-established conversion ratios, into 
shares of the issuing company or of another company, thus assuming the status of shareholder. 
The conversion option is at the discretion of the holder of the bond, however, certain convertible bonds 
provide for the possibility to force the conversion. 
 

 

Figure I.31 A Perpetual Bond (on the left) and a Convertible Bond (on the right). 
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Bonds cum warrant constitute a particular category of bonds, which have the main security accompanied by 
another financial instrument that gives the subscriber the right to obtain a certain quantity of other securities 
(shares and/or bonds) of the issuing company, or another one, on a due date and within a predetermined period 
of time, against payment of a certain amount (warrant premium). In legal terms, the warrant is configured as 
a call option to purchase other financial instruments. If the right to purchase can be exercised at any time prior 
to the expiry date, the exercise type is called “American”, otherwise if this right can only be exercised on a 
specific future date the exercise type is called “European”. Bonds with warrants have a great similarity with 
convertible bonds, but they have their own specific characteristics: 
 
- The warrant can generally be detached from the bond and negotiated separately from it, while in the 
convertible bond the conversion right is inseparably linked to the security. 
 

- The option incorporated in the warrant can have a longer life than the bond. 
 
Therefore, three prices can be determined on the market: the full bond (i.e. cum warrant bond), the bond 
without the warrant (ex warrant bond) and the warrant alone. 

 

 

Figure I.32 Cum Warrant Bond. Source: Bloomberg® 
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Figure I.33 Ex Warrant Bond. Source: Bloomberg® 

 

Figure I.34 Warrant. Source: Bloomberg® 
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The three prices, even if related, have their own peculiar characteristics, in particular, the price of the warrant 
will essentially depend on the relationship between the share price and the price set to exercise the subscription 
right (based on the number of warrants needed to obtain a share). The price of the ex-warrant bond will be 
close to that of a normal bond with the same financial characteristics. 
On the other hand, the price of the cum warrant bond is theoretically equal to the sum of the two previous 
values, but it is in fact also influenced by other factors such as the duration of the option, the expected 
performance of the stock on the equity market, the performance of the stock market itself and interest rates on 
the fixed income market. This formula theoretically might hold: 
 

Th. Cum-Warrant Bond = Ex-Warrant Bond + Warrant Price (Eq. I.36) 
 

Covered bonds are securities insured by assets intended to primarily satisfy the rights of the bondholders in 
the event of the issuer’s insolvency. Ceteris paribus, typically a Covered Bond Rating is greater than that of 
senior or subordinated bonds. 

 
Figure I.35 Covered bond. Source: Bloomberg® 

Securities that have prefixed increasing (/ decreasing) coupons are called step-up (/ step-down) bonds. 
 

Another important category is that of Indexed bonds, a category of securities with considerably different 
characteristics, but anyhow attributable to the need to supply the market with securities whose value is protected 
in whole or in part from the loss of purchasing power of the currency. The indexing feature consists in linking 
the yield and/or the redemption value of the security to the performance of an index chosen during the issue 
phase. 
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Figure I.36 Step Down bond. Source: Bloomberg® 

The most widespread parameters used for indexation are the following: 
 

- monetary: when indexation is linked to the cost of money on the money market. 
- real: when indexation is linked to the price of a basket of goods or services. 
- financial: when it is linked to the cost of capital on the financial market. 
- foreign exchange: as the name suggests, when it is linked to exchange rate. 
 

It is worth to note that the financial and monetary indexation clauses generally concern coupon interest, while 
a real and currency indexation tends to refer to the principal. We will analyze the characteristics of each type of 
indexation mentioned above and provide examples. 
 

Monetary indexing 
 

The variable coupon can include a multiplier (leverage) and an additional margin (spread), generally expressed 
in basis points. A typical coupon of a bond indexed to a reference rate of the money market (floating-rate notes) 
can be expressed as: 
 

leverage * money market reference rate + spread (Eq. I.37) 
 

 
Here is an example: 
Reference Date: 25th August 2022 
Last Coupon payment date: 15th April 2022  
Reset Days Prior = 2 days 
Fixing Date = 13th April 2022 
Euribor 6 months (EUR006M Index) = -0.328% 
Coupon Formula = Leverage * index + spread 
Current Coupon = 1 * (-0.328%) + 75 bps = 0.422% 
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Figure I.37 Floating-rate bond. Source: Bloomberg® 

In bonds having a floating coupon, the issuer can define a maximum rate (cap) and/or a minimum rate (floor), 
and the interest to be paid cannot go beyond this threshold, while the simultaneous presence of an upper-
bound and a lower-bound defines a range of admissible values for the defined coupon. Such corridor is called 
collar (cap + floor = collar). 
The value of a floating bond with a cap has a lower intrinsic value than one with the same financial 
characteristics but without the embedded option. Dually, the value of a floating bond with a floor has a higher 
intrinsic value than one with the same financial characteristics but without the embedded option. It is in fact 
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intuitive to understand that the investor is protected if the coupon assumes a value lower than the floor strike 
price (i.e. the coupon lower bound). In the case of a collar, on the other hand, it cannot be concluded a priori: 
it depends on the agreed strikes. Here is an example with both a cap and a floor:  
First Coupon Date: 28th April 2020 
Fixing Date = 26th April 2020 
EUR003M Index = -0.538% 
Coupon Formula = Max(Floor,Min(Cap,index)) 
First Coupon = Max(0.64,Min(1.05,-0.538)) = 0.64 
 

Taking into consideration that the parameter has been negative till 14th July 2022, the coupons of the bond are 
equal to the floor strike price, that is 0.64%. 

 

 

 

 

 

 

 

 

Figure I.38 Capped and Floored Bonds. Source: Bloomberg® 
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Figure I.39 Deleveraged bonds. Source: Bloomberg® 

Real indexing 
 

That is the case of an indexation on goods or services, which we will explain through an example. 
 

 

 

  

 

 

 

 

 

Figure I.40 Inflation-indexed bonds. Source: Bloomberg® 
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Figure I.41 Inflation Bond Accrued. Source: Bloomberg® and Department of Treasury 

Last Coupon Payment Date 03/15/2022 

Trading Date 08/25/2022 

Next Coupon Payment Date 09/15/2022 

CPI Base (09/15/2009) 92.21738 

CPI Index (05/01/2022) 115.74 

CPI Index (06/01/2022) 116.7 

CPI Reference (08/25/2022) 116.48323 

Index Ratio 1.26314 

Notional (real term) [€] 1,263,140 

MKT Price [%] 118.24 

MKT Value [%] 1,493,536.74 

Coupon – C [%] 2.550% 

C/2 [%] 1.275% 

Days Numerator and Denominator 163 and 184 

Accrued [%] 1.12948% 

Accrued [€] 14,266.91 

Full Price [€] 1,507,803.65 
 

Table I.8 Accrued interest for an inflation-indexed bond 

Let us calculate the CPI Reference as follows: 
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CPI Reference= CPI(m-3) + (d-1)/(gg)* [CPI(m-2) - CPI(m-3)]=115.7 + (25-1)/31 *[116.7-115.7] = 116.48323 
Index Ratio = CPI Reference/CPI Base = 116.48323/92.21738 = 1.26314;  
Notional in Real terms = Notional * Index Ratio =1,000,000 * 1.26314 = 1,263,140 
 

The regulation of the markets organized and managed by Borsa Italiana defines structured bonds, as the bonds 
whose repayment and/or interest is indexed to the price level of one of the following financial assets: 
 

- Shares or baskets of shares (basket linked). 
- Equity indices or baskets of equity indices (equity index linked). 
- Currencies (forex linked). 
- Mutual funds.  
- Commodities. 
 

In the category of structured bonds, in addition to the most common embedded options (callable/puttable 
bonds and floored/capped floaters), non-standard options (called exotic options) can also be embedded. 
This process studied mainly by financial engineers/structurers allows to provide a higher yield from the fixed 
income instrument, obviously associated to a greater level of risk. 
There is a large number of non-standard options that can be embedded in a security and their classification 
mainly depends on the characteristics of their pay-off. Let us review several of those options: 
 

The Asian option is a path-dependent derivative whose pay-off depends on the average price of the underlying 
asset observed in an agreed time interval during the option life. 
 

The Barrier option is a type of derivative which payoff depends on whether or not the underlying asset has 
reached or exceeded a predetermined price. 
 

Digital options are derivatives whose pay-off is defined in a binary way, all or nothing, depending on the 
occurrence of an event during the option life. 
 

Lookback options are derivatives whose final value depends on the maximum or minimum level recorded by 
the underlying asset during a certain time period. 
 

The Basket option is a type of financial derivative whose underlying asset is a group, or basket, of commodities, 
securities, or currencies. This exotic option has all the characteristics of a standard option, but with a strike 
price based on the weighted values of the basket components.  
 

Lastly, the Worst of option is a derivative composed of a bundle of call (put) options all with the same 
expiration dates but each for a different asset. There must be at least two defined assets, and on the expiry date, 
only the option of the worst performing asset will be exercised, and then only if it is in-the-money (ITM). 
 

It is also worth mentioning Drop lock bonds, securities which are convertible into fixed rate bonds. This 
particular conversion clause protects the holder from an excessive drop in interest rates. The drop lock bond 
was born as a standard floating-rate bond, but in which a minimum threshold of interest (called trigger rate) is 
established. The  automatic conversion clause of the fixed rate bond is performed below this threshold. Mixed-
rate bonds are securities that have floating (/ fixed) coupons in a first phase and fixed (/ floating) coupons in 
a second phase, which normally lasts until maturity. Unlike drop locks, there is no embedded optionality. 
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Foreign-exchange indexing 
 

It is the case of an indexation linked to the rate of exchange between different currencies. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure I.42 Basket Option in a forex-linked Bond. Source: Bloomberg® 
 

Financial indexing 
 

It is the case of an indexation linked to the cost of capital on the markets, and it typically relates to the coupons. 
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Figure I.43 Digital Option in an equity-linked Bond. Source: Bloomberg® 
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Figure I.44 Mixed rate and Drop lock Bond. Source: Bloomberg® 
 
The constant rate and variable duration bonds are characterized by having a non-prefixed maturity, but variable 
from a minimum to a maximum period. Such Extendable bonds can be modeled as a standard security with 
a maturity up to the maximum expiration date allowed by the contract, associated with a collection of call 
options on par. 

 

 

Figure I.45 Extendable Bond. Source: Bloomberg® 
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Bull & bear bonds are instruments that embed a speculative component in relation to the principal amount. 
The redemption amount is linked to an index, which generally represents the stock market trend, but it can also 
be referred to a commodity or a specific security or even the exchange ratio between two currencies. As for the 
interest rate, they ensure a fixed return based on a rate set by the issuer. These bonds can be considered 
interesting for the subscriber as an innovative form of investment, which mixes the characteristics both of a 
bond and of a share: 
 

- it guarantees a flow of interest and a repayment of the principal (in a variable measure) as a fixed income 
instrument, but 
- it also gives the possibility of betting on the future trend of the stock market with the risk of capital losses 
and, specularly, with the possibility of capital gains, as an equity investment. 
 

The Dual currency bonds, as the name suggests, are securities whose interest is paid in a currency other than 
the principal repayment currency. 
 

A broad category is constituted by Floating rate bonds, which are proportionally indexed to the reference 
index, i.e., as the reference rate increases (/ decreases), the paid coupon will have a higher (/ lower) amount. 
On the other hand, Reverse floaters work in the opposite way: as the benchmark increases, the indexed coupon 
decreases, therefore these instruments are suitable for investors who have an expectation of a decline in the 
reference index. 
These are long-term bonds, whose issue regulation provides for the payment of initial fixed coupons higher 
than the market rates, and in a second phase, the payment of coupons calculated by applying a variable rate 
given by the difference between a maximum ceiling determined at issue (i.e. a cap rate) and a floating rate 
(Euribor). To avoid the risk that the coupon may become zero in the presence of a sharp rise in rates, the bond 
can provide for a minimum threshold (i.e. a floor rate). The coupon can thus be expressed by the formula: 
 

Coupon Rate = max (floor rate; cap rate – Reference Rate) (Eq. I.38) 
 

 
Let us now consider the type of issuer, in that respect, bonds can be classified into 4 classes: 
 

Domestic bonds, that are issued on the local market by a domestic borrower in the local currency. 
 

Foreign bonds, issued on the local market by a foreign borrower in the local currency. Here are a few examples 
of them:  
 

- Yankee bonds, USD securities issued on the US market by a non-US issuer. 
- Samurai bonds, that are JPY bonds issued in Japan by non-Japanese companies. 
- Bulldog bonds which are GBP bonds issued by non-British entities on the UK market. 
 

The third type is the Euro bond, a term used for the hypothetical creation of a public debt bond issued by one 
of the European countries with a single currency, but subscribed by all the states of the Eurozone. In this way, 
their solvency is jointly guaranteed, reducing the associated risk. 
 

Lastly, the Global bond is a type of bond traded both in a domestic market and in a foreign market, whose 
currency is that of the nation to which the issuer belongs. 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

58 

 

 
 

 

Coupon (2019) = 9% - (-0.191%) = 9.191% 

Figure I.46 Reverse-Floater. Source: Bloomberg® 
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Another kind of classification is based on the type of collateral present on the payments, thereby, bonds can be 
classified into: 
 

Government bonds are securities issued and directly guaranteed by sovereign states. 
 

Government guaranteed bonds are securities issued by entities other than the state but guaranteed by it. 
 

Government Agency bonds are securities issued by affiliated or state-sponsored companies, but which do 
not benefit from a direct state guarantee. 
 

Supranational Agency bonds are securities issued by a few entities, typically banks, which are controlled by 
sovereign states. For example: World Bank, European Investment Bank, Asian Development Bank. 
 

Provincial or State bonds are securities issued by sub-national/territorial government bodies (Swiss cantons, 
municipalities, …) 
 

Last but not least, the category of Corporate bonds, securities issued by public or private companies, is quite 
broad and diversified. In this case, it is assumed that, unlike bonds issued by the state, whose ability to repay 
the debt is mainly guaranteed by the possibility of raising taxes, for corporate bonds, the company solely relies 
on its own business. In fact, there are different ways for a company to increase the confidence level in 
repayments (bond seniority). Corporate bonds issued by one single issuer can assume different levels of 
seniority: 
 

Secured debt: when the debt/bond is guaranteed by specific assets of the issuer. A set of assets are used as a 
kind of collateral. 
 

Senior debt: it is defined senior when it must be repaid first to the investors, in case of default. 
 

Subordinated: in this case, in the event of default of the issuer, subordinated debt can be repaid only after all 

the senior notes have been repaid. 
 

In addition, a security can be backed in a variety of ways, and depending on the underlying collateral, there are 
mortgage-backed securities, asset-backed securities and covered bonds. 
 
When an analyst decides to invest in a corporate bond, he must pay close attention to the creditworthiness of 
the issuer, since, unlike a government bond, it is very variable. Useful information can be found directly from 
the offer document in which the issuer is required to detail the seniority, the presence of any protection in case 
of default and the assigned rating. Over time, these assessments made when the bond was issued can become 
obsolete, so the investor must rely on the score assigned by the rating agencies. By rating we mean a synthetic 
level of the credit quality of an issuer assigned by an agency that is based on the financial conditions, the 
reliability of the management and the analysis of the company’s balance sheet. 
Such opinion can be expressed in a short/medium/long term perspective on the issuer (issuer outlook) and/or 
on the financial instrument itself. The conventions adopted by the different rating agencies are not exactly the 
same, but there are equivalence tables between them for uniformity of judgment. 
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Figure I.47 Classification based on Collateral. Source: Bloomberg® 
 

The main rating agencies, most widely used by companies and trusted by investors are Moody’s and Standard 
& Poor’s, while the two main categories of bonds, based on their ratings are the investment grade and the 
speculative grade bonds, each of them in turn containing several levels of creditworthiness scores.  

 
Investment Grade  
Within the Investment Grade category, the different levels of rating considering the Standard & Poor’s scale 
are the following: 
AAA: An obligor rated 'AAA' has an extremely strong capacity to meet its financial commitments, it is the 
highest issuer credit rating assigned by Standard & Poor's. 
 

AA: An obligor rated 'AA' has a very strong capacity to meet its financial commitments, it differs from the 
previous level only to a small degree, and it includes:  
AA+: high quality debt, with a very low credit risk, but susceptibility to long-term risks appears somewhat 
greater. This level is equivalent to Aa1 in the Moody’s rating scale. 
AA: equivalent to Moody’s Aa2. 
AA−: equivalent to Moody’s Aa3. 
 

A: An obligor rated 'A' has a strong capacity to meet its financial commitments but is somewhat more 
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susceptible to the adverse effects of changes in circumstances and economic conditions than obligors in higher-
rated categories. This level includes: 
A+: equivalent to A1, and 
A: equivalent to A2 in the Moody’s rating scale. 
 

BBB: An obligor rated 'BBB' has an adequate capacity to meet its financial commitments. However, adverse 
economic conditions or changing circumstances are more likely to lead to a weakened capacity to repay its debt. 
 

Speculative Grade (or Non-investment)  
This category is also composed of several rating levels, as indicated below: 
 

BB: An obligor rated 'BB' is less vulnerable in the near term than other lower-rated obligors. However, it faces 
uncertainties and is exposed to adverse business, financial, or economic conditions, which could lead to the 
obligor's inadequate capacity to meet its financial commitments. 
 

B: An obligor rated 'B' is more vulnerable than the previous level, but the obligor currently has the capacity to 
meet its financial commitments. Adverse business, financial, or economic conditions will likely impair the 
obligor’s capacity or willingness to meet its financial commitments in the future. 
 

CCC: An obligor rated 'CCC' is currently vulnerable, and is dependent upon favorable business, financial, and 
economic conditions to meet its financial commitments. 
 

CC: An obligor rated 'CC' is currently highly vulnerable. 
 

C: highly vulnerable, perhaps already in bankruptcy or delaying its payments, but still willing to continue paying. 
 

R: An obligor rated 'R' is under regulatory supervision owing to its financial condition. During the pendency 
of the regulatory supervision, the regulators may have the power to favor one class of obligations over others 
or to pay some obligations and not others. 
 

SD: has selectively defaulted on some obligations. 
 

D: has defaulted on obligations and S&P believes that it will generally default on most or all obligations. 
 

Generally speaking, the outcome of a financial investment depends on the occurrence of a series of future 
events that can determine its variability, and the concept of risk is closely linked to this consideration. Risk is 
in fact inherent to any form of economic activity. There are no financial investments that do not expose to 
risks. Based on the effects produced by future and uncertain events, a distinction can be made between pure 
and speculative risk. The pure risk is due to events that can only generate damage and losses. The eventuality 
of a fire, a theft, an accident or an illness are all events that can cause only damage to the exposed person and, 
therefore, no benefit. 
 

Speculative risk, on the other hand, is linked to future and uncertain events that can have not only unfavorable 
but also favorable effects. The exposure to risk, typical of financial transactions, is presented under the dual 
aspect of producing both losses and gains, depending on the type of event, therefore belonging to speculative 
risk. The overall risk of a financial investment is determined by events and situations of a specific and general 
nature that highlight various types of risk.   
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Table I.9 Rating equivalence table. Source: Borsa Italiana 

 

In fact, the contractors of a financial transaction are exposed to risks attributable both to the behavior of the 
counterpart (endogenous factors), and to situations of a general nature connected to unexpected changes in 
market variables (exogenous factors). 
 

The main types of risk can be summarized as follows: 
 

Insolvency risk: this type of risk occurs first of all when the debtor is unable to honor his debts in full, paying 
interest and repaying principal. 
 

Migration risk: during the life of the financial transaction, the debtor’s creditworthiness may differ from that 
assigned by the creditor ex-ante, before entering into the contract. A lowering of creditworthiness is determined 
by an increase in credit risk and vice versa. Even when there are no defaults, the risk of the transaction varies 
because the creditworthiness changes over time. 
 

Settlement risk: this type of risk is associated with contractual breaches in the settlement of a financial 
transaction. The counterparty, buyer or seller, of a securities negotiation does not perform the due service, 
nullifying the exchange intentions of the other operator who must bear the consequences of the cancellation 
of the operation. 
 

Price/interest risk: changes in interest rates may impact the price at which the financial instrument can be 
traded before maturity. This risk therefore originates from fluctuations in the sale prices of the security due to 
changes in market rates. 
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Reinvestment risk occurs only in the event that the financial instrument provides intermediate income 
between the time of its purchase and the investor's time horizon. At the time the interest is collected, the 
operator is unable to reinvest the sum collected at the same return conditions. 
 

Liquidity/negotiability risk, as the name suggests, occurs when unexpected events actually reduce the degree 
of liquidity of the instrument for the investor. In particular, if the investor needs an early disinvestment, it might 
prove difficult to implement at a reasonable price and in a reasonable time. 
 

Exchange/currency risk happens when a financial instrument is denominated in a currency different from 
the reference one, and the investor thus also has to consider the volatility of the exchange rate. 
 

Lastly, Inflation/monetary risk occurs because the return on the financial investment is typically expressed 
in nominal terms, but the holder is often interested in the “real” level of return, net of the inflation rate. If the 
monetary depreciation was greater than the rate of return on the investment, the final capital shows a 
depreciation, in real terms. 
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I.3 QUANTITATIVE ANALYSIS 
 
 

The value of a bond (fair value) can be determined using the following criteria written in order of preference: 
 

A) it is equal to the market price observed on official listed stock exchanges. 
 

B) it is equal to the price provided by a contributor who actively trades the security on the secondary market. 
 

C) if a market price is not available, or if it exists, but is considered unreliable (for example due to lack of trading 
volumes or infrequent updating of the quotation), a theoretical pricing of the security must be taken into 
consideration. 
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Figure I.48 Bond Pricing. From top to bottom: Case A, B and C. Source: Bloomberg® 
 

Regulators have introduced the concept of Fair Value Level with the aim to provide an indication about the 
goodness of the price reported in a statement, therefore: 
 

- FVL 1 means that the value can be directly inferred from the market participants (cases A and B). 
- FVL 2 means that it is necessary to use a mathematical model for the estimation of the fair value, but all its 
inputs can be objectively deduced from the market. 
- Otherwise, FVL 3 must be applied. 

 
The discounted future cash flows valuation model is used for pricing bonds. All future cash flows are 
computed in accordance with the bond indenture and discounted at the time of valuation (typically at time 0) 
with an appropriate discount factor. The discount factor is estimated starting from the yield curve associated 
with the issuer, if directly available, or derived from the risk-free rates term structure (zero-curve or spot-curve), 
to which a risk premium is added. Such risk premiums taken into account for pricing a security are linked to 
creditworthiness and illiquidity. When a term structure stripped from the yields of the issuer’s bonds is listed, 
it can directly be used for the construction of the discount curve. In  case it is not available, the CDS (Credit 
Default Swap) curve linked to the issuer is commonly used as a proxy for estimating creditworthiness.  
 

As known, CDS are derivatives that allow to transfer the counterparty risk of default to a third party, the 
protection seller. The latter receives a periodic flow of payments from the protection buyer and undertakes to 
repay the par-value, in the event of a credit event, and to receive the defaulted security in return. The amount 
of the payments constitutes a sort of insurance premium and it is a proxy of how much an issuer is considered 
reliable. CDS are quoted in basis points and generally senior and subordinate curves are available for each 
counterparty. 
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Figure I.49 EUR Italy Sovereign Yield Curve. Source: Bloomberg® 
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Figure I.50 Credit Agricole Senior and Subordinated CDS Curves. Source: Bloomberg® 
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Typically, CDS premiums are added to the zero-rates of the risk-free discount curve, and this kind of risk 
adjustment is called Z-spread. If the issuer of a bond does not have a listed credit curve, then two approaches 
may to be used: 
 

- the averages of the sector spreads (spread curves) broken down by rating and therefore by seniority. 
- the yields of similar listed bonds used as a proxy (comparables). 
 

The premium for the illiquidity of a bond is more complicated to consider and there are still no universally 
accepted models. Bloomberg® recently proposed a mathematical approach related to the probability of success 
with which traders are able to close a trade on the secondary market. 
 

 

Figure I.51 Comparable Analysis. Source: Bloomberg® 

 
 

Figure I.52 Sector Spreads: EUR EU Financials yield curve. Source: Bloomberg® 
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As known, the theoretical price of a bond is based on the discounted cash flow method and the equilibrium 
concept. Let us review a few examples. The simplest security to consider is a zero-coupon bond which pays a 

single cash flow, 𝐶𝐹𝑡, at the end of period 𝑡. The price of this bond, denoted by 𝐵0,𝑡, is equal to the value of 

the single discounted cash flow: 
 

𝐵0,𝑡 =
𝐶𝐹𝑡

(1+𝑘)𝑡 (Eq. I.39) 
 

Where 𝐶𝐹𝑡 is the cash flow received at the end of period 𝑡 and 𝑘 is the appropriate discount rate. 
 
Let us calculate the price of a zero-coupon bond that will pay € 1,000 in 4 years, assuming a discount rate of 
8%? Then, the price, if it expires in 6 years, always assuming a discount rate of 8%? 
 

𝐵0,𝑡=4 =
1000

(1.08)4
= € 735.03,   𝐵0,𝑡=6 =

1000

(1.08)6
= € 630.17 

 

In the previous example, the discount rate was assumed to be constant regardless of the maturity of the security. 
In a real market context, this is interpolated starting from the zero-rates curve (spot curves), therefore it is 
necessary to index the discount by adding the time subscript. Thus, the formula has to be adjusted to use 
different discount rates for the different maturities: 
 

𝐵0,𝑡 =
𝐶𝐹𝑡

(1+𝑅0,𝑡)
𝑡 (Eq. I.40) 

 

Let us calculate the price of a zero-coupon bond that pays € 1,000 in 4 years, assuming a spot rate (𝑅0,4) of 

5%? Then, the price if it expires in 6 years, assuming a spot rate (𝑅0,6) of 6%? 
 

𝐵0,4 =
𝐶𝐹4

(1 + 𝑅0,4)
4 =

1000

(1.05)4
= € 822.70,   𝐵0,6 =

𝐶𝐹6

(1 + 𝑅0,6)
6 =

1000

(1.06)6
= € 704.96 

 

This concept can be extended to a security that pays a coupon interest, i.e. a coupon-bearing bond. We know 
that a bond that pays out coupons can be seen as a series of cash flows that can be replicated by a portfolio of 
zero-coupon bonds. For example, if Investor A has a straight bond that expires in 4 years, with a nominal value 
of € 1,000 and a coupon rate of 6%then Investor B can replicate this security by buying the following zero-
coupon bonds: 
 

- One that expires in a year and pays € 60 at maturity. 
- One that expires in two years and pays € 60 at maturity. 
- One that expires in three years and pays € 60 at maturity. 
- One that expires in four years and pays € 1,060 at maturity. 
 

Investor B receives exactly the same future cash flows as A and therefore the price of the security must be equal 
to that of the equivalent zero-coupon portfolio. If this were not the case, arbitrage opportunities would arise: 
the cheaper of the two would be bought, the other would be sold short, its cash flows would be reconstructed 
synthetically (cash flow matching) and the differential of the two would be earned as a profit without any risk 
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(risk-free profit). We can conclude that the price of a bond can be computed using the following equation:  
 

Bond Price = Price of replicating zero-coupon bond portfolio (Eq. I.41) 
  

Since the price of the portfolio is equal to the sum of the prices of all the zero-coupon bonds, the value of any 
coupon-bearing bond is the sum of the discounted values of all its payments. 
 

𝑃 = ∑ 𝐵0,𝑡 =𝑇
𝑡=1 ∑

𝐶𝐹𝑡

(1+𝑅0,𝑡)
𝑡 =

𝐶𝐹1

(1+𝑅0,1)
1 +

𝐶𝐹2

(1+𝑅0,2)
2 + ⋯ +

𝐶𝐹𝑇

(1+𝑅0,𝑇)
𝑇

𝑇
𝑡=1   (Eq. I.42) 

 

Where 𝐶𝐹𝑡 is the cash flow received at the end of period 𝑡 (coupon or repayment), 𝑇 is the number of years 

remaining before maturity (time to maturity) and 𝑅0,𝑡 is the spot rate of the reference term structure (risk -free, 

risk-free + risk premium or issuer/sector curve). 
Let us examine an example, and calculate the price of a straight bond that expires in 4 years, at par (100) 
supposing its annual coupons are equal to 2% p.a. The spot rates interpolated from the risk-free zero-curve are:  

𝑅0,1 = 0.5%, 𝑅0,2 = 0.75% , 𝑅0,3 = 0.9% , 𝑅0,4 = 1.5% 
 

𝑃 = ∑ 𝐵0,𝑡 =

𝑇=4

𝑡=1

∑
𝐶𝐹𝑡

(1 + 𝑅0,𝑡)
𝑡 =

2

(1.005)1
+

2

(1.0075)2
+

2

(1.009)3
+

102

(1.015)4

4

𝑡=1

 

 

 

Time [years] 0 1 2 3 4 4 

CFs [%] 0 2 2 2 2 100 

Discount Rate - 0.5% 0.75% 0.9% 1.5% 1.5% 

Discount Factor 1 0.99502 0.98517 0.97348 0.94218 0.94218 

NPV [%] 0 1.99005 1.97033 1.94696 1.88437 94.2184 

 
The risk-free price of the bond is 102.01%. 
 

Let us now add more information. Specifically, the security is a subordinated corporate bond, issued by a bank 
with a low creditworthiness, therefore the risk-free price cannot be considered as a good approximation to the 
fair value of the bond. 
 

In this case, given that the issuer has neither listed CDS nor actively contributed prices of comparables on the 
secondary market, we decide to use a generic sector spread for the evaluation. 
 

The average subordinated spread (𝑆𝑡) curve (expressed in basis points) for a bank issuer with a BB rating is: 

𝑆1 = 800 𝑏𝑝𝑠, 𝑆2 = 850 𝑏𝑝𝑠 , 𝑆3 = 895 𝑏𝑝𝑠 and 𝑆4 = 945 𝑏𝑝𝑠. 
 

Since the time to maturity of the bond is 4 years, the spread 𝑆𝑇=4 = 945 𝑏𝑝𝑠 is used to estimate the NPV. 
 

The adjusted-risk price of the bond is thus 72.27%. 
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Time [years] 0 1 2 3 4 4 

CFs [%] 0 2 2 2 2 100 

Risk Free Disc. Rate - 0.50% 0.75% 0.90% 1.5% 1.5% 

Spread - 9.45% 9.45% 9.45% 9.45% 9.45% 

Risk Adj. Disc. Rate - 9.95% 10.20% 10.35% 10.95% 10.95% 

Discount Factor 1 0.90950 0.82345 0.74419 0.65992 0.65992 

NPV [%] 0 1.81901 1.64690 1.48838 1.31984 65.9919 

 
If the bond reimbursement is not “at par”, but “at premium” or “at discount”, the pricing methodology remains 
the same. 
 
We now calculate the price of a straight bond that expires in 4 years, with 1,000 of principal and an annual 
coupon equal to 5% p.a. We also know that this the security will redeem with a 2% premium, or 102%. We 

first proceed to calculate the interpolated spot rates, which are: 𝑅0,1 = 7%, 𝑅0,2 = 8% , 𝑅0,3 = 8.5% , 𝑅0,4 =
9%. 
 

𝑃 = ∑ 𝐵0,𝑡 =

𝑇=4

𝑡=1

∑
𝐶𝐹𝑡

(1 + 𝑅0,𝑡)
𝑡 =

50

(1.07)1
+

50

(1.08)2
+

50

(1.085)3
+

50 + 1020

(1.09)4

4

𝑡=1

 

 

Time [years] 0 1 2 3 4 4 

CFs 0 50 50 50 50 1020 

Discount Rate - 7% 8% 8.5% 9% 9% 

Discount Factor 1 0.93458 0.85734 0.78291 0.70843 0.70843 

NPV 0 46.72897 42.86694 39.14540 35.42126 722.59372 

 
We reach the theoretical value of the bond, USD 886.76. 
 

If the security pays infra-annual coupons, the same formula can be applied, but the financial quantities in the 
reference time period have to be appropriately “rescaled”. The formula is the usual one: 
 

𝑃 = ∑ 𝐵0,𝑡 =

𝑇

𝑡=1

∑
𝐶𝐹𝑡

(1 + 𝑅0,𝑡)
𝑡 =

𝐶𝐹1

(1 + 𝑅0,1)
1 +

𝐶𝐹2

(1 + 𝑅0,2)
2 + ⋯ +

𝐶𝐹𝑇

(1 + 𝑅0,𝑇)
𝑇

𝑇

𝑡=1

 

 

 
We assume a semi-annual frequency, and we have: 

𝐶𝐹𝑡 is the cash-flow (coupon or principal) received at the end of period 𝑡, (in this case the semester). 
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𝑇 is the number of periods (i.e. semesters) that remains until maturity. 

𝑅0,𝑇 is the rate of return for lending money from time 0 to the end of semester 𝑡, or the spot rate proportioned 

to the time period with the formula: 𝑖𝑚 = (1 + 𝑖𝐴)
1

𝑚 − 1. 
 

Let us take as an example a bond that expires in 2 years and pays a semi-annual coupon at an interest rate of 
3% p.a. on a reference notional equal to € 100, the bond repaying at par. The spot rates, expressed using the 
traditional annual basis, are: 
 

𝑅0,6𝑀 = 5%, 𝑅0,1𝑌 = 6%, 𝑅0,1.5𝑌 = 6.5%, 𝑅0,2𝑌 = 7.5% (Rates expressed on annual basis)  
 

Let us remember to convert the financial figures in order to compare them in the semi-annual period. Thus, 

the half-yearly Cash Flow is equal to 
𝐶

2
= 1.5%. 

In order to convert rates expressed on an annual basis into a half-yearly basis, we have to use the formulas for 
equivalent rates. As a result, the converted discount rates are the following: 
 

𝑅0,6𝑀 = (1 + 0.05)
1

2 − 1 = 2.4695%  

𝑅0,1𝑌 = (1 + 0.06)
1

2 − 1 = 2.9563%  

𝑅0,1.5𝑌 = (1 + 0.065)
1

2 − 1 = 3.1988%  

𝑅0,2𝑌 = (1 + 0.07)
1

2 − 1 = 3.6822%  
 

 
Rates are now expressed on a semi-annual basis and we can implement our calculation: 

𝑃 = ∑
𝐶𝐹𝑡

(1 + 𝑅0,𝑡)
𝑡 =

1.5

(1.024695)1
+

1.5

(1.029563)2
+

1.5

(1.031988)3
+

100 + 1.5

(1.036822)4

4

𝑡=1

 

 

The theoretical bond price is 92.075%. 
 

Note that the same result could be obtained by directly using the discount rates on an annual basis but 
expressing the time periods in year fractions. The formula would then be: 
 

𝑃 =
1.5

(1.05)0.5
+

1.5

(1.06)1
+

1.5

(1.065)1,5
+

100 + 1.5

(1.075)2
= 92.075 

 

 

Time [years] 0 1 2 3 4 4 

CFs [%] 0 1.5 1.5 1.5 1.5 100 

Discount Rate - 2.4695% 2.9563% 3.1988% 3.6822% 3.6822% 

Discount Factor 1 0.97590 0.94340 0.90986 0.86533 0.86533 

NPV [%] 0 1.46385 1.41509 1.36479 1.29800 86.53326 
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Time [years] 0 0.5 1 1.5 2 2 

CFs [%] 0 1.5 1.5 1.5 1.5 100 

Discount Rate - 5% 6% 6.5% 7.5% 7.5% 

Discount Factor 1 0.97590 0.94340 0.90986 0.86533 0.86533 

NPV [%] 0 1.46385 1.41509 1.36479 1.29800 86.53326 

 
Let us now consider a real market case. The aim is to understand if the market price for a traded security is 
close enough to the theoretical price. 

 

 

Figure I.53 Bullet bond pricing. Source: Bloomberg® 
  

T 0.5 1 2 3 4 5 7 10 

Spread 16.8 19 30 49 71 89 137 171 
 

Table I.10 Enel CDS Senior. Reference Date: 2019/02/25. Source: Bloomberg® 
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Figure I.54 Interest rates and CDS term structure for bond pricing. Source: Bloomberg® 

T Date Zero Rate 

0.50137 27/08/2019 -0.23000% 

0.586301 27/09/2019 -0.22804% 

0.671233 28/10/2019 -0.22660% 

0.753425 27/11/2019 -0.22363% 

0.835616 27/12/2019 -0.22040% 

0.920548 27/01/2020 -0.21752% 

1.005479 27/02/2020 -0.21384% 

1.084932 27/03/2020 -0.20998% 

1.169863 27/04/2020 -0.20577% 

1.252055 27/05/2020 -0.20136% 

1.342466 29/06/2020 -0.19598% 

1.419178 27/07/2020 -0.19194% 

1.50411 27/08/2020 -0.18694% 

2.005479 26/02/2021 -0.15456% 

3.010959 28/02/2022 -0.06937% 

4.008219 27/02/2023 0.02771% 

5.008219 27/02/2024 0.13020% 

6.010959 27/02/2025 0.23706% 
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Eval Date 25/02/2019   Z-spread 81.65607886  

29/09/2018 Coupon T 
Risk Free 
Zero Rate 

Adj. Zero Rate Discount Factor NPV 

29/09/2019 5.25 0.591780822 -0.2279% 0.5886% 0.996532933 5.231797897 

29/09/2020 5.25 1.592339261 -0.1812% 0.6353% 0.989966245 5.197322786 

29/09/2021 5.25 2.592153285 -0.1049% 0.7117% 0.98178474 5.154369883 

29/09/2022 5.25 3.592060233 -0.0128% 0.8038% 0.971653422 5.101180465 

29/09/2023 105.25 4.592004381 0.0875% 0.9041% 0.95951254 100.9886948 

     Dirty Price 121.6733659 

     Accr. Interest 2.143150685 

     Clean Price 119.5302152 

Using the data shown in the table, we can proceed: 

T is the year fraction between the payment date and the evaluation. 

Z-Spread is linearly interpolated from the CDS spread. 

𝑦 = 𝑦0 + (𝑥 − 𝑥0)
𝑦1−𝑦0

𝑥1−𝑥0
  

𝑍spread = 71 + (4.592004 − 4)
89−71

5−4
= 81.656 bps, 

and Zero-rates are linearly interpolated from the spot curve: 

𝑅0,0.5918 = −0.22804 + (0.5928 − 0.5863)
−0.2266−(−0.22804)

0.6712−0.5863
= −0.22795%  

 

Adj.  ZeroRates = Risk Free Zero Rate + Spread = −0.22795% + 0.8166% = 0.58865%  

Discount Factor =
1

(1+Adj.Zero Rate)𝑇 =
1

(1+0.0058865)0.5918 = 0.99653  

NPV(CashFlow) = CashFlow ⋅ 𝐷𝐹 = 5.25 ⋅ 0.99653 = 5.2318  

We then apply the same procedure for the other four future cash-flows, and the sum of these discounted 
amounts returns the gross price of the bond, equal to € 121.67337. 
Given that the valuation date does not correspond with a payment date, we have to subtract the accrued interest 
from the gross price taking into account the proper day count convention, in this example ACT/ACT. 
 

Accrued Interest = 5.25 ⋅ 0.4082192 = 2.143151  

Clean Price = 121.67337 − 2.143151 = 119.53022  
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Figure I.55 Market quotes for the analyzed bond 
 
The convenience of working in terms of year fractions is evident when the valuation date of the bond is placed 
between two payment dates, or when the frequency of the security payments is not regular. In fact, certain 
bonds have an irregular coupon payment date, typically on the first or the last coupon payment date. If it is a 
standard floating bond, then the pricing model remains the same. The future coupons are estimated starting 
from the implicit forward rates of the reference interest rate curve between two consecutive payment dates. 
Typically, an additive margin (expressed in basis points) can be added to them and/or multiplied by a factor 
(multiplier or leverage). The discounting phase takes place using the usual procedure. 
Please also note that the same pricing procedure can be adopted for estimating the fair value of a sinkable bond. 
In this case, the cash-flows are constituted by the coupon interest, and a part of notional that is repaid before 
the expiration date. 
 
As we have seen, the price of a bond is directly linked to the incoming cash-flows (coupon and repayment) and 
inversely linked to the discount rate. We can define the Current Yield as the ratio between the annual coupon 
paid and the market price of the bond, i.e. the Clean Price or Net Price: 
 

Current Yield = Annual Coupon / Net Price (Eq. I.43) 
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When the coupon rate is fixed, the Current Yield is inversely proportional to the price of the bond. Such figure 
cannot be considered satisfactory for comparing two bonds though, for several reasons. 
First of all, given that zero coupon bonds have no coupon by definition, the current yield will be zero for all 
these securities. 
Secondly, it does not take into account the time to maturity of the bond. Then, it also does not consider the 
frequency of coupons and the rewards deriving from their reinvestment. Lastly, it does not consider the 
difference between the redemption value and the purchase price. 
 

A little adjustment to the previous formula can be made, by considering the accrued interest, thus the formula 
becomes:  

 

Annual Coupon / Gross Price (Eq. I.44) 
 

Unfortunately, this method inherits most of the previous drawbacks. 
The only figure that allows to avoid the criticisms raised against the previous ratios is the effective rate of return, 
also called yield to maturity (YTM).  
The YTM is the discount rate that equates the present value of the future cash flows of the bond with its market 
value. 
In the case of a bond that has just paid the coupon and is characterized by a regular frequency of payments, we 
have: 
 

𝑃 = ∑
𝐶𝐹𝑡

(1+𝑌𝑇𝑀)𝑡 =
𝐶𝐹1

(1+𝑌𝑇𝑀)1 +
𝐶𝐹2

(1+𝑌𝑇𝑀)2 + ⋯ +
𝐶𝐹𝑇

(1+𝑌𝑇𝑀)𝑇
𝑇
𝑡=1  (Eq. I.45) 

 

Where: 
 

𝑃 is the market price of the bond including the accrued interest. 
 

𝐶𝐹𝑡 is the cash flow received at the end of time period 𝑡 (coupons and/or repayment). 
 

𝑇 is the residual life of the bond (i.e. the time to maturity). 
 
Let us make a numerical example, in which the YTM is unknown: 
 

109 =
5

(1 + 𝑌𝑇𝑀)1
+

5

(1 + 𝑌𝑇𝑀)2
+

5

(1 + 𝑌𝑇𝑀)3
+

5

(1 + 𝑌𝑇𝑀)4
+

105

(1 + 𝑌𝑇𝑀)5
 

 

In this case, the coupon has just been paid thus the Accrued Interest is zero, therefore, the Dirty Price is equal 
to the Clean Price. 
 

The table shows the steps for computing 𝑌𝑇𝑀. 
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   YTM guess [C] 

Period Year [A] CFs [B] 4.50% 

t1 1 5 4.7847 

t2 2 5 4.5786 

t3 3 5 4.3815 

t4 4 105 88.0489 

  NPV 101.7938 

  MKT Price 109 

  gap 7.2062 

 

NPV row = [B]/([1+[C]])^[A], NPV = SUM(NPV rows) 
 

112.5 =
6

(1 + 𝑌𝑇𝑀)0.25
+

6

(1 + 𝑌𝑇𝑀)1.25
+

6

(1 + 𝑌𝑇𝑀)2.25
+

6

(1 + 𝑌𝑇𝑀)3.25
+

106

(1 + 𝑌𝑇𝑀)4.25
 

 

   YTM guess 

Period Year CFs 4.50% 

t1 0.25 6 5.9343 

t2 1.25 6 5.6788 

t3 2.25 6 5.4342 

t4 3.25 6 5.2002 

t5 4.25 106 87.9147 
  NPV 110.1623 

  MKT Price 108 

  Accrued 9/12*6=4.5 
  Full Price 112.5 

  gap 2.3377 

  

 

   YTM 

Period Year CFs 2.602% 

t1 1 5 4.8732 

t2 2 5 4.7496 

t3 3 5 4.6291 

t4 4 105 94.7472 

 
 

NPV 108.9991 
 

 MKT Price 109 

  gap 0.0008 

   YTM 

Period Year CFs 3.915% 

t1 0.25 6 5.9427 

t2 1.25 6 5.7188 

t3 2.25 6 5.5034 

t4 3.25 6 5.2961 

t5 4.25 106 90.0391 

  NPV 112.4999 

  MKT Price 108 
 

 Accrued 4.5 

  Full Price 112.5 

  gap 0.0001 

Goal Seeking 

Goal Seeking 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

79 

Let us introduce a new, and increasingly popular concept, i.e. the Greenium. The term was introduced as a 
consequence of the increasing importance of the ESG (Environmental, Social, and Governance) factors in the 
financial world. It refers to the phenomenon that occurs when an investor has to pay a higher price for a 
“sustainable” financial instrument compared to an equivalent “non-green” bond. Let us present the calculation 
of the yield of the following Green Bond: 
 

 

Figure I.56 Green bond analysis. Source: Bloomberg® 
 

Eval Date 09/03/2020  YTM 0.1191%  

04/10/2020 Coupon T Rate Discount Factor NPV 

04/10/2021 1 0.6 0.1191% 0.9993 0.9993 

04/10/2022 1 1.5985 0.1191% 0.9981 0.9981 

04/10/2023 1 2.5982 0.1191% 0.9969 0.9969 

04/10/2024 1 3.5988 0.1191% 0.9957 0.9957 

04/10/2025 1 4.5985 0.1191% 0.9945 0.9945 

04/10/2026 101 5.5984 0.1191% 0.9936 100.3293 

    Dirty Price 105.3139 

    MKT Price 104.915 

    Accr. Interest 0.3989 

    MKT Dirty Price 105.3139 

    Gap -2.894E-06 
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Bid Market Price = 104.915, Reference Date: 3rd September 2020 
 

The Green Bond yield is equal to 0.1191%. We now compare this yield with a similar “brown” (i.e., non-green) 
bond issued by the same Company, with the aim to presume the value of the greenium. 
 

 
 

Figure I.57 Bullet bond analysis. Source: Bloomberg® 
 

Eval Date 09/03/2020  YTM 0.2034%  

03/03/2020 Coupon T Rate Discount Factor NPV 

03/03/2021 1.6 0.4959 0.2034% 0.9989 1.5984 

03/03/2022 1.6 1.4945 0. 2034% 0.9970 1.5951 

03/03/2023 1.6 2.4942 0. 2034% 0.9949 1.5919 

03/03/2024 1.6 3.4948 0. 2034% 0.9929 1.5887 

03/03/2025 1.6 4.4945 0. 2034% 0.9909 1.5855 

03/03/2026 101.6 5.4943 0. 2034% 0.9889 100.4718 

    Dirty Price 108.4314 

    MKT Price 107.627 

    Accr. Interest 0.8044 

    MKT Dirty Price 108.4314 

    Gap -4.593E-05 
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Bid Market Price = 107.627, Reference Date: 3rd September 2020. 
 

The discrepancy between the yield for a standard bond and a green bond is around 8 basis points. This 
estimation is close to the typical greenium value reported by the scientific financial literature. 
Let us now add the concept of reinvestment to our analysis. The total return realized from holding a bond in a 
given period of time can be broken down into three components: 
 

Total return = Price return + Coupon return + Reinvestment return (Eq. I.46) 
 

Examining each of these components, we know that the price component is closely linked to changes in the 
market quote, and that the coupon component is the periodic remuneration of interest in the form of coupons. 
The third component, i.e., the reinvestment component is linked to the income generated by the reinvestment 
of all cash flows previously received (it constitutes the “interest on interest”). Let us further analyze the first 
term, the Price return, which can in turn be broken down into two components: 
 

Price return = Price return due to yield change + Amortisation of premium/ discount (Eq. I.47) 
 

The first term comes from the fact that a minimal change in the spot rates used in the discounting process will 
be instantly reflected on the value of the security. While the second contribution comes from the fact that the 
price of a bond will always converge to its face value. As known, the current yield is linked to the bond price 
according to an inversely proportional relation, with the obvious exception of zero-coupon bonds. We now 
add that there is also an inverse law between price and yield to maturity, although this relationship is not so 
straightforward. 
 

 
The YTM is the IRR (Internal Rate of Return) of the bond, 
but even so, YTM can only be a proxy for total return. Firstly, 
because  reinvestments are not actually made at the YTM rate, 
they are made at market rate. Then, reinvestment risk is also 
particularly relevant in long bonds with high coupons. Using 
YTM as a proxy for expected return implies that a single 
constant rate is assumed for lending and borrowing money, 
regardless of maturity. It is important to highlight that yield to 
maturity and total return are two different concepts though. 
 
We will clarify through an example. An investor buys a bond 

that matures in 4 years, with an annual coupon of 5%, bought at par at year 0, therefore YTM=5%. Let us 
assume that interest rates in subsequent years are falling; thus, the coupon interest received in year 1 can be re-
invested for the next 3 at 4%, the coupon collected in year 2 can be invested for the following 2 years at a rate 
of 2.5%, and the coupon received in year 3 can be reinvested at a rate of 1% for the last year. We want to 
determine the total return realized in 4 years from the investment. If we assume an initial investment of € 100, 
the final capital in 4 years can be calculated as follows:: 
 

5*1.043+ 5*1.0252+ 5*1.01+105 = € 120.927 
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The total return on investment (i.e. the realized return) is therefore equal to: 
 

100(1+r)4=120.927 → r= (120.927/100)1/4 -1 = 4.865% 
 
Annuity and Perpetual bond pricing 

 
 

Let us now consider the following 

geometric progression where 𝐴 is a 

positive constant below 1 and 𝑋 is the 
sum of the progression: 
 

𝑋 = ∑ 𝐴𝑡∞
𝑡=1  (Eq. I.48) 

 

We notice that, as 𝑡 increases, the term 

𝐴𝑡 becomes smaller and smaller given 

that 𝐴 < 1. 
 

For instance, if we set 𝐴 = 0.5, then: 
 

𝑋 = ∑ (
1

2
)

𝑡
=

1

2
+

1

4
+

1

8
+

1

16
+∞

𝑡=1

⋯, 𝑋 → 1 
 

The empirical test confirms the 
asymptotic convergence of the 
geometric progression to the quantity: 

𝑋 = ∑ 𝐴𝑡∞
𝑡=1 =

𝐴

1−𝐴
 . 

In the previous case: 𝑋 = ∑ (
1

2
)

𝑡
∞
𝑡=1 =

1

2

1−
1

2

= 1  

 

Now let us consider a perpetuity characterized by a constant payment 𝑃𝑀𝑇 and a discount rate 𝐼. 
 

The Present Value, PV, of this perpetuity is equal to: 
 

𝑃𝑉 = ∑
𝑃𝑀𝑇

(1+𝐼)𝑡
∞
𝑡=1  (Eq. I.49) 

 

This can be rewritten as a geometric progression: 
 

𝑃𝑉 = 𝑃𝑀𝑇 ∑
1

(1+𝐼)𝑡
∞
𝑡=1 = 𝑃𝑀𝑇 ∑ (

1

1+𝐼
)

𝑡
∞
𝑡=1  (Eq. I.50) 

 

In this last equation, the summation turns out to be a geometric progression with 𝐴 =
1

1+𝐼
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∑ (
1

1+𝐼
)

𝑡
∞
𝑡=1 =

(
1

1+𝐼
)

1−(
1

1+𝐼
)

=
(

1

1+𝐼
)

(
1+𝐼−1

1+𝐼
)

= (
1

1+𝐼
) (

1+𝐼

𝐼
) =

1

𝐼
→ 𝑃𝑉 =

𝑃𝑀𝑇

𝐼
 (Eq. I.51) 

 
Now we consider a timeline for a perpetuity starting at time 1 and a perpetuity starting at time N+1. 
 

Note that if we subtract the second timeline from the first, we obtain the time line for an ordinary annuity 
characterized by N payments with a fixed amount denominated with PMT. 
 

Therefore the present value of an ordinary annuity is equal to the discounted value of the first timeline minus 
the present value of the second timeline. 
 

The formula for the Present Value of the first timeline, which is a perpetuity, is 
 

𝑃𝑉𝑇𝐼𝑀𝐸 𝐿𝐼𝑁𝐸 1 =
𝑃𝑀𝑇

𝐼
 

 
If we apply the same formula for the second timeline, we obtain the value of the discounted payments at time 
N. In order to find the Present Value of the second timeline, we must further discount the perpetuity at time 

0, applying 
1

(1+𝐼)𝑁  as the discount factor: 
 

𝑃𝑉𝑇𝐼𝑀𝐸 𝐿𝐼𝑁𝐸 2 =
𝑃𝑀𝑇

𝐼

1

(1 + 𝐼)𝑁
 

 

By subtracting 𝑃𝑉𝑇𝐼𝑀𝐸 𝐿𝐼𝑁𝐸 1 from 𝑃𝑉𝑇𝐼𝑀𝐸 𝐿𝐼𝑁𝐸 2, we obtain the Present Value of an ordinary annuity, 𝑃𝑉𝐴 : 
 

𝑃𝑉𝐴 = 𝑃𝑉𝑇𝐼𝑀𝐸 𝐿𝐼𝑁𝐸 1 − 𝑃𝑉𝑇𝐼𝑀𝐸 𝐿𝐼𝑁𝐸 2 =
𝑃𝑀𝑇

𝐼
−

𝑃𝑀𝑇

𝐼

1

(1 + 𝐼)𝑁
= 𝑃𝑀𝑇 [

1

𝐼
−

1

𝐼(1 + 𝐼)𝑁] 

 

The future value of an ordinary annuity, 𝐹𝑉𝐴, is equal to the present value (𝑃𝑉𝐴) compounded for 𝑁 periods: 
 

𝐹𝑉𝐴 = 𝑃𝑉𝐴(1 + 𝐼)𝑁 = 𝑃𝑀𝑇 [
1

𝐼
−

1

𝐼(1 + 𝐼)𝑁] (1 + 𝐼)𝑁 = 𝑃𝑀𝑇 [
(1 + 𝐼)𝑁

𝐼
−

1

𝐼
] = 𝑃𝑀𝑇 [

(1 + 𝐼)𝑁 − 1

𝐼
] 

 

Previous formulas can be usefully implemented for pricing perpetual bonds. 
 

𝑃𝑒𝑟𝑝𝑒𝑡𝑢𝑎𝑙 𝐵𝑜𝑛𝑑 𝑃𝑟𝑖𝑐𝑒 =
𝐶

𝑅
 (Eq. I.52) 

 

Where 𝐶 is the coupon and 𝑅 is the yield. 
 
Let us consider, as an example,  a perpetual bond, that pays an annual coupon 
in 3 months. 
 

a) as a first case, we suppose that the bond has a coupon of 5% and a yield of 4%, and we calculate the gross 
and the clean price. 
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 𝐺𝑟𝑜𝑠𝑠 𝑃𝑟𝑖𝑐𝑒 =  
1

(1+𝑅)𝑡 ×
𝐶

𝑅
+ 𝐶

1

(1+𝑅)𝑡 =
1

(1+𝑅)𝑡 [
𝐶

𝑅
+ 𝐶] =

1

(1+0.04)
3

12

[
0.05

0.04
+ 0.05] = 128.732% 

 

𝐶𝑙𝑒𝑎𝑛 𝑃𝑟𝑖𝑐𝑒 = 𝐺𝑟𝑜𝑠𝑠 𝑃𝑟𝑖𝑐𝑒 − 𝐴𝑐𝑐𝑟𝑢𝑒𝑑 = 128.732% − 5%
9

12
= 124.982%  

 

b) as a second case, we now suppose that the perpetual bond pays a coupon of 5%, 𝐶1 = 5%, for the next four 
coupon dates (i.e. in 3, 15, 27 and 39 months) and after these four payments, it pays a fixed perpetual amount 

of 4%, 𝐶2 = 4%.  
 

We calculate the gross and the clean price. 
 

 
 

𝐺𝑟𝑜𝑠𝑠 𝑃𝑟𝑖𝑐𝑒 =
𝐶1

(1 + 𝑅)
3

12

+
𝐶1

(1 + 𝑅)
15
12

+
𝐶1

(1 + 𝑅)
27
12

+
𝐶1

(1 + 𝑅)
39
12

+
𝐶2

𝑅
×

1

(1 + 𝑅)
39
12

 

 

=
0.05

(1.04)0.25
+

0.05

(1.04)1.25
+

0.05

(1.04)2.25
+

0.05

(1.04)3.25
+

0.04

0.04
×

1

(1.04)
39
12

= 106.72% 

 

𝐶𝑙𝑒𝑎𝑛 𝑃𝑟𝑖𝑐𝑒 = 𝐺𝑟𝑜𝑠𝑠 𝑃𝑟𝑖𝑐𝑒 − 𝐴𝑐𝑐𝑟𝑢𝑒𝑑 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 = 106.72 − 5 ×
9

12
= 102.97% 

 

We know that the return from holding a bond in a portfolio for a given period can be broken down into two 
components. 
The first is the change in the market value of the security (comparison between the sale price and the purchase 
price), and the second is the cash flows received as interest on the bond, as well as the interest on such cash 
flows (if reinvested). 
As known, different market factors impact one or both of these aspects. If we want to measure the risk of a 
bond, i.e., measure the impact of the market factors on the characteristic return of the security, we can use the 
concept of YTM, starting from the analysis of the pricing formula of a security, all the input data to which the 
fair value is sensitive are present: 
 

𝑃 = ∑
𝐶𝐹𝑡

(1+𝑌𝑇𝑀)𝑡 =
𝐶𝐹1

(1+𝑌𝑇𝑀)1 +
𝐶𝐹2

(1+𝑌𝑇𝑀)2 + ⋯ +
𝐶𝐹𝑇

(1+𝑌𝑇𝑀)𝑇
𝑇
𝑡=1  (Eq. I.53) 

 

Clearly, the price of a typical fixed income security moves in the opposite direction compared to the change 
in interest rates: if rates rise (/fall), the price of the security decreases (/increases). 
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We can define the systemic risk of a bond as the volatility in the total return due to an instantaneous fluctuation 
in the interest rate. 
Generally speaking, in the past, bonds have been considered as safe investments: interest rates were stable for 
long periods, and the financial strategies associated with these instruments were quite conservative. 
In more recent years, the increase in interest rate volatility and the anomalies of the interest rates term structures 
observed on the market have accentuated the importance of better considering and quantifying the risk on this 
asset class. 
 

In particular, two other kinds of risk associated with bonds are the price risk and the reinvestment risk. 
The price risk is by far the biggest risk an investor faces, although (for bonds repaying at par at maturity), the 
investor who plans to hold the bond till maturity is not interested in monitoring the change in the bond price 
throughout its life. 
On the other hand, if the investor plans to sell the security before maturity, then, an increase in the interest rate 
will lead to a principal loss. 
Reinvestment risk, as the name indicates, is defined as the variability of income from the reinvestment of 
coupon proceeds caused by a change in interest rates. 
If, for example, interest rates fall, the cash flows received during this period will be reinvested at a lower rate. 
Those two risks, price risk and investment risk act in opposite directions: if interest rates rise, the market price 
of the bond decreases, but, at the same time, the proceeds deriving from the coupons can be invested at a 
higher rate. 
Thus, there is a trade-off between the two functionals that must be monitored on an ongoing basis by the 
quantitative analysts. 
 

A typical strategy based on equalizing and therefore canceling these two risks is called immunization, a topic 
covered at the end of the teaching unit. 
 

What happens if there is an instantaneous change in the bond yield? 
 
We also examine what-if scenarios in the next pages setting the security price formula in function of its 
parameters. 
 

Here are the tables and the relevant data for each of them: 
 
 

Table I.11: Face= € 1,000; C=6%; yield= 5%; New yield =5.5%; T parameter. 
 

Table I.12: Face= € 1,000; C=6%; yield= 5%; New yield =4.5%; T parameter. 
 

Table I.13: Face= € 1,000; Bond Maturity = 10 years; yield= 5%; New yield =5.5%; Coupon parameter. 
 

Table I.14: Face= € 1,000; Bond Maturity = 10 years; yield= 5%; New yield =4.5%; Coupon parameter. 
 

Table I.15: Face= € 1,000; Bond Maturity = 10 years; Coupon= 5%; yield parameter (+0,5%). 
 

Table I.16: Face= € 1,000; Bond Maturity = 10 years; Coupon= 5%; yield parameter (-0,5%). 
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Table I.11 What-if Scenario: Face= € 1,000; C=6%; yield= 5%; New yield =5.5%; T parameter 

 
 
In case of a positive change in the market yield, long-dated bonds have a higher price sensitivity than shorter-
dated bonds. 
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Table I.12 What-if Scenario: Face= € 1,000; C=6%; yield= 5%; New yield =4.5%; T parameter 
 

 
In case of a negative change in market yield, long-dated bonds have a higher price sensitivity than shorter-dated 
bonds. 
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Figure I.58 What-if Scenario: Face= € 1,000; C=6%; yield= 5%; New yield =5.5%; T parameter 
 

 
 

 Figure I.59 What-if Scenario: Face= € 1,000; C=6%; yield= 5%; New yield =4.5%; T parameter 
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Table I.13 What-if Scenario: Face= € 1,000; T = 10 years; yield= 5%; New yield =5.5%; Coupon parameter 
 

 
 

Table I.14 What-if Scenario: Face= € 1,000; T = 10 years; yield= 5%; New yield =4.5%; Coupon parameter 
 

For a given maturity, with respect to a positive change in the market yield, bonds with a lower coupon have a 
higher price sensitivity than those with a higher coupon. Clearly, a zero-coupon bond has the greatest volatility. 
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Figure I.60 What-if Scenario: Face= € 1,000; T = 10 years; yield= 5%; New yield =5.5%; Coupon parameter 
 

 
 

Figure I.61 What-if Scenario: Face= € 1,000; T = 10 years; yield= 5%; New yield =4.5%; Coupon parameter 
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Table I.15 What-if Scenario: Face= € 1,000; Bond Maturity = 10 years; Coupon= 5%; 
yield parameter (+0,5%) 

 
 

For a given maturity, bonds with a low yield (low yield bonds) are characterized by greater price volatility than 
those with a high yield (high yield bonds). 
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Table I.16 What-if Scenario: Face= € 1,000; Bond Maturity = 10 years; Coupon= 5%; 
yield parameter (-0,5%) 

 
 
 

For a given maturity, bonds with a low yield (low yield bonds) are characterized by greater price volatility than 
those with a high yield (high yield bonds). 
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Figure I.62 What-if Scenario: Face= € 1,000; T = 10 years; Coupon= 5%; yield parameter (+0,5%) 
 

 
 

Figure I.63 What-if Scenario: Face= € 1,000; T = 10 years; Coupon= 5%; yield parameter (-0,5%) 
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When a bond has an amortization plan (i. e. it is a sinkable bond), it is characterized by a lower volatility than a 
“bullet” security with the same financial characteristics. The fact that the principal is partially repaid during the 
life of the security reduces its risk and such risk reduction is consequently reflected in a more stable quotation. 
 

Again when the bond is callable, it shows a lower price volatility than one with the same financial characteristics, 
but without options. This empirical evidence can be theoretically explained by the fact that a bond with the 
possibility of being repaid ahead of time gives the possibility of reducing its time to maturity. 
 

Our analysis highlights that price volatility is not a symmetrical phenomenon: given the market value of a 
bond, a decrease in the market yield does not produce the same effect on the price of the bond as an identical 
increase in the yield market. In short, price volatility is neither linear nor symmetrical. 
 

The considerations made so far are not sufficient to develop a suitable and synthetic measure of the risk of a 
bond, since the sensitivity of the price variation was analysed comparing bonds with the same financial 
characteristics, and varying one market factor at a time. Now, we define certain indicators to quantify the risk 
associated with a bond and to compare securities with different financial characteristics. The most common 
proxies for quantifying risk are: 
 

- Time to maturity (TTM). 
- Weighted average maturity (WAM). 
- Weighted average cash flow (WACF). 
 

Along with those proxies, we also define the most suitable and complete quantitative measures as follows: 
 

- Duration (DUR). 
- Modified Duration (MOD DUR). 
- Convexity (CONV). 
 
The Time to maturity represents the number of years remaining before the bond matures. Securities with a 
longer maturity date are assumed to be riskier than those issued with a shorter maturity date because the investor 
has to wait longer before the money lent is returned (principal reimbursement), and also due to the greater 
sensitivity to interest rate fluctuations. It is a very vague indicator though, since it does not take into account 
any cash flows received before maturity. As an example, let us consider a bond with a 10% coupon, on one 
hand, and a zero coupon on the other, both bonds expiring in 10 years. According to this weak proxy, both 
should have the same risk since they have the same maturity; but after 5 years, the former will have already 
recovered half of its initial investment (which can be reinvested at higher rates in the event of growth in interest 
rates), while the latter will not have paid anything to the investor yet, since the revenues are in terms of principal 
appreciation. 
 

As we have seen in the what-if analysis, there is no linear relationship between time to maturity and price 
volatility, so a 30-year bond is not three times as risky as a 10-year one. 
 
The weighted average maturity (WAM) or average life is the weighted average of the maturities in which the 
repayment of the notional takes place. 
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𝑊𝐴𝑀 = ∑
𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑝𝑎𝑖𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑡𝑜 𝑏𝑒 𝑟𝑒𝑝𝑎𝑖𝑑
× 𝑡𝑇

𝑡=1  (Eq. I.54) 
 
 

This figure does not consider coupons, but only principal repayments. Thus, for bullet bonds, the average life 
of a security is identical to the time to maturity (WAM = TTM), but it does prove optimal for the quantification 
of risk for sinking fund bonds and for mortgage backed securities. 
 

Let us present a practical example, in which we calculate the WAM of a 6% coupon, 10-year sinking fund, 
priced at par (€100) at a yield of 6%. The amortization plan withdraws 20% of the bond annually, starting from 
the sixth year. Coupon interest is paid every six months. The WAM focuses exclusively on the cash flows due 
to the principal which in our case occur on an annual basis starting from the sixth year. 
 

 

𝑊𝐴𝑀 =
20 € × 6

100 €
+

20 € × 7

100 €
+

20 € × 8

100 €
+

20 € × 9

100 €
+

20 € × 10

100 €
= 8 𝑦𝑒𝑎𝑟𝑠 

 

 

As we said, the WAM in this case is a weak approximation for the bond’s risk: although it considers the temporal 
distribution of the repayments of the notional over time, it ignores the payment of the coupons. Therefore, 
two sinkable bonds with the same amortization plan could have the same average life (and therefore the same 
“risk”) despite one paying a 9% coupon and the other a 3% coupon. 
 

Let us then introduce the Weighted average cash flow (WACF), calculated in a similar way to weighted 
average maturity, but in this case the formula considers all cash flows, both coupon and principal: 
 

𝑊𝐴𝐶𝐹 = ∑
𝐶𝑎𝑠ℎ 𝑓𝑙𝑜𝑤 𝑝𝑎𝑖𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤𝑠 𝑡𝑜 𝑏𝑒 𝑝𝑎𝑖𝑑
× 𝑡𝑇

𝑡=1  (Eq. I.55) 
 

For example, the WACF of a bond that has a face value of USD 1000, a 4-year maturity and a coupon rate of 
5% is equal to: 
 

𝑊𝐴𝐶𝐹 =
50 𝑈𝑆𝐷 × 1

1200 𝑈𝑆𝐷
+

50 𝑈𝑆𝐷 × 2

1200 𝑈𝑆𝐷
+

50 𝑈𝑆𝐷 × 3

1200 𝑈𝑆𝐷
+

1050 𝑈𝑆𝐷 × 4

1200 𝑈𝑆𝐷
= 3.75 𝑦𝑒𝑎𝑟𝑠 

 

The main drawback of using WACF is that cash flows are considered on a nominal basis and not on a 
discounted basis: therefore, the time value of money is not taken into consideration. For  the reasons stated 
thus, TTM, WAM and WACF cannot be considered as valid indicators of the intrinsic risk of a bond. 
 

Bond Type Relationship 

Coupon bearing bullet bond WACF < WAM = TTM 

Sinkable bond WACF < WAM < TTM 

Zero-coupon bond WACF = WAM = TTM 

 
Table I.17 WACF-WAM-TTM relationship for different bonds 
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The concept of Duration as a measure of the intrinsic risk associated with a bond was proposed in 1938 by 
Frederick R. Macaulay. Duration (or DUR) can be interpreted as an advanced version of the WACF: the DUR 
of a series of cash flows is equal to the time average over which the cash flows occur: the weight of each 
monetary input is calculated using the respective present value. 
 

𝐷𝑈𝑅 = ∑
𝑃𝑉(𝐶𝐹𝑡)

𝑃𝑟𝑖𝑐𝑒
× 𝑡 =𝑇

𝑡=1 ∑ 𝑤𝑡 × 𝑡𝑇
𝑡=1  (Eq. I.56) 

 

If all cash flows are discounted at the YTM of the bond, 𝑘, the weight associated with each cash flow is equal 

to: 𝑤𝑡 =
𝐶𝐹𝑡 (1+𝑘)𝑡⁄

𝑃
 and the complete formula for Duration is: 

 

𝐷𝑈𝑅 = ∑
𝑃𝑉(𝐶𝐹𝑡)

𝑃
× 𝑡 =𝑇

𝑡=1
1

𝑃
∑

𝐶𝐹𝑡

(1+𝑘)𝑡 × 𝑡𝑇
𝑡=1 =  

=
1

𝑃
[

𝐶𝐹1

(1+𝑘)1 × 1 +
𝐶𝐹2

(1+𝑘)2 × 2 +
𝐶𝐹3

(1+𝑘)3 × 3 + ⋯ +
𝐶𝐹𝑇

(1+𝑘)𝑇 × 𝑇] (Eq. I.57) 

Where 𝐶𝐹𝑡 is the cash flow (coupon or principal) received at date 𝑡, 𝑇 is the time to maturity, 𝑘 is the discount 

rate equal to the market yield and 𝑃 is the fair-value of the bond (i.e. market price or present value of all future 
payments). 
If a reliable market price is available, this value should be used in the formula; otherwise the theoretical one has 
to be used. In this last case, the formula for calculating the Duration becomes: 
 

𝐷𝑈𝑅 =
∑

𝑡×𝐶𝐹𝑡
(1+𝑘)𝑡

𝑇
𝑡=1

𝑃
=

∑
𝑡×𝐶𝐹𝑡
(1+𝑘)𝑡

𝑇
𝑡=1

∑
𝐶𝐹𝑡

(1+𝑘)𝑡
𝑇
𝑡=1

  (Eq. I.58) 

 
Duration is measured in years. In the case of a zero-coupon bond, since it has no payments during its life, DUR 
is simply the present value of its future cash flow multiplied by its TTM and divided by the price. 
Since the price is the present value of the final cash flow, the Macaulay duration of a zero coupon is equal to 
its TTM. 
 

We present an example, of a bond maturing in 10 years and paying an annual coupon of 7%. Its YTM is equal 
to k=9% and its Macaulay Duration is 7.32 years. 
 
DUR can be represented by plotting cash flows as a function of time. In the following figure, the height of 
each white bar represents the money inflow (column [B]), while the lower portion in blue is the current value 
(column [C]). 
 

If we thought of these PV values as weights with mass and placed them on the horizontal line, the duration 
would be the fulcrum (i.e. the centre of gravity). 
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t [Years] CF PV(CF) CF weight Time weighted by CF weight 

[A] [B] [C]=[B]/(1+k)t [D]=[C]/P [E]=[A] x [D] 

1 7 6.422018349 0.073676838 0.073676838 

2 7 5.891759953 0.067593429 0.135186859 

3 7 5.40528436 0.062012321 0.186036962 

4 7 4.958976477 0.056892037 0.227568149 

5 7 4.549519704 0.05219453 0.260972648 

6 7 4.173871288 0.047884889 0.287309337 

7 7 3.829239714 0.043931091 0.307517639 

8 7 3.513063958 0.040303753 0.322430028 

9 7 3.222994457 0.036975921 0.332783285 

10 107 45.19795634 0.518535191 5.185351906 

 Price 87.1646846 Duration 7.318833649 
 

 

 
 Figure I.64 Duration as a fulcrum of discounted Cash Flows 
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Let us make an example of a zero-coupon that expires in 10 years and has a face value of €1000, currently 
traded at €558.39. Its yield to maturity is 6% and its Macaulay Duration is equal to the time to maturity. This 
check is immediate as it is sufficient to apply the formula: 
 

𝑀𝑎𝑐𝑎𝑢𝑙𝑎𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
∑

𝑡 × 𝐶𝐹𝑡

(1 + 𝑘)𝑡
𝑇
𝑡=1

𝑃
=

10 × 1000
(1.06)10

558.39
= 10 𝑦𝑒𝑎𝑟𝑠 = 𝑇𝑇𝑀 

 
This methodology also remains unchanged for securities which envisage infra-annual coupon payments (for 
example quarterly or half-yearly) or have an amortization plan. 
 

As an example, let us consider a sinkable bond with an annual coupon of 7% p.a., a six-monthly payment 
frequency, a residual life of 10 years and a nominal value of USD 1,000. The security has an amortization plan 
which provides for the gradual repayment of the notional amount: starting from the sixth year and with an 
annual frequency, the principal is repaid by 20% p.a. If the market yield is 6%, as shown in the following table, 
the price of the bond is €1,056.5653 and the Macaulay duration is 6.28 years. 
 

 

Figure I.65 Duration of a Sinkable bond 
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t [Years] CF DF PV(CF) CF weight Time weighted by CF weight 

[A] [B] [C]=exp(-k*[A]) [D]=[B]*[C] [E]=[D]/Price [F]=[A] x [E] 

0.5 35 0.970445534 33.96559367 0.032147177 0.016073589 

1 35 0.941764534 32.96175868 0.031197085 0.031197085 

1.5 35 0.913931185 31.98759148 0.030275072 0.045412607 

2 35 0.886920437 31.04221529 0.029380308 0.058760616 

2.5 35 0.860707976 30.12477917 0.028511989 0.071279972 

3 35 0.835270211 29.2344574 0.027669332 0.083007996 

3.5 35 0.810584246 28.37044861 0.02685158 0.093980529 

4 35 0.786627861 27.53197514 0.026057996 0.104231982 

4.5 35 0.763379494 26.7182823 0.025287865 0.113795395 

5 35 0.740818221 25.92863772 0.024540496 0.12270248 

5.5 35 0.718923733 25.16233067 0.023815215 0.130983681 

6 235 0.697676326 163.9539366 0.155176334 0.931058002 

6.5 28 0.677056874 18.95759249 0.01794266 0.116627288 

7 228 0.65704682 149.8066749 0.141786474 0.992505318 

7.5 21 0.637628152 13.39019118 0.01267332 0.095049903 

8 221 0.618783392 136.7511296 0.129429883 1.035439068 

8.5 14 0.600495579 8.406938103 0.007956856 0.067633274 

9 214 0.582748252 124.708126 0.118031626 1.062284636 

9.5 7 0.565525439 3.958678071 0.003746742 0.035594052 

10 207 0.548811636 113.6040087 0.10752199 1.075219901 

 
The Macaulay Duration considers all the variables that influence the volatility of a bond’s price: all the cash 
flows, the yield to maturity, as well as the current market price of the bond. In terms of interest rate risk, it is 
indifferent for an investor to invest in a coupon-bearing bond and in a zero-coupon with a maturity date equal 
to the duration of the security that pays coupons. Using the Macaulay Duration, it is implicitly assumed that all 
cash flows are discounted (and reinvested) at the same discount rate k, equal to the YTM. 
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In real markets though, the term structure of rates is not flat, and each cash flow should be discounted with the 

appropriate spot rate 𝑅0,𝑡. An extension of the concept of Duration, which employs the entire term structure 

of rates, has been proposed by Fischer and Weil: 
 

𝐷𝑈𝑅𝐹𝑊 = ∑
𝑃𝑉(𝐶𝐹𝑡)

𝑃
× 𝑡 =𝑇

𝑡=1
1

𝑃
∑

𝐶𝐹𝑡×𝑡

(1+𝑅0,𝑡)
𝑡

𝑇
𝑡=1 = 

1

𝑃
[

𝐶𝐹1×1

(1+𝑅0,1)
1 +

𝐶𝐹2×2

(1+𝑅0,2)
2 + ⋯ +

𝐶𝐹𝑇×𝑇

(1+𝑅0,𝑇)
𝑇] (Eq. I.59) 

 

The Macaulay Duration is equal to the time, expressed in years, at which the total value of a bond is not sensitive 
to changes in interest rates. 
 

Let us now consider a bond with a 10-year residual life, a notional amount of € 100 and a coupon of 10%. The 
current market yield is 7% for all maturities and the Macaulay duration is 7.068 years. 
 

𝐷𝑈𝑅 =
∑

𝑡 × 𝐶𝐹𝑡

(1 + 𝑘)𝑡
𝑇
𝑡=1

𝑃
=

∑
𝑡 × 𝐶𝐹𝑡

(1 + 𝑘)𝑡
𝑇
𝑡=1

∑
𝐶𝐹𝑡

(1 + 𝑘)𝑡
𝑇
𝑡=1

=

1 × 10
(1.07)1 +

2 × 10
(1.07)2 +

3 × 10
(1.07)3 + ⋯ +

10 × 110
(1.07)10

10
(1.07)1 +

10
(1.07)2 +

10
(1.07)3 + ⋯ +

110
(1.07)10

= 7.068 

 

The bond price is equal to the denominator: 𝑃𝑘=7% =
10

(1.07)1 +
10

(1.07)2 + ⋯ +
110

(1.07)10 = 121.07 

 

We assume that the market yield halves to 3.5%. In this new context, the bond price becomes: 𝑃𝑘=3.5% =
10

(1.035)1 +
10

(1.035)2 +
10

(1.035)3 + ⋯ +
110

(1.035)10 = 154.06. This extreme change in the rate leads to a capital gain 

of € 32.99. 

T=10 years; C=10% p.a.; notional € 100 k=7%    →    k=3.5% 
 

 
 

t [Years] CF PV(CF) CF weight 
Time weighted by 

CF weights 

[A] [B] [C]=[B]/(1+k)t [D]=[C]/Price [E]=[A] x [D] 

1 10 9.345794393 0.077192838 0.077192838 

2 10 8.734387283 0.072142839 0.144285679 

3 10 8.162978769 0.067423214 0.202269643 

4 10 7.62895212 0.06301235 0.2520494 

5 10 7.129861795 0.058890047 0.294450233 

6 10 6.663422238 0.055037427 0.33022456 

7 10 6.227497419 0.051436847 0.360057932 

8 10 5.820091046 0.04807182 0.38457456 

9 10 5.439337426 0.044926935 0.404342411 

10 110 55.91842213 0.461865683 4.618656828 

 Price 121.0707446 Duration 7.068104085 

t [Years] CF PV(CF)  
[A] [B] [C]=[B]/(1+k)t 

1 10 9.661835749 

2 10 9.335107004 

3 10 9.019427057 

4 10 8.714422277 

5 10 8.419731669 

6 10 8.135006443 

7 10 7.859909607 

8 10 7.594115562 

9 10 7.337309722 

10 110 77.98106951 

  Price 154.0579346 
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We calculate the bond price for each year remaining before the maturity and we assume a market yield of 7% 
(before) and a market rate of 3.5% (after) with the aim to illustrate the working principle of duration. 
 

The capitalized value for each year of the reinvested interest is also computed at the market rate of the paid 
coupon, according to the formula: 
 

𝐹𝑢𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑖𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝑐𝑜𝑢𝑝𝑜𝑛𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 = ∑ 𝐶𝑖 × (1 + 𝑘)𝑡−𝑖𝑡
𝑖=1  (Eq. I.60) 

 

 
Table of discount factors between t1 and t2 with a yield equal to 7%. 

 

DFt1,t2 0 1 2 3 4 5 6 7 8 9 

1 0.9346 0 0 0 0 0 0 0 0 0 

2 0.8734 0.9346 0 0 0 0 0 0 0 0 

3 0.8163 0.8734 0.9346 0 0 0 0 0 0 0 

4 0.7629 0.8163 0.8734 0.9346 0 0 0 0 0 0 

5 0.7130 0.7629 0.8163 0.8734 0.9346 0 0 0 0 0 

6 0.6663 0.7130 0.7629 0.8163 0.8734 0.9346 0 0 0 0 

7 0.6227 0.6663 0.7130 0.7629 0.8163 0.8734 0.9346 0 0 0 

8 0.5820 0.6227 0.6663 0.7130 0.7629 0.8163 0.8734 0.9346 0 0 

9 0.5439 0.5820 0.6227 0.6663 0.7130 0.7629 0.8163 0.8734 0.9346 0 

10 0.5083 0.5439 0.5820 0.6227 0.6663 0.7130 0.7629 0.8163 0.8734 0.9346 

 
Table of discount factors between t1 and t2 with a yield equal to 3.5%. 

 

DFt1,t2 0 1 2 3 4 5 6 7 8 9 

1 0.9662 0 0 0 0 0 0 0 0 0 

2 0.9335 0.9662 0 0 0 0 0 0 0 0 

3 0.9019 0.9335 0.9662 0 0 0 0 0 0 0 

4 0.8714 0.9019 0.9335 0.9662 0 0 0 0 0 0 

5 0.8420 0.8714 0.9019 0.9335 0.9662 0 0 0 0 0 

6 0.8135 0.8420 0.8714 0.9019 0.9335 0.9662 0 0 0 0 

7 0.7860 0.8135 0.8420 0.8714 0.9019 0.9335 0.9662 0 0 0 

8 0.7594 0.7860 0.8135 0.8420 0.8714 0.9019 0.9335 0.9662 0 0 

9 0.7337 0.7594 0.7860 0.8135 0.8420 0.8714 0.9019 0.9335 0.9662 0 

10 0.7089 0.7337 0.7594 0.7860 0.8135 0.8420 0.8714 0.9019 0.9335 0.9662 

 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

102 

Determination of the bond price as the valuation date varies using a flat market yield of 7%. 
 

Val. Date  0 1 2 3 4 5 6 7 8 9 10 

Year CF 121.0707 119.5457 117.9139 116.1679 114.2996 112.3006 110.1616 107.8729 105.4241 102.804 100 

1 10 9.345794 0 0 0 0 0 0 0 0 0 

  
  
  
  
  
  
  
  
  
  

2 10 8.734387 9.345794 0 0 0 0 0 0 0 0 

3 10 8.162979 8.734387 9.345794 0 0 0 0 0 0 0 

4 10 7.628952 8.162979 8.734387 9.345794 0 0 0 0 0 0 

5 10 7.129862 7.628952 8.162979 8.734387 9.345794 0 0 0 0 0 

6 10 6.663422 7.129862 7.628952 8.162979 8.734387 9.345794 0 0 0 0 

7 10 6.227497 6.663422 7.129862 7.628952 8.162979 8.734387 9.345794 0 0 0 

8 10 5.820091 6.227497 6.663422 7.129862 7.628952 8.162979 8.734387 9.345794 0 0 

9 10 5.439337 5.820091 6.227497 6.663422 7.129862 7.628952 8.162979 8.734387 9.345794 0 

10 110 55.91842 59.83271 64.021 68.50247 73.29764 78.42848 83.91847 89.79277 96.07826 102.804 

 
Determination of the bond price as the valuation date varies using a flat market yield of 3.5%. 

 

Val. Date 0 1 2 3 4 5 6 7 8 9 10 

Year CF 154.0579 149.45 144.6807 139.7445 134.6356 129.3478 123.875 118.2106 112.348 106.2802 100 

1 10 9.661836 0 0 0 0 0 0 0 0 0   

2 10 9.335107 9.661836 0 0 0 0 0 0 0 0   

3 10 9.019427 9.335107 9.661836 0 0 0 0 0 0 0   

4 10 8.714422 9.019427 9.335107 9.661836 0 0 0 0 0 0   

5 10 8.419732 8.714422 9.019427 9.335107 9.661836 0 0 0 0 0   

6 10 8.135006 8.419732 8.714422 9.019427 9.335107 9.661836 0 0 0 0   

7 10 7.85991 8.135006 8.419732 8.714422 9.019427 9.335107 9.661836 0 0 0   

8 10 7.594116 7.85991 8.135006 8.419732 8.714422 9.019427 9.335107 9.661836 0 0   

9 10 7.33731 7.594116 7.85991 8.135006 8.419732 8.714422 9.019427 9.335107 9.661836 0   

10 110 77.98107 80.71041 83.53527 86.45901 89.48507 92.61705 95.85865 99.2137 102.6862 106.2802   

 
It is interesting to note that close to the seventh year, the total value (price + reinvested coupons) is 
approximately the same for both scenarios: the Macaulay Duration was in fact equal to 7.07. 
 
The following figure shows the bond prices using a bar plot and the total investment value. We indicate the 
data referring to pricing with the yield equal to 3.5% in red, and the one relating to the yield of 7% in blue. 
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 YTM = 7 % YTM = 3.5 % 

Val. Date Bond Price Fut. Value inv. coupons Total Value Bond Price Fut. Value of inv. coupons Total Value 

0 121.0707446 0 121.0707446 154.0579346 0 154.057935 

1 119.5456967 10 129.5456967 149.4499623 10 159.449962 

2 117.9138955 20.7 138.6138955 144.680711 20.35 165.030711 

3 116.1678682 32.149 148.3168682 139.7445359 31.06225 170.806786 

4 114.299619 44.39943 158.699049 134.6355946 42.14942875 176.785023 

5 112.3005923 57.5073901 169.8079824 129.3478404 53.62465876 182.972499 

6 110.1616338 71.53290741 181.6945412 123.8750149 65.50152181 189.376537 

7 107.8729481 86.54021093 194.4131591 118.2106404 77.79407508 196.004716 

8 105.4240545 102.5980257 208.0220802 112.3480128 90.5168677 202.864880 

9 102.8037383 119.7798875 222.5836258 106.2801932 103.6849581 209.965151 

10 100 138.1644796 238.1644796 100 117.3139316 217.313932 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure I.66 Bond Risk measures: duration 
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Duration is used as a method to approximate price changes using market yield changes. The relationship, 
mathematically derived starting from the analytical development of the first derivative of the bond price with 
respect to the discount rate k, is the following: 
 

∆𝑃

𝑃
= −

𝐷

1+𝑘
× ∆𝑘 (Eq. I.61) 

 

The formula shows that the percentage change in the price of a bond due to a change in the interest rate can 
be approximated by its Macaulay Duration. 

The term 𝐷𝑀𝑂𝐷 =
𝐷

1+𝑘
 is called modified duration or sensitivity. 

 

∆𝑃 = −𝐷𝑀𝑂𝐷 × ∆𝑘 × 𝑃 (Eq. I.62) 
 

Let us consider an example of a bond with a nominal value of €1,000 maturing in 4 years and offering an annual 
coupon of 7%. The market yield is 7% and the duration is 3.67 years. 

Let us examine what happens if the market yield increases by 50 bps (7 →7.5%) and by 200 bps: 
 

∆𝑃

𝑃
= −

3.67

1 + 0.07
× 0.005 = −1.71% 

 

The duration approximation would predict a decrease of 1.71% from the current price. 
To express the value of the bond in absolute terms, we estimate the price of the bond with the current market 
yield: 
 

𝑃 =
60€

1.07
+

60€

1.072
+

60€

1.073
+

1060€

1.074
= 966.13 € 

 

Faced with an increase in the market yield from 7% to 7.5%, the price of the bond, according to the modified 
duration approach, would decrease by 1.71%, i.e., it would assume a value of € 949.61. In order to understand 
how good this approximation is, we reprice the bond with a yield of 7.5% 
 

𝑃 =
60€

1.075
+

60€

1.0752
+

60€

1.0753
+

1060€

1.0754
= 949.76 € 

 

However, the approximation cannot be considered good for ∆𝑘=2%. In this case, the duration approach would 
propose a decrease of 6.85% (i.e. a price of €899.95), while the one calculated using the discounted cash flows 
method with a yield of 9% would give a fair value of €902.81. From this example, we can deduce that the 
approximation of the DUR for calculating the change in the price of a bond is reasonable only for a small 

change in the market yield (∆𝑘 not large). 
 

Let us investigate how accurate the modified duration approximation is. Let us consider the following baseline 
scenario: 6%, 10-year bonds priced at par, the current market yield is 6% and the Macaulay duration is 7.8 years.  
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T CF 4.75% 5.00% 5.25% 5.50% 5.75% 6.00% 6.25% 6.50% 6.75% 7.00% 7.25% 

1 60 57.2792 57.1429 57.0071 56.8720 56.7376 56.6038 56.4705 56.3380 56.2060 56.0747 55.9440 

2 60 54.6818 54.4218 54.1635 53.9071 53.6526 53.3998 53.1487 52.8995 52.6520 52.4063 52.1622 

3 60 52.2022 51.8303 51.4618 51.0968 50.7353 50.3771 50.0223 49.6709 49.3227 48.9778 48.6361 

4 60 49.8351 49.3621 48.8948 48.4330 47.9766 47.5256 47.0799 46.6393 46.2040 45.7737 45.3484 

5 60 47.5753 47.0116 46.4559 45.9081 45.3680 44.8355 44.3104 43.7928 43.2824 42.7791 42.2829 

6 60 45.4179 44.7729 44.1386 43.5147 42.9012 42.2976 41.7039 41.1200 40.5456 39.9805 39.4246 

7 60 43.3584 42.6409 41.9369 41.2462 40.5685 39.9034 39.2508 38.6103 37.9818 37.3649 36.7595 

8 60 41.3922 40.6104 39.8451 39.0959 38.3626 37.6447 36.9419 36.2538 35.5801 34.9205 34.2746 

9 60 39.5153 38.6765 37.8575 37.0578 36.2767 35.5139 34.7688 34.0411 33.3303 32.6360 31.9577 

10 1060 666.4469 650.7480 635.4550 620.5564 606.0411 591.8984 578.118 564.689 551.603 538.850 526.420 

 New Price 1097.704 1077.217 1057.216 1037.688 1018.6201 1000 981.815 964.055 946.709 929.764 913.210 

 Approx. 
Price 

1091.981 1073.585 1055.189 1036.792 1018.396 1000 981.603 963.207 944.811 926.415 908.018 

 Delta Price 5.72321 3.63244 2.02762 0.89568 0.2239074 0 0.21199 0.84830 1.89764 3.34909 5.19202 

 

 

Figure I.67 Bond Value Versus Approximated Price 
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We implemented a study, comparing the change in the market price with the one approximated by the formula 
of the modified duration, as the market yield changes. 
The exact market price is calculated using the discount of future cash flows and it is compared with the price 

estimated using  𝐷𝑀𝑂𝐷. 
The blue line in the graph represents the market price, the red line shows the price linearly approximated by 
the modified duration formula. 
The price/yield graph shows that the slope of the red line is equal to the price duration, i.e. it is equal to the 

quantity 𝐷𝑃 =
𝐷

1+𝑘
× 𝑃 = −

∆𝑃

∆𝑘
. 

In mathematical terms, the price duration is the first derivative of the price/yield curve. The modified duration 
approximation considers the relationship between price and yield as a linear function. 
In reality though, the function that links price to yield is a convex curve; therefore, the duration does not take 
into account this convexity (in fact it is an approximation of the first order of the Taylor polynomial with 
respect to the price/yield function). 
Consequently,  the error term becomes larger when the yield (and consequently the price) moves away from 

current market levels: the further the new yield is from the starting yield-to-maturity, ∆𝑘, the greater the error 
that will be committed in the approximation. 
We can thus draw the following conclusions: 
 

- Duration is an instantaneous value that varies continuously over time, as are the inputs for its estimation. 
 

- Duration does not take into account the asymmetry present in price volatility. 
 

-The modified duration approximation always underestimates the new price. 
 

-The accuracy of the approximation depends on the convexity existing at the time of measurement in the 
price/yield relationship. 
 

- DUR should not be used to approximate a price change when considering a large change in market return. 
 

In order to improve the approximation, the second order term can be added to the linear term, defined as 
convexity. 
In mathematical terms, this term can be quantified as: 
 

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 = 𝐶 =
1

2
×

1

𝑃
×

1

(1+𝑘)2 × ∑
𝑡×(𝑡+1)×𝐶𝐹𝑡

(1+𝑘)𝑡
𝑇
𝑡=1  (Eq. I.63) 

 

Let us see an example, considering a bond with a 10-year maturity, a notional amount of €100, and a 5% annual 
coupon. Current market yield is 5.5% and we want to calculate its convexity. 
 

𝐶 =
1

2
×

1

𝑃
×

1

(1 + 𝑘)2
× ∑

𝑡 × (𝑡 + 1) × 𝐶𝐹𝑡

(1 + 𝑘)𝑡

𝑇

𝑡=1

=
1

2
×

1

96.23
×

1

(1,055)2
× 7902.04 = 36.89 
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t Cash Flow Present Value PV*t*(t+1) 

1 5 4.739336493 9.478672986 

2 5 4.492262079 26.95357247 

3 5 4.258068321 51.09681985 

4 5 4.036083717 80.72167433 

5 5 3.825671769 114.7701531 

6 5 3.626229165 152.3016249 

7 5 3.437184043 192.4823064 

8 5 3.257994353 234.5755934 

9 5 3.088146306 277.9331676 

10 105 61.47021084 6761.723192 
 Bond Price 96.23118709 7902.036777 

 
 

The quadratic term is added to the approximated price formula: 
 

𝛥𝑃 = −𝐷𝑀𝑂𝐷 × 𝑃 × Δ𝑘 + 𝐶 × 𝑃 × (Δ𝑘)2 → 
Δ𝑃

𝑃
= −𝐷𝑀𝑂𝐷 × Δ𝑘 + 𝐶 × (Δ𝑘)2  

 

The price convexity is defined as: 𝐶𝑃 = 𝐶 × 𝑃 
 

𝛥𝑃 = −𝐷𝑃 × Δ𝑘 + 𝐶𝑃 × (Δ𝑘)2  
 

Now let us consider another example, i.e., a bond maturing in 10 years, face value= €1,000, coupon of 7% 
annually and currently trading at 102%. The market yield is thus equal to 6.73%. We want to assess how the 
price changes if the market yield were to increase by 200bps. 
 

𝐷 = ∑
𝑃𝑉(𝐶𝐹𝑡)×𝑡

𝑃
𝑇
𝑡=1 =

7686.098

1019,203
= 7.54  

 

𝐶 =
1

2
×

1

𝑃
×

1

(1+𝑘)2 × ∑
𝑡×(𝑡+1)×𝑃𝑉(𝐶𝐹𝑡)

(1+𝑘)𝑡
𝑇
𝑡=1 =

1

2
×

1

1,06732 ×
76122,19

1019,203
= 32.78  

 

If there were a +2% increase in the market yield, the new market yield would be 8.73%, and the duration would 
predict a price change equal to: 
 

Δ𝑃

𝑃
= −𝐷 ×

Δ𝑘

1 + 𝑘
= −7.54 ×

+0.02

1.0673
= −14.13% 

 

The new bond price would then be 1019.203×(1−0.1413)= € 875.189. 
 
Now considering the convexity, the second order approximation would be: 
 

t CFt PV(CFt) PV*t PV*t*(t+1) 

1 70 65.58605828 65.5860582 131.172116 

2 70 61.45044343 122.900886 368.702660 

3 70 57.5756052 172.726815 690.907262 

4 70 53.94509998 215.780399 1078.902 

5 70 50.54352101 252.717605 1516.30563 

6 70 47.35643307 284.138598 1988.97018 

7 70 44.37031113 310.592177 2484.73742 

8 70 41.57248302 332.579864 2993.21877 

9 70 38.95107563 350.559680 3505.59680 

10 1070 557.8516005 5578.51600 61363.6760 

  Bond Price 1019.202631 7686.09809 76122.1889 
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Δ𝑃

𝑃
= −𝐷𝑀𝑂𝐷 × Δ𝑘 + 𝐶 × (Δ𝑘)2 = −0.1413 + 32.78 × (0.02)2 = −12.82% 

 

The new approximate price of the security would be equal to 1,019.203×(1−0.1282)= € 888.541. 
 

By precisely calculating the NPV of the cash flows, i.e. using the market yield of 8.73%, the bond price would 
be € 887.64. 
 

We can state that convexity is always a positive quantity and measures the rate of change in the slope of the 
price-yield curve with respect to changes in yield. 

 

 

Figure I.68 Local approximation of the first order price with DUR and second order with the CONV 
 

 
Let us make another example and compute the main risk measures associated with the following bond: 
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Figure I.69 Bond Risk Measures. Source: Bloomberg® 
 

Valuation Date: 11/03/2020; MKT Clean Price: 103.916; YTM: 0.3816%; Current Coupon: 0.95; Previous 
Payment date: 09/15/2020; CF: 0.475; Accrued Interest: 0.064; MKT Dirty Price: 103.979.  
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Year Fraction Payment Date Cash Flow Discount Factor NPV CF weight t x weight 
0.361643836 03/15/2021 0.4750 0.99862365 0.4743 0.004562 0.00165 

0.865753425 09/15/2021 0.4750 0.99670827 0.4734 0.004553 0.003942 

1.36040146 03/15/2022 0.4750 0.99483241 0.4725 0.004545 0.006183 

1.864051095 09/15/2022 0.4750 0.99292603 0.4716 0.004536 0.008455 

2.360027379 03/15/2023 0.4750 0.99105227 0.4707 0.004527 0.010685 

2.863791923 09/15/2023 0.4750 0.98915271 0.4698 0.004519 0.012941 

3.360700602 03/15/2024 0.4750 0.98728257 0.4690 0.00451 0.015157 

3.864258347 09/15/2024 0.4750 0.98539101 0.4681 0.004501 0.017395 

4.36040146 03/15/2025 0.4750 0.98353084 0.4672 0.004493 0.019591 

4.864051095 09/15/2025 0.4750 0.98164613 0.4663 0.004484 0.021812 

5.36018772 03/15/2026 0.4750 0.97979306 0.4654 0.004476 0.023992 

5.863903011 09/15/2026 0.4750 0.97791526 0.4645 0.004467 0.026196 

6.360027379 03/15/2027 0.4750 0.97606928 0.4636 0.004459 0.028359 

6.863791923 09/15/2027 100.4750 0.97419843 97.8826 0.941367 6.461349 

 

Dirty Price 103.9792 Duration 6.6577 

 Mod Dur 6.6324 
 

 

Year Fraction Payment Date Cash Flow Discount Factor   PV(CF) PV*t PV*t*(t+1) 
0.361643836 03/15/2021 0.4750 0.998623653 0.4743 0.171544392 0.233582364 

0.865753425 09/15/2021 0.4750 0.996708269 0.4734 0.409879209 0.764733537 

1.36040146 03/15/2022 0.4750 0.994832405 0.4725 0.642851442 1.517387481 

1.864051095 09/15/2022 0.4750 0.992926032 0.4716 0.879160807 2.517961472 

2.360027379 03/15/2023 0.4750 0.991052273 0.4707 1.110982487 3.732931573 

2.863791923 09/15/2023 0.4750 0.989152711 0.4698 1.345545584 5.198908159 

3.360700602 03/15/2024 0.4750 0.987282567 0.4690 1.576031531 6.872601647 

3.866995074 09/15/2024 0.4750 0.985380736 0.4681 1.809969665 8.809113444 

3.866995074 03/15/2024 0.4750 0.985380736 0.4681 1.809969665 8.809113444 

4.864051095 09/15/2025 0.4750 0.981646126 0.4663 2.268019035 13.2997795 

5.362925303 03/15/2026 0.4750 0.979782841 0.4654 2.495888539 15.88115234 

5.863903011 09/15/2026 0.4750 0.977915258 0.4645 2.723840106 18.69617431 

6.360027379 03/15/2027 0.4750 0.976069276 0.4636 2.948717975 21.70264503 

6.863791923 09/15/2027 100.4750 0.974198431 97.88 671.8457127 5283.25489 

 Dirty Price 103.98  5391.290974 
 

As shown in the table, we obtain a Duration of 6.66, a Modified Duration of 6.63, a Convexity of 25.73  
(Bloomberg® Convexity: Convexity*2/100) 

Yield Bump: 4.00%; MKT Current Price: 103.916; Current YTM: 0.3815%; Bumped YTM: 4.3815%. 

 
 
 
 

 1st order 2nd order 

∆P/P -26.530% -22.4131% 

Approx. Price 76.34749 80.625164 

Exact Price 80.16 
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Year Fraction Payment Date CF DF NPV 

0.361643836 03/15/2021 0.4750 0.984611503 0.4677 

0.865753425 09/15/2021 0.4750 0.963555181 0.4577 

1.36040146 03/15/2022 0.4750 0.943331821 0.4481 

1.864051095 09/15/2022 0.4750 0.923176491 0.4385 

2.360027379 03/15/2023 0.4750 0.903749132 0.4293 

2.863791923 09/15/2023 0.4750 0.884435172 0.4201 

3.360700602 03/15/2024 0.4750 0.86578847 0.4112 

3.864258347 09/15/2024 0.4750 0.847293278 0.4025 

4.36040146 03/15/2025 0.4750 0.829456874 0.3940 

4.864051095 09/15/2025 0.4750 0.811734609 0.3856 

5.36018772 03/15/2026 0.4750 0.794646973 0.3775 

5.863903011 09/15/2026 0.4750 0.77766627 0.3694 

6.360027379 03/15/2027 0.4750 0.761296199 0.3616 

6.863791923 09/15/2027 100.4750 0.745026591 74.8565 

 

 Dirty Price 80.2196 

 Accrued Int 0.0636 

 Clean Price 80.1561 
 

The duration of a bond portfolio is simply the weighted average of the individual bond durations: 
 

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑤𝑖 × 𝐷𝑖
𝑁
𝑖=1  (Eq. I.64) 

 

𝑤𝑖 is the weight (in terms of market value) of the i-th security within the portfolio. 

𝐷𝑖 is the duration of security 𝑖. 
𝑁 is the number of securities included in the portfolio. 
 

Similarly, the convexity of a bond portfolio is simply the weighted average of the individual bond convexities: 
 

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 = ∑ 𝑤𝑖 × 𝐶𝑖
𝑁
𝑖=1  (Eq. I.65) 

 

Where 𝑤𝑖 is the weight (in terms of market value) of the i-th security within the portfolio. 

𝐷𝑖 represents the duration of security 𝑖. 
𝑁 is the number of securities included in the portfolio. 
 

The Modified Duration and the Convexity enable us to implement quick scenarios on potential changes in the 
interest rate, both at the individual security level and at the aggregate portfolio level. The analysis of Macaulay 
Duration allows to buy/sell bonds in order to immunize a given portfolio against changes in interest rates. We 
can state that immunization strategies are dynamic in nature and must theoretically be rebalanced with any 
significant change in interest rates. 
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From an ALM (Assets and Liability Management) perspective, a credit institution might be interested in freezing 

the surplus (𝑆) given by the difference in market value between the bonds it has in its balance sheet assets (𝐴) 

and those it has issued or bought to finance its claims (𝐿) by a parallel shift in the term structure of interest 
rates. The equation to set off is: 
 

𝛥𝑆 = 𝛥𝐴 − 𝛥𝐿 = [𝐴 ×
𝐷𝐴

1+𝑘
− 𝐿 ×

𝐷𝐿

1+𝑘
] × 𝛥𝑘 (Eq. I.66) 

 

Setting 𝛥𝑆 = 0 , we obtain: 
 

𝐴 × 𝐷𝐴 = 𝐿 × 𝐷𝐿 (Eq. I.67) 
 
 

Let us for example consider an investor having a portfolio composed of Bond A and Bond b, as follows: 
 

Bond A has a coupon of 0%, a maturity of 3 years, and a Face Value of CHF 200,000. 
 

Bond B also has a coupon of 0%, a maturity of 7 years, and the Face Value here is CHF 300,000. 
 

In a period of 5 years, the investor will have the opportunity to buy his grandparents' house for an amount of 
CHF 490,000.The current market yield is 3.5%. First of all, our investor wants to calculate the present value 
and duration of the portfolio, considering the asset side: 
 

PVA = 200,000/(1.0353) = CHF 180,388 
 

PVB = 300,000/(1.0357) = CHF 235,797 
 

PVASSET = PVA + PVB = CHF 180,388 + CHF 235,797 = CHF 416,185 
 

DA = 3 years 
 

DB = 7 years 
 

DASSET = wA x DA+wB x DB=3 x (180,388/416,185) + 7 x (235,797/416,185) = 5.27 years 
 

Then, the investor wants to calculate the present value and duration of the portfolio on the liability side: 
 

PVLIABILITY = 490,000/(1.035) = CHF 412,567 
 

DLIABILITY = 5 years 
 

Lastly, he wished to calculate the current surplus between assets and liabilities: 
 

S=PVASSET–PVLIABILITY=416,185-412,567= CHF 3,618 
 

Our investor may also wonder when would it be best to buy the house, to immunize the surplus with parallel 
shifts in yield: 
 

PVASSET x DA = PVLIABILITY x DL 
 

DL = (PVASSET x DA ) / PVLIABILITY  = (416,185 * 5.27) / 412,567 = 5.32 years 
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II.1 FUNDAMENTALS 
 
 

Every market transaction consists of three moments: Trading, Clearing and Settlement. In a spot transaction, 

these three events follow one another in a short time. This implies that the payment of an agreed price and the 
delivery of the underlying asset takes place immediately or a few days after the transaction date. On the contrary, 
in a forward or a futures transaction, the trading phase and the clearing phase take place immediately, but the 
settlement will take place on the agreed future date. This implies that there is no exchange of money or goods 
at the time of trading and the payment of the agreed price and the delivery of the underlying asset will take 
place later. 
 

A forward contract is a private agreement stipulated by two counterparties in which a seller agrees to deliver 
an amount or a prefixed quantity (contract size) of an asset (underlying asset i.e., shares, commodities, foreign 
currencies, bonds, etc…) at an agreed price (forward price) to the other counterparty (buyer) on a future 
delivery date (maturity) in accordance with an established agreement. Since the forward is an OTC contract, 
its terms can be customized to specific needs if both parties accept the conditions. It is important to understand 
that in a forward transaction, money is not usually transferred at the time of stipulation, as a forward is simply 
a commitment to make a future, not an immediate (spot) transaction. Although all contractual aspects are agreed 
and accepted at the time of stipulation, the asset delivery and/or any exchanges of money take place on the 
pre-established future date. Consequently, forward transactions have an intrinsic counterparty risk. This 
aspect generates the risk of observing forward transactions on the markets that take place exclusively between 
participants with the same credit risk because they can then trust each other, which poses a potential threat to 
the liquidity of the markets. 
 
As an example, let us consider a large company in the agricultural sector that agrees today (i.e. at t=0) to deliver 
7 tons of wheat to a multinational, in three months’ time, at a unit price of 370 USD/ton. Payment and delivery 
will take place in three months. In this way the forward contract protects both counterparties from possible 
future price changes. The terms of the contract are negotiated over the counter and therefore not on organized 
markets or exchanges. 
 
To effectively solve the problems related to counterparty risk, it is necessary to consider the futures market. A 
futures contract is a standardized agreement between two counterparties in which one party (seller) agrees to 
deliver to the other (buyer) an established amount or a quantity (contract size) of the underlying asset at a 
future date (maturity or delivery date) at an agreed price (futures price) to be paid on the delivery date. As 
opposed to forward contracts, all futures contractual terms are strictly standardized, including the quantity of 
underlying, the quality and the methods of delivery. 
 

Let us consider as an example the New York Cotton Exchange which offers futures contracts on orange juice. 
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Ticker Symbol OJ 

Trading Unit 15,000 lbs. of orange juice solids (3% more or less) 

Trading Hours 10:00 a.m. - 1:30 p.m. (NY Time) 

Price Quotation Prices quoted in cents and hundredths of a cent. 

Trading Months January, March, May, July, September, November 

Minimum Fluctuation 5/100 of a cent per pound 

Last Trading Day 14th business day prior to the last business day of the month 

Basis Grade U.S. Grade A with a Brix value of not less than 62.5 degrees 

Delivery Points Exchange licensed warehouse in Florida, New Jersey, Delaware and California 

Delivery Methods Drums or tanks, at the seller's discretion 
 

Table II.1 Futures contracts on orange juice 
 
 

 

 
 

Figure II.1 Futures contracts on orange juice: Description. Source Bloomberg® - DES module 
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Figure II.2 Futures contracts on orange juice: Prices and Open Interest. Source Bloomberg® 
 

 
 

Figure II.3 Futures contracts on orange juice: curve. Source Bloomberg® 
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Figure II.4 Futures contracts on orange juice: quotes. Source Bloomberg® 
 
Each futures exchange has its own Clearing House. The role of a Clearing House is to manage the deals, regulate 
deliveries and ensure compliance with the contractual terms between the counterparties involved in the 
transaction. When a buyer and a seller enter into a futures contract, they implicitly agree to the price, quantity, 
delivery date, and characteristics of the underlying asset in the contract. The Clearing House therefore assumes 
the obligation to buy the contract from the seller and sell it to the buyer. The buyer and the seller no longer 
have legal duties towards each other, in fact they never come into direct contact: if Trader A wants to sell and 
Trader B wants to buy, A will sell to the Clearing House and the Clearing House will sell to Trader B. Such 
intermediation reduces the risk of default for both traders and allows each trader to close the position 
independently of the other. In order to limit their counterparty risk and continue to guarantee financial integrity 
in the futures market, Clearing Houses have introduced a two-step methodology for refinancing deposits paid 
by participants: the first is the posting of initial margins, and the second is the marking to market of all contracts. 
The Initial margin to be posted by counterparties is typically expressed as a percentage of the contract value. 
The marking to market (MtM) procedure, on the other hand, consists of a daily calculation of the profits and 
losses associated with the open positions on derivatives. The task of the Clearing House is to offset the profits 
and losses relating to the account of each participant, with the corresponding payment of the margins. Thereby, 
the counterparty that has suffered a loss has the corresponding amount debited from its account opened with 
the Clearing House. The sum is automatically credited to the counterparty which has made a profit. In the event 
of losses, if the amount falls below the maintenance margin, the Clearing House requests the reinstatement of 
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this margin. Unless the trader closes his position, profits and losses are subject to changes in quotes and are 
only paid out when the contract expires. These two mechanisms (initial margin and marking to market) are the 
main discriminating factors between a forward contract and a futures contract and Clearing Houses are also in 
charge of supervising the delivery of the underlying on the last trading day. 
 
On the other hand, exchanges provide physical locations, computers, and methods for trading futures. As 
known, nowadays, most markets consist of electronic trading systems where trade orders are automatically 
matched and queued. Each match is executed according to the First in First Out (FIFO) logic. The buy order 
with the highest price is called the current bid price, the sell order with the lowest price is called the current ask 
price. 
 

Feature Futures Contract Forward Contract 

Trading Regulated exchange Over the Counter - OTC 

Terms of contract Standard All terms are negotiable 

Default risk Generated by clearing house Generated by each counterparty 

Cash Flow 
Daily cash flows linked to the change 
of the price (MtM) in order to guarantee execution 

Generally not required 

Pricing Transparent Opaque 

Liquidity Yes, provided by clearing house 
In the absence of a secondary market, 
the contract cannot be traded before 
the maturity date 

 
Table II.2 Futures versus Forwards contracts 

 
On the futures market, there are two possible positions a trader can take i.e., a long position and a short position. 
A “long” position is the result of a purchase of futures contracts: the holder of a long position has the 
obligation to buy the underlying asset on the expiry date for the agreed price. 
A “short” position results from a sale of futures contracts: the holder of a short position has the obligation to 
sell the underlying asset on the delivery date for the agreed price. In the jargon it is usually said that the trader 
who is long has bought the futures, while whoever has gone short has sold the futures. Clearly, it is only a 
figurative terminology because, as we have seen, there is no real sale of the contract, but a stipulation takes 
place which is the result of two counterparties entering into a mutual agreement. The calculation of the daily 
gain/loss is immediate and is given by the difference between the spot price and the one originally agreed, 
multiplied by the quantity purchased. While, at maturity, the profit/loss of the holder of a long position in 
futures is equal to: 
 

Profit/Loss to Long=Contract Size x (Spot Price at maturity – Originally Agreed futures price) (Eq. II.1) 
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Figure II.5 Payoff of a long position in a futures contract 
 

The payoff at maturity is the same as that obtained by an investor who would have directly bought the 
underlying at the price level, at the time of the stipulation of the futures contract. Theoretically, this statement 
is true, but it is incorrect from a cash flow perspective. In fact, buying a futures contract does not require the 
payment of the full price in advance (as in the case of direct purchase of the spot), but it is only necessary to 
pay the initial margin. Therefore, although the final payoff is the same, the return will be significantly different. 
On the other hand, at maturity, the profit/loss of the holder of a short position in futures is given by: 
 

Profit/Loss to Short = Contract Size x (Originally Agreed futures price – Spot Price at maturity) (Eq. II.2) 
 

As the price of the underlying rises above the agreed price (futures or settlement price), the payoff of a futures 
contract falls by the same amount. Whereas when the price falls below the settlement price, the value of the 
short position increases by the same amount. 
 

 
 

Figure II.6 Payoff of a short position in a futures contract 
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From the analysis of the equations and the payoffs, it is clear that the gains (/losses) for a trader who has a long 
position in a futures are equal to the losses (/gains) of a trader who has a short position. Thus, it can be said 
that the futures markets are a zero-sum game, i.e. the sum of the overall gains and losses on all positions is 
equal to zero, since each long position is neutralized from the corresponding short position. 
 

Let us make an example and consider two counterparties entering a September currency futures contract in 
June that fixes the EUR/USD exchange rate at 1.5. The contract size is EUR 125,000, and let us assume that 
two business days before the third Wednesday of September, the EUR/USD spot rate is quoted at 1.492. We 
want to calculate the gains and losses. 
At maturity, we know that the seller is expected to deliver EUR 125,000 to the buyer at the agreed price of 
125,000 x 1.5 = USD 187,500. But, since the market price of this amount of EUR 125,000 is now equal to: 
1,492 x 125,000 = EUR 186,500, the short position results in a gain of USD 1,000 and simultaneously the long 
position results in a loss of the same amount (USD 1,000). 
 

A futures position is defined as open when the parties still have to buy/sell the underlying asset on the expiry 
date for the agreed price, in other words the parties are still exposed to the risk of price changes. One of the 
greatest advantages of standardized contracts lies in their ease of negotiation. Such liquidity allows a futures 
position to be closed or neutralized before its expiry. 
The term “Closing a position” means making an equal but opposite trade to the one originally made. For 
example, if an investor is long in a futures contract, then he can go short to offset his current position at any 
time. This new contract does not necessarily have to take place with the same counterparty as the initial 
stipulation. 
The net effect for the investor is that he no longer has open futures positions. Similarly, a trader who is short 
can go long on a futures with the same characteristics to offset his position. 
 

Let us examine a practical example in which two counterparties enter a September currency futures contract in 
June that sets the USD/EUR exchange rate at 1.5 with a  contract size of EUR 125,000. Let us then assume 
that, one month before expiry, a futures contract quotes USD/EUR at 1.492. 
At that point, the futures buyer would like to close the position to limit the loss due to the exchange rate 
differential. So, the buyer should enter into another trade in which he sells (goes short) a USD/EUR futures 
contract at 1.492. 
Then, at maturity the buyer will pay EUR 125,000 at the agreed price of EUR 125,000 x 1.5 USD/EUR = USD 
187,500; and he will also receive EUR 125,000 at the market price of EUR 125,000 x 1.492 USD/EUR = USD 
186,500. 
 

The total loss, therefore, will be 187,500 – 186,500 = USD 1,000. 
 

Note that (1.5-1.492) x EUR 125,000 = EUR 1,000. 
 

Starting from the moment in which the position is closed, the loss remains constant, regardless of the level of 
the spot rate. 
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Figure II.7 Offset of a position in a futures/forward contract 
 
 

 
 

Figure II.8 Offset of a position in a futures/forward contract (specular side) 
 

Implementing an offsetting trade like the one shown in the example is not normally possible with forward 
contracts, since they are highly customized, it is unlikely that a counterparty will accept the exact same 
conditions set and that a one-to-one closing of the existing position may occur. 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

123 

It should also be noted that many exchanges may establish price limits in the trading of futures contracts in 
order to give the markets sufficient time to assimilate major events without causing significant price volatility 
and speculation. Price limits are normally defined in terms of the previous closing price +/- an amount of 
cents in cash per trading unit. Once the futures price has reached its daily price limit, trading at a higher price 
level cannot occur until the next trading day. Similarly, once the futures price has fallen below the daily limit, it 
is not possible to trade for a price level lower than the threshold throughout the trading day. Such imposition 
of limits on the price has the negative aspect that the trader is not able to close the futures position whenever 
he wants. 
Certain regulated markets also allow to establish position limits, which regulate the maximum number of 
contracts that can be purchased by a single trader. 
Another characteristic of Futures is that they are legally binding contracts: anyone holding an open position at 
expiration is obligated to receive (buy) / deliver (pay) the underlying. It should be highlighted though that most 
traders are not really interested in receiving the underlying at maturity and therefore will liquidate the open 
positions by entering into a transaction offsetting the existing one. The closed position can be then reopened 
(rollover) by re-proposing the existing strategy, before the liquidation of the position, by negotiating a new 
futures contract. In a few cases the delivery of the underlying takes place. In this case, it can be a physical 
delivery or the contract can be settled in cash (cash delivery). The Physical Delivery means the delivery, 
acceptance and payment of the physical underlying, and it occurs, for example, when financial futures are based 
on non-financial instruments. Typically, futures contracts that provide for the physical delivery of the asset are 
accompanied by choice options in favor of the buyer. For example, we mention the flexibility given by the 
choice of the place of delivery (location option), by the delivery time within a range of dates provided for in 
the contract (timing option). On the other hand, a Cash Settlement means honoring one’s duties by means 
of a cash payment, which takes place on the futures expiry date. Typically, the cash balance is applied to futures 
having an intangible underlying (e.g., futures on financial indices) or when it is stipulated in a contractual clause. 
The choice to settle the obligations in cash allows to avoid delivery of the underlying and profits/losses are 
recorded due to the difference in price between the entry price and the exit price. 
As we have seen above, margins and marking to market are two mechanisms used by exchanges and brokers 
in order to limit the impact of a potential default by the counterparty in a futures transaction. 
 
Let us consider the case of an investor who contacts his agent wanting to buy a futures contract. Since each 
futures holder is exposed to a potential loss, the brokerage will require both counterparties (buyer and seller) 
to provide a collateral amount before opening a position. The collateral can be in the form of liquidity (cash) 
or constituted by securities with a high credit rating and it must be deposited in a dedicated account (margin 
account). The initial amount paid when entering into a futures contract is called the initial margin. Such 
amount mainly depends on the volatility of the price level of the underlying, but it typically ranges between 5% 
and 15% of the underlying value of the futures. It is used to address potential losses that could be incurred as 
a result of adverse price fluctuations. Clearly, at the end of each trading day, the futures price may have gone 
up or down, thus the margin account needs to be readjusted to reflect the investor’s daily gain or loss on his 
open positions. 
If there is a gain, the investor can withdraw any amount in excess of his initial margin, while in case of losses, 
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the deposited margin is reduced. A maintenance level is set, to ensure there always is a margin. When the 
balance falls below the maintenance margin, then the investor receives a margin call and he has to increase 
the margin account up to the initial margin threshold in a short time, otherwise the broker will close his position.  
This daily procedure is called marking to market. In fact, it is as if a futures contract were closed and reopened 
every day at the market price registered on that day. 
 
 

 
Figure II.9 Resettlement and margin variations 

 
Practically, certain brokers allow investors to earn interest on the balance deposited in the margin account, 
whereas certain brokers may also accept securities such as government bonds or stocks as initial margin, but 
then, those assets are usually “discounted” compared to their market value (the so called “haircut” is applied 
on those assets). The standard minimum level for the initial and maintenance margin are defined by the 
exchange, but brokers can also ask for higher margins according to their customers. 

 
Let us make an example (see Example 1 in Table II.3) and assume that on January 14, an investor buys a futures 
contract on COMEX (New York Commodity Exchange) for 100 ounces of gold to be delivered on February 
1. The following table shows the margins and the adjustment to the marking to market. The initial margin is 
USD 5,063 and the maintenance margin is USD 3,750. If the margin account balance falls below the 
maintenance level threshold, the investor receives a margin call and after he posts the further amount, the 
balance would then align with the initial margin requirement level. 
On the other hand, if the account balance is higher than the initial margin, the investor can withdraw the excess 
margin from his account. 
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Once: 100      

Trading Day 
Futures Price 

[USD] 
Gain/Loss 

[USD] 
Initial margin 

[USD] 
Cash withdrawal 

[USD] 
Margin call 

[USD] 
Margin account 

[USD] 

01/14 808    5063 5063 

01/15 807 -100 4963 0  4963 

01/16 812 500 5463 400  5063 

01/17 808 -400 4663 0  4663 

01/20 810 200 4863 0  4863 

01/21 807 -300 4563 0  4563 

01/22 803 -400 4163 0  4163 

01/23 799 -400 3763 0  3763 

01/24 804 500 4263 0  4263 

01/27 809 500 4763 0  4763 

01/28 818 900 5663 600  5063 

01/29 823 500 5563 500  5063 

01/30 828 500 5563 500  5063 

01/31 833 500 5563 5563  0 

Net gain 25 2500    0 

 
Table II.3 Marking to Market (Example 1) 

 
We now present another example (see Example 2 in Table II.4), considering an investor buying two futures 
contracts on gold. The Initial margin is USD 5,063 for each contract (USD 10,126 in total). The maintenance 
margin is USD 3,750 (USD 7,500 for the overall position). 
We assume that the contract was entered into on 1st June at USD 800 and closed on 22nd June at USD 784.60. 
The following table shows the performance of the margin account and the changes in the position of the 
account. 
On 9th June, the balance drops to USD 54, therefore well below the maintenance margin. On that day, the 
investor receives a margin call from his broker for an additional margin to be integrated equal to USD 2,680 
(so that the total balance readjusts to the initial margin of USD 10,126). The summary table assumes that such 
payment was made at the end of 10th June. 
Later on, on 22nd June, the investor closes his position by going short by two contracts. The result of the whole 
strategy is a loss of USD 3,080. 
We observe that the investor could have withdrawn money from the margin account on June 10, as the current 
balance was higher than the required margin. 
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Once: 100 N. Futures contracts 2   

Trading Day 
Futures Price 

[USD] 
Daily Gain/Loss 

[USD] 
Cumulative gain/loss 

[USD] 
Cash withdrawal 

[USD] 
Margin call 

[USD] 
 800  0 10126  

06/01 794 -1200 -1200 8926  

06/02 792.2 -360 -1560 8566  

06/03 796.4 840 -720 9406  

06/04 794.2 -440 -1160 8966  

06/05 793.4 -160 -1320 8806  

06/06 790.8 -520 -1840 8286  

06/09 786.6 -840 -2680 7446 2680 

06/10 787.2 120 -2560 10246  

06/11 783.6 -720 -3280 9526  

06/12 785.4 360 -2920 9886  

06/15 774 -2280 -5200 7606  

06/16 774 0 -5200 7606  

06/17 776.2 440 -4760 8046  

06/18 777.4 240 -4520 8286  

06/19 782 920 -3600 9206  

06/22 784,6 520 -3080 9726  

 
Table II.4 Marking to Market (Example 2) 

 
Initial margins and the marking to market are typical of futures contracts, not of forward contracts, in which 
case the settlement is made only once, at the expiry date. No cash flows are thus exchanged during the life of 
the forward contract, which means that the risk of default is strictly linked to the counterparty. 
 

Let us compare the behavior of both contracts in a practical example (see Example 3 in Table II.5). We assume 
that, on January 14, an investor buys one futures and one forward contract, both written on 100 ounces of 
platinum, to be settled on February 1. For the sake of simplicity, we assume that forward prices are equal to 
spot prices and that there are no credit problems. The following table shows that the final gain in futures and 
forwards is identical, while the distribution of cash flows is very different between the two types of contracts. 
If the margin account pays an interest, the final profit will not only depend on the price of the underlying asset 
at maturity, but it will also be influenced by the balance on the deposit during the life of the contract. From this 
perspective, a futures contract can be viewed as a series of forward contracts, each lasting one day. 
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Once: 100   

Trading Day 
Forward and Futures 

Price [USD/oz] 
Variations in forward 

account [USD] 
Variations in futures 

account [USD] 

01/14 331 0 0 

01/15 336 0 500 

01/16 336 0 0 

01/17 333 0 -300 

01/20 333 0 0 

01/21 338 0 500 

01/22 339 0 100 

01/23 342 0 300 

01/24 344 0 200 

01/27 340 0 -400 

01/28 343 0 300 

01/29 341 0 -200 

01/30 337 0 -400 

01/31 334 0 -300 

Gain 3 300 300 

 
Table II.5 Marking to Market (Example 3) 

 
It should be highlighted that futures trading, unlike that of the underlying, allows participants to use leverage. 
Consequently, a small variation in price leads to a larger variation in terms of P&L (profit and loss). 
 

Let us see a practical example involving the DAX futures, which are based on the DAX stock index, one of the 
most important stock indexes of the German Stock Exchange. To open a position in DAX futures, a margin 
deposit of EUR 15,000 per contract is required. Let us assume that the DAX is quoted at 7,200 points, and that 
the value of the futures amounts to EUR 180,000 (i.e., the contract size is 25 times the price level of the 
underlying). Thereby, if the DAX index increases by 1%, reaching 7,272 then the value of the futures position 
increases to 72 x EUR 25 = EUR 1,800, which translates into a 12% profit on invested capital (i.e. on the initial 
margin). Obviously,  in the case of a decrease of the index to 1%, it would equally imply a 12% loss on the open 
position in futures. 
 

On the real markets, most futures contract quotes follow the same conventions. Let us take the following table 
as an example: 
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COTTON (CTN) 50,000 lbs; cents per lb. 

Expiration Open High Low Settle Change Open Interest Volume 

Oct 22 67.48 68.50 67.20 67.53 0.37 4297 79 

Dec 22 69.49 70.90 69.37 69.78 0.42 154533 8379 

Mar 23 74.19 75.31 74.00 74.38 0.39 34544 1865 

May 23 77.14 77.25 76.00 76.38 0.31 3612 220 

Jul 23 79.05 79.20 78.00 78.31 0.32 7279 2823 

Oct 23 77.14 77.25 76.00 76.38 0.34 116 - 

Est. Vol. 11,088; prev. Vol. 9,848; open int. 218,270; -6,000 

 
Table II.6 Quoting conventions 

 

 
The first line of Table II.6 describes the asset underlying the futures, the contract size and how it is quoted. 
The term Expiration indicates the month of expiration of the contract. The column Open contains the price 
of the first completed transaction (or, in its absence, the price of the first offer); the column High reports the 
highest ask or highest price at which the contract is traded; the column Low indicates the lowest bid or the 
lowest price at which the contract was traded; the column Settlement Price (or Settle) contains the closing 
price used to calculate margin account changes; the column Net Change (Change) reports the difference 
between the settlement price recorded on the current trading day and the previous one. The column Open 
Interest indicates the cumulative amount of all outstanding futures contracts (on one side only) i.e. the number 
of futures contracts which, at a certain point in time, have a long and a short position open at the same time. 
Lastly, the column Volume shows the number of contracts traded in one day. 
 

The information in the last row of the table is the estimated volume (for all maturities and one side only) on 
the last and previous trading day, the open interest and lastly, the change from the previous trading day. The 
spot of the underlying is often shown. Clearly then, to obtain the price of a futures contract, the market 
quotation must be multiplied by the contract size. In the proposed example, each price has to be multiplied by 
50,000 to obtain the value of a futures contract. 
 
In addition to this, each futures contract has a different tick size and tick value. Those figures are generally 
not shown on the quotes on the screen as they are conventions reported in the contract specifications and they 
are adopted by the entire stock exchange in which they are traded. The tick size (or minimum price change) is 
the smallest increment by which the price can move. If, for example, the tick size is equal to 0.0001, it means 
that if the current price is equal to 1.2902, the smallest variations can be 1.2903 or 1.2901. The tick value (or 
minimum price value) is the amount of money per tick size. For example, if a contract has a tick value of USD 
12.50, it means that for every 0.0001 increase/decrease in price the profit/loss of a trade will increase/decrease 
by USD 12.50. 
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By definition, a futures contract can only be traded on official exchanges 
(futures exchanges). Historically, trading took place in special spaces and 
by “open outcry”, with the onset of technology nowadays trading takes 
place on multilateral electronic trading platforms. There are 13 futures 
exchanges registered in the USA and more than 50 scattered throughout 
the rest of the world. 
The most important ones are: Chicago Board Options Exchange (CBOE), Chicago Mercantile Exchange 
(CME),  International Monetary Market (IMM), Chicago Climate Exchange Intercontinental Exchange (ICE), 
New York Board of Trade (NYBOT), Kansas City Board of Trade (KCBT), Minneapolis Grain Exchange 
(MGEX), New York Mercantile Exchange (NYMEX), Philadelphia stock exchange (PHLX) … 
 

 
 

Figure II.10 Trading room 
 

In the Eurozone, the main pan-European markets are Eurex and Euronext. In addition to these, several 
countries have maintained their own domestic exchanges: 
 

- Great Britain: International Petroleum Exchange (IPE) in London; London Metal Exchange (LME). 
- Japan: Central Japan Commodity Exchange (C-COM), Osaka Securities Exchange, Tokyo Commodity 
Exchange (TCE), Tokyo Stock Exchange (TSE), Tokyo International Financial Foreign Exchange (TIFFE), 
- Hong Kong: Hong Kong Exchanges and Clearing (HKEx) 
 

The Exchanges do not trade futures themselves, but they provide the means for buyers and sellers to meet, 
they offer researches and quotes useful for taking decisions, as well as supervise trading and enforce regulations. 
Exchanges also monitor and encourage financial and ethical standards, and they typically provide daily statistics 
and historical series of the traded instruments. 
 

Exchanges can be organized both as publicly listed companies, and as private companies/ organizations, either 
for profit or not. 
 

Their earnings derive from the fees they collect on each exchange, from the clearing services they offer, as well 
as from the sale of real-time information and historical series, as mentioned above. 
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As we have seen, the underlyings of futures contracts vary from one exchange to another. 
There are futures written on agricultural products and foods (wheat, soybeans, rice, sugar, coffee, cocoa, orange 
juice, potatoes, cattle), on precious and industrial metals (copper, aluminum, gold, silver), on oil and products 
derived from it (fuel oil, petrol) and on timber. Financial futures are also available on the main foreign 
currencies, on financial instruments linked to interest rates (short and long-term bonds), and on the most 
important stock indexes. 
 

 
 

Figure II.11 CTM – Contract Exchange Menu: Categories. Source: Bloomberg® 
 

 
 

Figure II.12 CTM – Contract Exchange Menu: Exchange A-I. Source: Bloomberg® 
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Figure II.13 CTM – Contract Exchange Menu: Exchange I-N. Source: Bloomberg® 
 

 
 

Figure II.14 CTM – Contract Exchange Menu: Exchange N-Z. Source: Bloomberg® 
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Figure II.15 CTM – Contract Exchange Menu: Region North America, South America and Europe. Source: 

Bloomberg® 
 

 
 

Figure II.16 CTM – Contract Exchange Menu: Region Europe and Asia/Pacific. Source: Bloomberg® 
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Figure II.17 CTM – Contract Exchange Menu: Region Europe and Asia/Pacific, Africa and Middle East. 
Source: Bloomberg® 
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I.2 QUANTITATIVE ANALYSIS 
 
 

As known, on the maturity date of a futures contract, the futures price should be equal to the spot price, since 
the two assets become perfect substitutes for each other. We denote with Ft,T the market price at time t of the 
futures contract with maturity T, thus the following relation holds: 
 

FT,T = ST (Eq. II.3) 
 

Otherwise, an arbitrageur could buy the lower priced financial instrument and sell the higher priced instrument 
for an immediate risk-free profit. If the spot is overpriced, the arbitrageur buys the futures, brings the spot 
through the delivery process, and sells it. If, on the other hand, the futures contract is overpriced, the arbitrageur 
buys the spot, sells the futures and holds the spot till expiration. However, before the maturity (t<T) the spot 
price is not necessarily equal to the futures price. The difference between the two prices is called the basis: 
 

Bt,T = Ft,T – St (Eq. II.4) 
 

The basis can be positive, negative or zero, and it converges to zero as the expiration date of the contract 
approaches. Let us examine the factors that cause the difference between the spot and the futures prices. 
Financial literature indicates three models that can be used for pricing a futures contract, namely: 
 

A. The CAPM (Capital Asset Pricing Model), in which the return is a function of market risk. 
B. The net hedging pressure theory, in which returns are systematically biased in favor of a net speculative 
position versus a net hedging position. 
C. The cost of carry model, in which arbitrage creates a link between the spot and the futures markets. 
 

A. The CAPM (Capital Asset Pricing Model) 
 

According to the CAPM model, the return on a security is a function of both its market risk exposure (beta) 
and the market risk premium. According to this framework, an analyst could try to estimate the beta of futures 
contracts and, consequently, their value. Unfortunately, the huge leverage implied in futures contracts 
invalidates some of the assumptions included in the CAPM working principle. In particular, the distribution of 
futures returns empirically tends to have fatter tails than those present in a normal distribution. In addition, 
some researchers have highlighted a very low beta parameter for futures contracts written on commodities and 
this fact suggests a weak relationship. For these considerations, CAPM should not be employed as a robust and 
reliable model for futures pricing. 
 

B. The net hedging pressure theory 
 

According to the unbiased expectation hypothesis, futures prices are unbiased predictors of the expected future 
spot price, therefore: 
 

Ft,T = E(St) (Eq. II.5) 
 

In real life however, an analyst might on average accept the absence of bias. This would imply that the 
theoretical profit expected from a futures position is equal to zero on average. But supply-demand factors may 
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challenge the average absence of bias, as discussed by Keynes and Hicks. In short, let us consider the case of 
commodity futures. Keynes first suggested that the spot prices of a commodity are so volatile that a commodity 
producer will agree to sacrifice some of the returns in order to hedge against the risk of price fluctuations during 
its production period. Consequently, in a producer-dominated market, hedging pressure by the producer could 
mean that the future price of a futures contract on that commodity may have a discount to the spot price of 
the same commodity. The result is a forward curve characterized by a negative slope (downward sloping 
forward curve), and this situation is called normal-backwardation. 
 

Normal backwardation results in a positive roll yield which means that 
an investor can: 
 

1) Buy a futures contract at a lower price than the spot, 
 

2) As soon as the contract expires, sell it for profit, 
 

3) Re-establish the position in a new contract. 
 
 

The antithetical hypothesis is called contango, and it is the case in which 
commodity consumers will take a long position in order to receive the 
commodity in the future at a guaranteed price and speculators will take 
the short position. Thus, if the net long hedging position exceeds the net 
short speculating position, futures prices will be overpriced compared to 
their true fair value, thereby encouraging speculators to sell futures. 
Consequently, the forward curve will assume a positive slope (negative roll 
yield). 
 
The three theories we have examined (unbiased expectation hypothesis, 
normal-backwardation and contango situation) can be unified in the so-
called hedging pressure theory or net hedging hypothesis: 
 
Ft,T < E(St) when short hedgers outnumber long hedgers. 
 

Ft,T > E(St) when long hedgers outnumber short hedgers. 
 

Ft,T = E(St) when the number of long hedgers exactly equals the number of short hedgers. 
 
C. The cost of carry model 
Unlike the previous models, this one is based on the concept of arbitrage-free pricing, i.e., it is based on the 
assumption that futures contracts should be valued in such a way as to exclude profits from arbitrage between 
spot and futures markets. The result of this approach is that the fair price depends on several parameters such 
as the spot price of the underlying asset (St), the time to maturity of the futures (T-t), the time value of money 
(Rt,T), and the incoming/outgoing cash due to the underlying. It is the most commonly implemented model for 
the theoretical valuation of a Futures contract, consequently it will be discussed with greater detail. 
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The first case we discussed dealt with the pricing of a futures written on an asset that does not provide for 
income during the life of the contract. Within this category, we can mention shares that do not pay dividends, 
discount bonds (or zero coupon bonds) and precious metals (pure commodities). If we momentarily disregard 
margin calls, a futures contract is essentially a mechanism for buying an asset (underlying) now, for delivery at 
a future date at a prefixed price. To implement this strategy, the only requirement is to save enough money to 
be able to pay the future price of the asset when due. Since the future price is known, we can easily determine 
how much money is required by computing the present value. Alternatively, another obvious way to obtain the 
underlying asset at a future date is to borrow money today to buy it and then hold it to maturity. This trading 
method is called a “cash and carry” strategy. When such strategy is properly implemented, it will exactly match 
the cash flows of a futures strategy. 
Since the two ways of operating lead to the same result (i.e. having the underlying at the future date), they must 
have the same implementation cost, otherwise arbitrage opportunities would arise. Therefore, equalizing the 
two implementation costs creates the link between futures and spot prices. In short, to synthetically construct 
a futures contract with the “cash and carry” strategy, a trader must: 
 

1) First of all, buy the underlying asset by borrowing cash. 
2) Then the underlying should be kept until the delivery date of the futures (carry). 
3) Finally, on the due date, he should pay off the initial loan. 
 

As we said above, if we disregard the margins, this strategy perfectly replicates the cash flows of a futures 
contract on its expiration date. 
 

 

Futures written on a share with no pay-out Net outflows today Net inflows date T 

Portfolio today (date t)   

1 Buy one share at cost St -St  

2 Finance purchase of share by borrowing at risk-free rate 
Rt,T 

+St  

3 Sell one forward contract, maturity T, forward price Ft,T 0  

TOTAL 0  

Portfolio at date T   

1 Value of share  +ST 

2 Repay borrowing  -St  x (1+Rt,T) 

3 Value of forward (Deliver the underlying asset at T to 
liquidate the futures contract)  

 -(ST - Ft,T) 

TOTAL  Ft,T-St  x (1+Rt,T) 

 
Table II.7 Cash and carry strategy 
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We observe that the value of this portfolio is always known since it is independent from the underlying price 
assumed on date T: thus, there is no uncertainty. Therefore, to avoid  any arbitrage opportunity, the final payoff 
must be zero because otherwise positive cash flows can be generated on date T, without any initial investment 
and without risk. 
 

Ft,T - St  x (1 + Rt,T) = 0  →  Ft,T  = St  x (1 + Rt,T) (Eq. II.6) 
 

Ft,T is the futures price on date t of a contract expiring on date T; St is the spot price of the underlying on date 
t and Rt,T is the risk-free interest rate for the period (T-t). 
 

 
An important feature of financial assets compared to commodities is that they have no storage costs. If we 
consider a futures on a non-financial asset, such as gold, silver or corn, then the costs of storage must also be 
taken into account. 

 
Futures on corn Net outflows today Net inflows date T 

Portfolio today (date t)   

1 Buy one asset at cost St -St  

2 Finance purchase of the asset by borrowing at 
risk-free rate Rt,T 

+St  

3 Sell one forward contract, maturity T, forward 
price Ft,T 

0  

TOTAL 0  

Portfolio at date T   

1 Value of asset  +ST 

2 Repay borrowing  -St  x (1+Rt,T) 

3 Pay storage costs  -k(t,T) 

4 Value of forward (Deliver the underlying asset 
at T to liquidate the futures contract) 

 -(ST - Ft,T) 

TOTAL  Ft,T-St  x (1+Rt,T)-k(t,T) 

 
Table II.8 Cash and carry strategy: Futures on corn 

 
Again, the payoff on date T is already known on date t. Therefore, the strategy is risk-free and in order to avoid 
arbitrage, the payoff must be zero, which implies the value of the futures must be equal to: 
 

Ft,T = St  x (1+Rt,T) + k(t,T) (Eq. II.7) 
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Cash and Carry arbitrage 
 

Suppose we observe the market price of a futures contract FM
t,T overpriced compared to its theoretical value, 

FT
t,T , that is: FM

t,T > FT
t,T. An investor could implement a cash and carry arbitrage strategy to profit from the 

price mismatch. 
 

Reverse Cash and carry arbitrage 
 

Suppose we observe the market price of a futures contract FM
t,T underpriced compared to its theoretical value, 

FT
t,T , that is FM

t,T < FT
t,T. An investor could implement a reverse cash and carry arbitrage strategy to profit on 

the price mismatch. 
 

Cash and carry arbitrage Net outflow today Net inflow date T 

Portfolio today (date t)   

1 Buy one asset at cost St -St  

2 Finance purchase of the asset by borrowing at risk-free 
rate Rt,T 

+St  

3 Sell one futures contract, maturity T, market price FM
t,T 0  

TOTAL 0  

Portfolio at date T   

1 Value of asset  +ST 

2 Repay borrowing  -St  x (1+Rt,T) 

3 Pay storage costs   -k(t,T) 

4 Value of futures (Deliver the underlying asset at T to 
liquidate the futures contract)  

 -(ST - FM
t,T) 

TOTAL  FM
t,T - St  x (1+Rt,T)-k(t,T) = 

FM
t,T -FT

t,T 
 

Table II.9 Cash and carry arbitrage 
 

Reverse Cash and carry arbitrage Net outflow today Net inflow date T 

Portfolio today (date t)   

1 Sell short underlying asset +St  

2 Lend proceeds from short sale at risk free, Rt,T -St  

3 Buy one futures contract, maturity T, price of FMt,T 0  

TOTAL 0  
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Portfolio at date T   

1 Value of asset  -ST 

2 Receive proceeds of the loan  +St  x (1+Rt,T) 

3 Charge storage costs   +k(t,T) 

4 Value of futures (Buy the underlying asset at T to 
liquidate the futures contract)  

 (ST - FM
t,T) 

TOTAL  -FM
t,T + St  x (1+Rt,T)+k(t,T) = 

FT
t,T -FM

t,T 

 
Table II.10 Reverse Cash and carry arbitrage 

 
A further case study relates to the pricing of a futures contract written on an asset characterized by known 
proceeds during its life. The logic is similar to the previous case, to avoid any arbitrage, there should be no 
difference for the investor between buying the futures and holding the position open until expiration or buying 
the spot and holding it until the futures expires. The only difference from the previous case is that if the investor 
buys the spot, he will receive a known income (dividends or coupon payments), while the holder of the futures 
contract will not receive anything. 
The formula can be generalized as follows: 
 

Ft,T = St  x (1+Rt,T) + k(t,T) – FV(revenues) (Eq. II.8) 
 

Where Ft,T is the futures price on date t of a contract expiring on date T. 
St is the spot price of the underlying on date t. 
Rt,T is the risk-free interest rate for the period (T-t). 
FV(revenues) is the future value of the underlying revenues. 
k(t,T) is the future value of costs – carrying costs (insurance/storage). 
 

Let us consider as an example, a hypothetical stock, paying a dividend of USD 1 per quarter. The spot price is 
St = USD 140 and the futures price for a one-year contract is FM

0,1 = USD 148. The next dividend is paid in 3 
months and the interest rate for lending and borrowing is assumed to be the same and equal to 10% p.a. The 
future value of the dividend stream is equal to: 
 

FV(dividends)=1 x (1+9/12 x 0.10) + 1 x (1+6/12 x 0.10) + 1 x (1+3/12 x 0.10) + 1 = 4.15 
 

Whereas the theoretical price of the futures is: 
 

FTH
0,1= St  x (1+Rt,T) + k(t,T) – FV(revenues)= 

      = 140 x (1+0.10) + 0 – 4.15 = 
      = 149.85 > 148 
 

The theoretical price of the futures is higher than the price observed on the market. Thus a reverse cash and 
carry arbitrage strategy can be implemented. 
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Reverse Cash and carry arbitrage Net outflow today Net inflow date T 

Portfolio today (date t)   

1 Sell short underlying asset +140  

2 Lend proceeds from short sale at risk free, Rt,T -140  

3 Buy one forward contract, maturity T, forward price 
of FM

0,T= 148 
0  

TOTAL 0  

Cash-Flows at each quarter   

1 Borrow $1 per quarter +1  

2 Pay $1 per quarter -1  

Portfolio at date T   

1 Value of asset  -ST 

2 Receive proceeds of the loan  154 

3 Pay back loan  -4.15 

4 Value of forward(Buy the underlying asset at T to 
liquidate the contract)  

 ST - 148 

TOTAL  1.85 

 
Table II.11 Reverse Cash and carry arbitrage on a stock with cash-out 

 

The difference between the theoretical and the observed value of the futures contract is equal to USD 1.85 and 
it is a pure risk free profit. 
 

Practically, analysts observe that the futures price on the markets tends to be lower than the theoretical price. 
This does not always translate as an arbitrage opportunity though, because this discrepancy is caused by certain 
intrinsic limitations existing in the spot-futures price relationship. We can list the following considerations: 
 

- the existence of transaction costs (commissions to brokers, fees, bid-ask spread), 
- the market liquidity, i.e., the lower the liquidity, the higher the bid-ask spread, 
- short selling is often restricted or prohibited, 
- the borrowing rate is different from the lending rate (while in the previous model, the rate is the same), 
- the amount of the dividends and the payment dates are a-priori unknown, 
- the received/paid interest in the marking to market procedure should also be considered. 
 

For these reasons, in real life, traders often set convenience thresholds (lower and upper bounds) within which 
there is an effective gain in applying arbitrage strategies. 

 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

141 

 
 
Figure II.18 Contract Table SPX Index Futures. Reference Date: 21st December 2022. Source: Bloomberg® 

 

 
 

Figure II.19 SPX Index (Standard & Poor’s 500 Index) – Intra Day. Source: Bloomberg® 
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Figure II.20 S&P500 Mini Futures Dec 23 description. Source: Bloomberg® 
 

 
 

Figure II.21 Option Implied Dividend Yield and Risk Free rate. Source: Bloomberg® 
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Here is a practical example of an estimation of the fair value for the Future using the cost of carry model, with 
the following data: 
 

Evaluation Date: 21st December 2022 
 

Spot Level: USD 3878.44 (Close Price) 
 

Futures Z3 Expiration: 15th December 2023 
 

Time to Maturity: (12/15/2023 – 12/21/2022)/365 = 359/365 = 0.9835616  
 

Risk free rate (r): 4.773% p.a. 
 

Dividend Yield (q): 1.42% p.a. 
 

Theoretical Value (FTH
t,T): S x exp[(r-q) x T] = 3878.44 x exp[(4.773%-1.42%) x 0.9835616] = USD 4008.47 

 

Market Value (FM
t,T): USD 4006 

 

Model Gap: USD 2 
 

In this financial context, the term hedging means the creation of a position in the futures markets, as opposed 
to the physical market, with the aim of reducing or limiting the risks associated with price changes. The risk 
reduction is carried out symmetrically with respect to the current value of the position. Consequently, the trader 
who decides to protect his portfolio from the risk by hedging himself (hedger) will renounce part of the profit 
if the price change plays in his favor. 
The hedging process using forward and futures contracts appears intuitively simple: if a trader has bought the 
spot, he will sell forward/futures contracts assuming a short position; similarly, if a trader has sold the spot (or 
needs a spot), he will buy futures/forward contracts (long position). 
 

Let us clarify by means of an example, supposing that the Gold Company has 1,000 ounces of gold and wants 
to sell it in July; the current spot is USD 900 per ounce. The company wishes to hedge against gold price 
movements, therefore it decides to sell 1,000 ounces at the forward price of USD 940 per ounce. Let us show 
that the hedging strategy is good by considering two future scenarios. 
The first scenario provides that the value of the spot on the desired date in July is equal to USD 1,000/ounce; 
while in the second scenario it is USD 850/ounce. 
 

Scenario Spot revenue profit from forward transaction total profit 

1 USD 1,000,000 USD -60,000 USD 940,000 

2 USD 850,000 USD +90,000 USD 940,000 

 
Table II.12 Hedging strategies 

 
In this case, the company implements a hedging strategy through an ad-hoc forward agreement, and, regardless 
of the future spot value assumed by the underlying, the total profit is unchanged.  
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An intermediary does not always have the opportunity and flexibility to enter into an OTC forward contract, 
so he will have to turn to the liquid futures market. In that case, the probability of finding exactly the instrument 
that meets the desired technical specifications is extremely rare, given the standard nature of futures contracts 
(but the upside is that they are much safer in terms of counterparty risk). 
 

In order to understand the basic concepts of hedging, let us consider a spot asset with an initial value of S0 and 
a futures contract written on such underlying with an initial value of F0,T and a contract size of k. Let us suppose 
we have a portfolio P which contains NS spot assets. Ideally, we would like to add NF futures to our portfolio 
P with the aim to neutralize its value. In mathematical notation, the change in value of the portfolio for the 
next period is given by: 
 

ΔVP= NS x ΔS + NF x k x ΔF (Eq. II.9) 
 

Where ΔS is the unit price variation of the spot and ΔF is the unit price variation of the Futures. By setting the 
condition of ΔVP= 0, a perfect hedging condition is imposed. 

NS x ΔS + NF x k x ΔF = 0  → 𝑁𝐹 = −
𝑁𝑆

𝑘
×

∆𝑆

∆𝐹
= −

𝑁𝑆

𝑘
× 𝐻𝑅 (Eq. II.10) 

Where HR is called the hedge ratio and is equal to 
∆𝑆

∆𝐹
 . 

We notice that the coverage ratio can be rewritten in terms of the market value of the current spot position: 
 

𝐻𝑅 = −
𝑁𝐹×𝑘×𝑆

𝑁𝑆×𝑆
= −

𝑁𝐹 ×𝐹𝑢𝑡𝑢𝑟𝑒𝑠 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 𝑠𝑖𝑧𝑒 ×𝑆𝑝𝑜𝑡 𝐴𝑠𝑠𝑒𝑡 𝑃𝑟𝑖𝑐𝑒

𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑝𝑜𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
 (Eq. II.11) 

 

It follows that: 
 

𝑁𝐹 = −𝐻𝑅 ×
𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑝𝑜𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝐹𝑢𝑡𝑢𝑟𝑒𝑠 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 𝑠𝑖𝑧𝑒 ×𝑆𝑝𝑜𝑡 𝐴𝑠𝑠𝑒𝑡 𝑝𝑟𝑖𝑐𝑒
 (Eq. II.12) 

 

If there were a one-to-one relationship between the change in spot prices and the change in futures prices, i.e. 
if ΔS = ΔF, the above equation would become: 
 

{
𝐻𝑅 = 1       

𝑁𝐹 = −
𝑁𝑆

𝑘

 (Eq. II.13) 

 

Hedging the risk using this equation is called a naive strategy. 
  

Let us now consider an example. An American firm wishes to hedge a EUR 25 million commitment due in 
November by taking a position on an IMM EUR futures contract due at the December delivery. EUR futures 
have a contract size of EUR 125,000. Since the firm’s commitment equals a short position in euros, the firm 
will buy futures contracts. In accordance with the naive method, the company should buy 200 contracts: 
 

𝑁𝐹 = −
−25,000,000

125,000
= 200  

 

The naive method is simple to use and reasonably accurate for spot positions with extremely similar 
characteristics to the futures contracts. In real markets, however, perfect hedging (i.e. total elimination of risk) 
will only occur when the futures and the spot move proportionally over time and when the investor’s time 
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horizon exactly coincides with the expiry of the futures contract. Thus in a real context, the main barriers to 
perfect hedging are basis risk and quality or correlation risk. Basis risk arises when the maturity of the 
Futures contract (T) does not coincide with that of the time horizon to be hedged. As an example, if an investor 
had a long position in the spot market and a short position in the futures market, the hedged profit of his 
position would be given by: 
 

Hedged Profit = (ST - St) - (FT,T - Ft,T) (Eq. II.14) 
 

If the holding period of the spot ends exactly when the futures expires, the time base T is zero since ST = FT,T 
 

Hedged Profit = Ft,T – St (Eq. II.15) 
 

In this case, the covered profit is perfectly known in any time interval t; therefore, the hedge is effective. 
 

 
 

Figure II.22 Basis variation over time 
 
If the spot holding period ends at time T1<T, the hedger will have to liquidate his futures position before its 
natural expiry at the price of FT

1,T. 
 

Therefore, the hedged profit is: 
 

Hedged Profit = - (FT1,T - Ft,T)+ (ST1 - St) = (Ft,T - St ) - (FT1,T - ST1) (Eq. II.16) 
 

Hedged Profit = Basist-BasisT1 (Eq. II.17) 
 

For a generic time t, the base T1 is not known. Consequently, the final profit is uncertain and in this case the 
hedger can replace the price risk with the basis risk. To minimize delivery basis risk, an analyst may be tempted 
to choose the contract with the closest maturity to the investor’s needs, but this is not necessarily the optimal 
strategy, thus the trader must always carefully analyze the trade-off between basis risk and liquidity risk, 
especially if the desired hedge is very long. 
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On the other hand, correlation or “quality” risk exists when the spot security/commodity/asset is not exactly 
homogeneous to that underlying the futures. Cross hedging occurs when the spot and the underlying of the 
futures are not equal. 
 

As an example, let us consider an airline that is impacted by the future price of fuel. Since jet fuel futures are 
not actively traded, a trader will have to choose fuel oil or similar contracts. The two assets are similar, but they 
are not perfectly correlated (asset mismatch). 
 
Now let us consider the case of an investor holding a portfolio of long positions in NS spot assets covered by 
NF futures with a contract size equal to k. The expected value of the profit/loss (expected P&L) on the hedged 
position is equal to: 
 

E(Profit)= NS x E(ΔS) + NF x k x E(ΔF) (Eq. II.18) 
 

Since perfect hedging is not possible, the hedger’s goal is to minimize the variance of his hedged profit in 
monetary terms. In mathematical terms, this means: 
 

Var(Profit) = NS
2 x Var(ΔS) + NF

2 x k2 x Var(ΔF) + 2 x NF x k x NS x Cov(ΔS,ΔF) (Eq. II.19) 
 

In order to minimize the variance, it is necessary to zero its first derivative with respect to NF: 
 

𝜕𝑉𝑎𝑟(𝑃𝑟𝑜𝑓𝑖𝑡)

𝜕𝑁𝐹
= 0 (Eq. II.20) 

 

It follows that: 
 

2 x NF x k2 x Var(ΔF) + 2 x k x NS x Cov(ΔS,ΔF) = 0 (Eq. II.21) 
 

This can be rewritten as: 
 

𝑁𝐹 =
𝑁𝑆

𝑘
×

𝐶𝑜𝑣(∆𝑆,∆𝐹)

𝑉𝑎𝑟(∆𝐹)
 (Eq. II.22) 

 

The ratio 
𝐶𝑜𝑣(∆𝑆,∆𝐹)

𝑉𝑎𝑟(∆𝐹)
 is called minimum-variance hedge ratio (HR). 

 

𝐻𝑅 =
𝐶𝑜𝑣(∆𝑆,∆𝐹)

𝑉𝑎𝑟(∆𝐹)
= 𝜌∆𝑆,∆𝐹 ×

𝜎∆𝑆×𝜎∆𝐹

𝜎Δ𝐹
2 = 𝜌∆𝑆,∆𝐹 ×

𝜎∆𝑆

𝜎∆𝐹
 (Eq. II.23) 

 

Where 𝜎∆𝑆 is the standard deviation of ΔS,  𝜎∆𝐹 is the standard deviation of ΔF, 𝜌∆𝑆,∆𝐹 is the correlation 

coefficient between ΔS and ΔF. Thus, 𝐻𝑅 is the hedge ratio that minimizes the variance of the overall hedged 
position. 
 
We now present a more detailed example on the minimum variance hedge ratio estimation, with the data shown 
on the table below. We proceed and calculate the coefficients seen above and reach an estimate for the hedge 
ratio. 
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Month (i) Delta F for month (xi) Delta S for month (yi) xi^2 yi^2 xi  yi 

1 -0.0158 -0.0238 0.00024964 0.000566 0.000376 

2 -0.0479 -0.0508 0.00229441 0.002581 0.002433 

3 0.0053 -0.0202 0.00002809 0.000408 -0.00011 

4 0.0881 0.0391 0.00776161 0.001529 0.003445 

5 0.1052 0.0568 0.01106704 0.003226 0.005975 

6 0.0017 -0.0416 0.00000289 0.001731 -7.1E-05 

7 0.0141 0.0173 0.00019881 0.000299 0.000244 

8 -0.0335 -0.1056 0.00112225 0.011151 0.003538 

9 0.1139 0.0461 0.01297321 0.002125 0.005251 

10 0.0278 0.0472 0.00077284 0.002228 0.001312 

11 0.0302 -0.036 0.00091204 0.001296 -0.00109 

12 0.0814 0.0199 0.00662596 0.000396 0.00162 

13 0.0405 0.0447 0.00164025 0.001998 0.00181 

14 -0.0036 -0.032 0.00001296 0.001024 0.000115 

15 0.088 0.0923 0.007744 0.008519 0.008122 

SUM 0.4954 0.0534 0.053406 0.039078 0.032977 

 
Table II.13 Example of the minimum variance hedge ratio estimation 

 

𝜎∆𝐹 = √
∑ 𝑥𝑖

2

𝑛−1
−

(∑ 𝑥𝑖)2

𝑛(𝑛−1)
= √

0.053406 

15−1
−

(0.4954)2

15(15−1)
= 0.05144  

 

     𝜎∆𝑆 = √
∑ 𝑦𝑖

2

𝑛−1
−

(∑ 𝑦𝑖)2

𝑛(𝑛−1)
= √

0.039078 

15−1
−

(0.0534)2

15(15−1)
= 0.052704  

 

𝜌∆𝑆,∆𝐹 =
𝑛 ∑ 𝑥𝑖×𝑦𝑖− ∑ 𝑥𝑖× ∑ 𝑦𝑖

√[𝑛 ∑ 𝑥𝑖
2−(∑ 𝑥𝑖)2]×[𝑛 ∑ 𝑦𝑖

2−(∑ 𝑦𝑖)2]

=
15⋅0.032977 −0.4954 ⋅0.0534 

√[15⋅0.053406 −0.49542 ]×[15⋅0.039078−0.05342]

= 0.82237  

 

HR = 𝜌∆𝑆,∆𝐹
𝜎∆𝑆

𝜎∆𝐹
= 0.82237

0.052704

0.05144
= 0.842584  

 

This means that futures contracts to buy/sell should be 84.26% of the “amount” of assets to be hedged. 
Practically, the number of futures contracts to be used for the hedge has to be approximated therefore the 
trader can only reach an approximation of the optimal hedge. The Ordinary Least Square regression (OLS) 
suggests that, as the hedge ratio is defined, then HR constitutes the beta coefficient of the following linear 
regression model: 
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∆𝑆𝑡 = 𝛼∗ + 𝛽∗ × ∆𝐹𝑡 + 𝜀𝑡 (Eq. II.24) 
 

Where: 
 

∆𝑆𝑡 are the spot price variations. 

∆𝐹𝑡 are the futures prices variations. 

𝜀𝑡 is the residual with expectation equal to zero. 

𝛼∗ and 𝛽∗ are the coefficients estimated using a linear regression. 
 

If the spot is hedged with several futures contracts of different nature, it is necessary to resort to a multiple 
linear regression. 

 
 

Figure II.23 OLS regression for the futures hedging 
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III.1 FUNDAMENTALS 
 
 

Options are the second most traded group of derivatives. Options appeared on American markets as soon as 
shares trading started, and they were managed exclusively over-the-counter until 1972. In those early days, they 
were difficult to negotiate because of their high illiquidity: they were traded over the phone and dealers applied 
large spreads to investors interested in buying these derivatives. In addition, these early options could not be 
renegotiated and sometimes the sellers went bankrupt. As a result, growth in the trading initially remained 
relatively low. On April 26, 1973, after 4 years of study and planning, the Chicago Board of Trade established 
the Chicago Board Options Exchange and introduced standardized options on underlying stock. In the same 
year, and in fact, almost simultaneously, Black and Scholes provided a reasonable option pricing model. After 
reaching a volume of 911 contracts on the first day, the average daily volume reached 20,000 contracts the 
following year and, over time, many different types of options were introduced on a large number of 
underlyings. 
 

An option is defined as a financial contract between two parties, the option holder and the option writer, 
which allows the holder to buy/sell an asset on which it is written. More specifically, there are two types of 
basic options: call options and put options. A call option gives its holder the right (but not the obligation) to 
buy an asset (underlying asset) on a certain date at an agreed price. The writer of a call option is obligated to 
sell the underlying asset to the option holder, if the latter decides to exercise it. On the other hand, a put option 
gives its holder the right (but not the obligation) to sell an asset (underlying asset) on a certain date at an agreed 
price. The writer of a put option is obligated to buy the underlying asset from the option holder, if the latter 
decides to exercise it. The agreed price is called exercise price or strike price. 
A call option is said to be in-the-money when the price level of the underlying asset exceeds the option strike 
price; while a put is said to be in-the-money when the price of the underlying is lower than the exercise price. 
An option is at-the-money when the underlying asset equals the strike price, whereas, when the underlying 
price is below the strike for calls and above for puts, the option is said to be out-of-the-money. 
Another important concept is the initial purchase price of an option, which is called premium. 
The date on which the right can be exercised is called the exercise date, expiration date or simply maturity. 
Options that can only be exercised on the maturity date are called European options, while those that can be 
exercised at any time from the inception until expiry are called American options. Lastly, when entering into 
a Bermuda option, the right can be exercised not only upon expiry, but also on other contractually prefixed 
dates. 
Similarly to forward contracts, all contractual terms are potentially customizable in options traded over-the-
counter: it is sufficient for the counterparties to formally agree on the conditions. On the other hand, options 
traded on organized markets are standardized. 
Standardization allows these derivatives to be traded on the secondary market where option holders and writers 
can close out their open positions by neutralizing long or short positions with a higher probability than OTC 
ones. 
The key point in an option contract is that the holder has a right, not an obligation. This prominent feature 
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distinguishes options from forwards/futures, where the holder has the obligation to buy or sell the underlying 
asset. Only option writers are required to open and maintain a margin account to ensure the fulfillment of their 
contractual obligations. Option holders are not required to do so since they will only exercise the acquired right 
if it is convenient to do so. 
The following diagrams illustrate the transactions associated with a call option. In the initial transaction, the 
call buyer pays the premium to the seller (option writer) and receives the option. 
 

 
 

Figure III.1 Call option initial transaction 
 

On the exercise date, if the call holder decides to exercise it, he pays the exercise price and returns the option 
to the seller. Consequently, the seller is obliged to deliver the underlying (or, if required by the contractual 
conditions, the cash equivalent of its value). If the buyer does not exercise, nothing happens. 
 

 
 

Figure III.2 Call option final transaction 
 

Among the main advantages of options, we mention the fact that they offer asymmetrical patterns of returns 
that could not be achieved with a static investment in the underlying asset. Options also, allow to take a position 
in an underlying under more favorable restrictions compared to investing directly in the underlying. We can 
also state that they provide analysts with information regarding market expectations and input data for valuation 
models, and last but not least, options may offer tax benefits. 
 

Options can be written on a long list of underlyings, here are the most common ones: 
 

Equity options give the holder the right (but not the obligation) to buy (call) or sell (put) a certain number of 
shares at (or within, if American) an expiration date at an agreed price. The contractual terms can be adjusted 
in case of special events (such as stock splits or rights offerings). Traders who assume a long position in a call 
option do not have the same rights as those who have invested directly in the shares (such as voting rights, 
regular cash, special dividends). 
 

An Equity index option is a call option that gives its holder the right (but not the obligation) to buy (call) or 
sell (put) the stock index on (or by, if American) an expiration date at an agreed price. Since an index is a 
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measure of the price levels of a set of securities and, therefore, the underlying is synthetic, not physical, 
settlement must be made in cash on the exercise date. 
 

Options on Futures are very similar to standard options, except for the fact that the underlying is a futures 
contract. The holder of the option acquires the right to buy (call) or the right to sell (put) a futures contract at 
a prefixed price by a certain exercise date. The option writer is contractually obligated to take the opposite 
position if the buyer decides to exercise its right. All options on futures traded in the United States have an 
American-like exercise right, as a result they can be exercised on any trading day, which involves a physical or 
cash settlement, depending on the date. 
 

A Foreign exchange option is a currency option that gives the holder the right (but not the obligation) to 
exchange money denominated in one currency against another at an agreed exchange rate at a future date. 
 

Interest rates options are derivatives written directly on interest rates or on financial instruments connected 
to them (such as bank deposits, certificates of deposit, commercial papers and T-bills). They can be classified 
into two categories: 
 

- Price-based options are derivatives which give their holder the right to buy (/sell) a specific debt security 
(physical delivery) or to receive a cash payment based on the value of the underlying security (cash settlement). 
Many of these financial instruments are, in fact, options on a futures contract. 
 

- Yield-based options are derivatives whose settlement in cash is based on the difference between the exercise 
price and the value of the underlying yield (or interest rate) applied to a fixed notional. 
 

The most widespread options in the yield-based options category are interest rate options, known as caps, 
floors and collars (which are traded over-the-counter) and yield options, which are predominantly traded on 
organized markets. An interest rate cap can be defined as a collection of caplets, and a caplet is a single 
European call option written on a reference interest rate (e.g. Libor, Euribor, mortgage rate, commercial paper 
rate) which matures on a specified date. As a result, a cap can be represented as a portfolio of interest rate 
options. 
The term of the cap coincides with the time horizon over which the option is effective. The tenor or reset 
period of the cap determines how often the reference rate is observed/adjusted and how often payments are 
made. The pay-off of a Libor caplet at its maturity (T) can be described algebraically by the following formula: 
 

Caplet(T)=Q x Max[Libor – K, 0] x (days/360) (Eq. III.1) 
 

Where Libor is the spot rate recorded at the reset rate, K is the exercise rate and Q is the notional amount. 
 

An interest rate cap is typically implemented to limit the reference floating rate from exceeding a maximum 
threshold. 
 

For example, a typical use is the case of a loan indexed to Euribor: the counterparty who pays for the interest 
fixes a maximum ceiling on the future cash flows by purchasing a cap. 
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Figure III.3 Capped versus Non-Capped Rate 

 

Let us assume that we have a caplet with a duration of one year and an exercise price (K) equal to 2% on the 
12-month Euribor (reference rate). The Euribor Rate at time t is denoted by St. 
 

 
 

Figure III.4 Interest rate Caplets 
 

At the beginning of the year (t=0), the Libor rate S0 is recorded and it constitutes the reference rate. At the end 
of the year, the cap strike is compared to the reference rate. The pay-off is: max(S0 – K ;0). 
Assuming a notional of Q= EUR 10 million and a S0=2.5%, the caplet has a value of: 
 

Caplet(T=1)=EUR 10,000,000 x Max[2.5% – 2%, 0] x (360/360)  = EUR 50 million 
 

An interest rate floor is a collection of floorlets and a floorlet is a single European put option on a reference 
interest rate (Libor, Euribor, mortgage rate, commercial paper rate, etc…) which matures on a specified date. 
Thus, a floor can be managed as a portfolio of European put options written on interest rates. The pay-off of 
a Libor floorlet at its maturity (T) can be described by the formula: 
 

Floorlet(T)=Q x Max [K – Libor, 0] x (days/360) (Eq. III.2) 
 

where Libor is the observed spot rate on the reset date, K is the exercise rate and Q is the notional amount. 
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This financial instrument is typically used for the buyer to have a guaranteed minimum rate in the agreed period 
of time. Finally, an interest rate collar is a portfolio of caps and floors that limit changes in the benchmark 
interest rate to a specific “corridor”. 
 

Let us now focus on the valuation of option contracts and their fundamental characteristics. The applied 
notations in this section are the following: 
 

K is the Strike price (or Exercise price) of the option. 
C is the Call option price (American or European). 
CE is the European Call option. 
CUS is the American Call option. 
P is the Put option price (American or European). 
PE is the European Put option. 
PUS is the American Put option. 
C(St,T-t,K) is the value at time t of a call option (European or American) written on an underlying S (for 

example, a share) with an expiry time of 𝜏=T-t and strike price K. 
Lastly, P(St,T-t,K) is the value at time t of a put option (European or American) written on an underlying S (for 

example, a share) with an expiry time of 𝜏=T-t and strike price K. 
 

Before examining the characteristics of option contracts, we should consider the pay-off at maturity of “pure” 
(i.e. non-derivative) financial instruments, as the combination of an ordinary share (the underlying) and a 
default-free zero-coupon bond (used for the computation of the discount rate). 
 

 
 

Figure III.5 Bond and Long-Short Stock payoffs 
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Let us calculate the value of a call option at the expiration date, i.e. at time T. We start from the description of 
the derivative and obtain the formula for the pay-off. We know that a call option gives its owner the right to 
buy the underlying at maturity at the strike price. Let us examine the two cases: 
 

- If the share price (ST) is higher than the strike price (K), then the option holder will exercise the call option 
and buy the share at price level K, while simultaneously selling the underlying at market price ST. The profit is 
equal to ST-K per each share. 
 

- If the stock price (ST) is lower than the strike price, then the option holder will do nothing, since he can buy 
the stock directly on the market at a lower price rather than exercise his option. The option will expire worthless. 
 

Clearly, the pay-off of the option cannot be negative, in the worst case it is zero. 
 

Expressing the concept in mathematical terms, the intrinsic value of a call option at maturity is: 
 

CT = max [ST - K, 0] (Eq. III.3) 
 

 
 

Figure III.6 Value of a Long Call option at maturity 
 

Since the call holder pays a premium when buying the option, the net profit will be equal to the final value of 
the derivative (gross pay-off) minus the initial investment (option cost, premium). 
 

The figure shows that the call holder’s loss is limited to the premium paid. The gain is (theoretically) unlimited, 
in function of the underlying performance. The sum of the strike price plus the premium is called the break-
even point, which represents the share price level from which the option holder starts earning. 
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Figure III.7 Net profit for a Call-holder at maturity 
 

As an example, let us consider a call option written on stock XY. The current price of the underlying is CHF 
95. The exercise price is K = CHF 90. The contract size is 10. The premium paid for the purchase of the option 
is equal to 5. We can calculate the breakeven point of the investment in the derivative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III.8 Breakeven point for a Long Call option 
 

The Break even point of the current strategy is CHF 95. 
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Table III.1 Breakeven point for a Long Call option 

 
Since options, like futures, are a zero sum game, the net profit of the seller of a call is exactly the opposite of 
the net profit of the call holder. 
 
 

Stock Price (ST) Gross payoff Net Profit Net Payoff 

80 0 -5 -50 

81 0 -5 -50 

82 0 -5 -50 

83 0 -5 -50 

84 0 -5 -50 

85 0 -5 -50 

86 0 -5 -50 

87 0 -5 -50 

88 0 -5 -50 

89 0 -5 -50 

90 0 -5 -50 

91 1 -4 -40 

92 2 -3 -30 

93 3 -2 -20 

94 4 -1 -10 

95 5 0 0 

96 6 1 10 

97 7 2 20 

98 8 3 30 

99 9 4 40 

100 10 5 50 

101 11 6 60 

102 12 7 70 

103 13 8 80 

104 14 9 90 

105 15 10 100 
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Figure III.9 Short Call payoff 

 
For the call seller, the potential profit is limited to the premium, the potential loss is (theoretically) unlimited. 

 

 
 

Figure III.10 Breakeven point for a Short Call option 
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Stock Price (ST) Gross payoff Net Profit Net Payoff 

80 0 5 50 

81 0 5 50 

82 0 5 50 

83 0 5 50 

84 0 5 50 

85 0 5 50 

86 0 5 50 

87 0 5 50 

88 0 5 50 

89 0 5 50 

90 0 5 50 

91 -1 4 40 

92 -2 3 30 

93 -3 2 20 

94 -4 1 10 

95 -5 0 0 

96 -6 -1 -10 

97 -7 -2 -20 

98 -8 -3 -30 

99 -9 -4 -40 

100 -10 -5 -50 

101 -11 -6 -60 

102 -12 -7 -70 

103 -13 -8 -80 

104 -14 -9 -90 

105 -15 -10 -100 

 
Table III.2 Breakeven point for a Short Call option 

 

Let us now determine the value of a put option at maturity, i.e. at time T. We start from the description of the 
instrument, then obtain the pay-off formula. As known, a put option gives its owner the right to sell the 
underlying at maturity at the strike price. We can analyze the two cases: 
 

- If the share price (ST) is lower than the strike price (K), then the option holder will exercise the put to sell the 
share at price level K and simultaneously buy the underlying at the market price ST. The profit will be K-ST per 
each share. 
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- If the stock price (ST) is higher than the strike price, then the option holder will do nothing, since he can sell 
the stock directly on the market at a higher price rather than exercise his option. The option will expire 
worthless. 
 

Clearly, the pay-off of the option cannot be negative and it is zero in the worst case. 
 

Expressing the concept in mathematical terms, the intrinsic value of a put option at maturity is the following: 

 
PT = max [K-ST , 0] (Eq. III.4) 

 

 
 

Figure III.11 Long Put payoff 

 
Since the put holder pays a premium when buying the option, the net profit will be equal to the final value of 
the derivative (gross pay-off) minus the initial investment (option cost, premium). 
 

The figure shows that the gain is limited, as is the potential loss: both quantities depend on the performance of 
the underlying. 
 

As said above, the strike price minus the premium is called the break-even point, which represents the share 
price below which the option holder begins to gain from the current strategy. 
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Figure III.12 Net profit for a Put-holder at maturity 
 

Let us consider as an example a put option written on stock XY. The current price of the underlying is CHF 
95. The exercise price is K = CHF 90. The contract size is 10. The premium paid for the purchase of the option 
is equal to 5. We can calculate the breakeven point of the investment in the derivative. 
 

 
 

Figure III.13 Breakeven point for a Long Put option 
 

The Break-even point of the current strategy is CHF 85. 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

164 

 

Stock Price (ST) Gross payoff Net Profit Net Payoff 

80 10 5 50 

81 9 4 40 

82 8 3 30 

83 7 2 20 

84 6 1 10 

85 5 0 0 

86 4 -1 -10 

87 3 -2 -20 

88 2 -3 -30 

89 1 -4 -40 

90 0 -5 -50 

91 0 -5 -50 

92 0 -5 -50 

93 0 -5 -50 

94 0 -5 -50 

95 0 -5 -50 

96 0 -5 -50 

97 0 -5 -50 

98 0 -5 -50 

99 0 -5 -50 

100 0 -5 -50 

101 0 -5 -50 

102 0 -5 -50 

103 0 -5 -50 

104 0 -5 -50 

105 0 -5 -50 

 
Table III.3 Breakeven point for a Long Put option 

 
Since options, like futures, are a zero sum game, the net profit of the seller of a put is exactly the opposite of 
the net profit of the put holder. 
 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

165 

 
 

Figure III.14 Short Put payoff 
 

For the put seller, the potential profit is limited to the premium, the potential loss is (theoretically) unlimited. 
 

 
 

Figure III.15 Breakeven point for a Short Put option 
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Stock Price (ST) Gross payoff Net Profit Net Payoff 

80 -10 -5 -50 

81 -9 -4 -40 

82 -8 -3 -30 

83 -7 -2 -20 

84 -6 -1 -10 

85 -5 0 0 

86 -4 1 10 

87 -3 2 20 

88 -2 3 30 

89 -1 4 40 

90 0 5 50 

91 0 5 50 

92 0 5 50 

93 0 5 50 

94 0 5 50 

95 0 5 50 

96 0 5 50 

97 0 5 50 

98 0 5 50 

99 0 5 50 

100 0 5 50 

101 0 5 50 

102 0 5 50 

103 0 5 50 

104 0 5 50 

105 0 5 50 

 
Table III.4 Breakeven point for a Short Put option 

 
In this section, concepts derived from arbitrage will be employed to establish general properties inherent in the 
price of options, without making assumptions on the underlying asset. The implications deriving from these 
reasonings are useful for outlining the upper-bounds and lower-bounds within which the theoretical price of 
the option will necessarily remain. A market price outside of this theoretical range represents an arbitrage 
opportunity between the observed market price and the theoretical price, regardless of the mathematical 
model used.  
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For the sake of simplicity, it will be assumed below that the size of the option contract (contract size) is unitary, 
i.e. the holder of an option contract will have the right to buy (call) or sell (put) a single share. The first eleven 
properties assume that the underlying has no dividends. The following four properties relax this constraint and 
consider a possible payout from the underlying while the derivative is still alive. Here are the properties: 
 

Property 1 
 

Given that the maximum loss connected to an option is the initial investment (limited liability instrument), the 
value of an option cannot be negative. Therefore: 
 

C𝐸 ≥ 0, C𝑈𝑆 ≥ 0, P𝐸 ≥ 0, P𝑈𝑆 ≥ 0 (Eq. III.5) 
 

If there were the possibility of a negative option price, a trader could buy it now and hold it until maturity. Such 
strategy would give a positive amount now and a non-negative one later. Thus, without considering the initial 
investment (as will be done in illustrating all the properties), an investor could earn a risk-free profit and 
therefore an arbitrage strategy could be implemented. If the market is efficient though, such an opportunity 
should not exist. This reasoning, combined with the mathematical definition of the option pay-off, ensures that 
Property 1 always holds. 
 

Property 2 
 

A call option is a limited asset security: its value cannot fall below zero. If the underlying price is zero, the call 
price is also zero. It follows that: 
 

C𝐸(0,  𝜏, 𝐾) = C𝑈𝑆(0,  𝜏, 𝐾) = 0 (Eq. III.6) 
 

Property 3 
 

The price of a call option cannot exceed the value of the asset on which it is written. Otherwise, if this were 
the case, an investor would prefer to buy the underlying directly rather than by exercising the option. The 
underlying can be considered as an American option with an infinite time to maturity and a zero strike. 
 

𝑆 = C𝑈𝑆(𝑆,  ∞, 0) ≥ C𝑈𝑆(𝑆,  𝜏, 𝐾) (Eq. III.7) 
 

Property 4 
 

The price of an option is equal to the pay-off at the expiration date: for a call option it is ST – K or zero; for a 
put option, it is K - ST or zero, as indicated below: 
 

𝐶𝐸(𝑆𝑇 , 0, 𝐾) = 𝐶𝑈𝑆(𝑆𝑇 , 0, 𝐾) = max[0, 𝑆𝑇 − 𝐾] (Eq. III.8) 
 

𝑃𝐸(𝑆𝑇 , 0, 𝐾) = 𝑃𝑈𝑆(𝑆𝑇 , 0, 𝐾) = max[0, 𝐾 − 𝑆𝑇] (Eq. III.9) 
 

Property 5 
 

The minimum value for an American call is given by zero or St – K, and the minimum value for an American 
put is given by zero or K - St. 
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In mathematical terms, we have: 
 

𝐶𝑈𝑆(𝑆,  𝜏, 𝐾) ≥ max[0, 𝑆𝑡 − 𝐾] ; 𝑃𝑈𝑆(𝑆,  𝜏, 𝐾) ≥ max[0,  𝐾 − 𝑆𝑡] (Eq. III.10) 
 

The formal proof of this claim can be divided into two parts. The first part comes from Property 1 and states 
that the option, by nature, cannot assume a negative value. Therefore, we have: 
 

C𝑈𝑆(𝑆,  𝜏, 𝐾) ≥ 0  and  P𝑈𝑆(𝑆,  𝜏, 𝐾) ≥ 0 (Eq. III.11) 
 

The second part assumes that S𝑡 is greater than K. If the corresponding option value were less than S𝑡 − K then 
an arbitrage opportunity would arise and we could buy the option, exercise it immediately and sell the underlying 
stock. In that case, the net profit would be: 
 

𝑆𝑡 − {𝐶𝑈𝑆(𝑆, 𝜏, 𝐾) + 𝐾} = 𝑆𝑡 − 𝐾 − 𝐶𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 0 (Eq. III.12) 
 

Consequently, we should remove arbitrage opportunities: 𝐶𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 𝑆𝑡 − 𝐾 
 

Similar arguments for an American put: 𝑃𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 𝐾 − 𝑆𝑡 
 

From properties 1, 2, 3 and 5, the mentioned boundaries can be established for an American call option. 
 

 
 

Figure III.16 American call option boundaries 
 
 

Property 6 
 

An American option cannot be worth less than a European option: 
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𝐶𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 𝐶𝐸(𝑆, 𝜏, 𝐾) (Eq. III.13) 
 

𝑃𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 𝑃𝐸(𝑆, 𝜏, 𝐾) (Eq. III.14) 
 

Anything that can be done with a European option can also be done with an American option. By assuming a 
long position in an American option, the holder has the opportunity to exercise his right not only at maturity, 
as happens in a European option, but at any moment of its life.  Such additional freedom of choice has a 
positive or, in the worst case, a zero value. 
 

Property 7 
 

The value of a European call option will never be less than the price level of the stock it is written on, minus 
the present value of the option strike price. 
 

𝐶𝐸(𝑆, 𝜏, 𝐾) ≥ max(0, 𝑆𝑡 − 𝐾𝑒
−𝑟𝜏)  →  𝐶𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 𝐶𝐸(𝑆, 𝜏, 𝐾) ≥ max(0, 𝑆𝑡 − 𝐾𝑒

−𝑟𝜏) (Eq. III.15) 
 

In order to prove property 7, we can compare the values of the following two portfolios: the first portfolio, A 
consists of a long position in a European call option and a long position in a zero-coupon bond paying K at 
time T. The second portfolio, B, consists of a share (S). 

 

  Value at time t 
Value at time T 

ST<K ST>K 

Portfolio A   𝐶𝐸(𝑆, 𝜏, 𝐾) + 𝐾𝑒
−𝑟𝜏 0+K (ST-K)+K 

Portfolio B 𝑆𝑡 ST ST 

  A>B A=B 

 
Table III.5 Option Property 7: proof 

 
Since at time T, the value of portfolio A cannot be less than the value of portfolio B, the same property could 
be applied to a generic time t. It follows that: 
 

𝐶𝐸(𝑆, 𝜏, 𝐾) + 𝐾𝑒
−𝑟𝜏 ≥ 𝑆𝑡 → 𝐶𝐸(𝑆, 𝜏, 𝐾) ≥ 𝑆𝑡 −𝐾𝑒

−𝑟𝜏 (Eq. III.16) 
 

The positivity of the result is enforced using property 1. We can extend the result to an American call using 
property 6. 
 
Then, from properties 6 and 7, we can establish the lower and upper bounds of the value for a European call. 
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Figure III.17 European Call option boundaries 
 
Property 8 
 

Under the assumption that the underlying stock of the option does not pay a dividend and under the assumption 
of positive interest rates, it will never be convenient to exercise an American call option prematurely. In the 
cases mentioned, the American option will be priced like a European one. 
 

𝐶𝑈𝑆(𝑆, 𝜏, 𝐾) = 𝐶𝐸(𝑆, 𝜏, 𝐾) (Eq. III.17) 
 

From property 7, we have: 
 

𝐶𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 𝐶𝐸(𝑆, 𝜏, 𝐾) ≥ 𝑆𝑡 − 𝐾𝑒
−𝑟𝜏 (Eq. III.18) 

 

From property 5, we have: 
 

𝐶𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ max(0, 𝑆𝑡 − 𝐾) (Eq. III.19) 
 

Since 𝑆𝑡 − 𝐾 < 𝑆𝑡 − 𝐾𝑒
−𝑟𝜏, it follows that an American call written on an underlying stock that does not pay 

dividends is worth more alive than exercised. Thus, early exercise of a call option on a stock that does not pay 
dividends before its expiration is never optimal. 
 
Property 9 
 

Since the underlying equity is a limited liability security, its value cannot be less than zero, then the price of a 
put option cannot exceed its strike price. This statement is valid for both American and for European options. 
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𝐾 ≥ 𝑃𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 𝑃𝐸𝑈𝑅(𝑆, 𝜏, 𝐾) (Eq. III.20) 
 

Property 10 
 

If two call options differ only in their strike prices, the call option with the lower strike price will be worth at 
least as much as the option with the higher strike price. 
 

𝐶𝑈𝑆(𝑆, 𝜏, 𝐾1) ≤ 𝐶𝑈𝑆(𝑆, 𝜏, 𝐾2) if 𝐾1 ≥ 𝐾2 (Eq. III.21) 
 

𝐶𝐸(𝑆, 𝜏, 𝐾1) ≤ 𝐶𝐸(𝑆, 𝜏, 𝐾2) if 𝐾1 ≥ 𝐾2 (Eq. III.22) 
 

The contrary is true for put options: 
 

𝑃𝑈𝑆(𝑆, 𝜏, 𝐾1) ≥ 𝑃𝑈𝑆(𝑆, 𝜏, 𝐾2) if 𝐾1 ≥ 𝐾2 (Eq. III.23) 
 

𝑃𝐸(𝑆, 𝜏, 𝐾1) ≥ 𝑃𝐸(𝑆, 𝜏, 𝐾2) if 𝐾1 ≥ 𝐾2 (Eq. III.24) 
 

From properties 1, 4, 5 and 9, we can establish the lower and upper bounds for an American put option. 

 

 
 

Figure III.18 American Put option boundaries 
 

Property 11 
 

If two American options differ only in their time to maturity, the option with the longer time will be worth at 
least as much as the option with the shorter one. 
 

𝐶𝑈𝑆(𝑆, 𝜏1, 𝐾) ≥ 𝐶𝑈𝑆(𝑆, 𝜏2, 𝐾 ) if 𝜏1 ≥ 𝜏2 (Eq. III.25) 
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𝑃𝑈𝑆(𝑆, 𝜏1, 𝐾) ≥ 𝑃𝑈𝑆(𝑆, 𝜏2, 𝐾 ) if 𝜏1 ≥ 𝜏2 (Eq. III.26) 
 

For European put options, this property does not always hold: it is not always true that a put option with a 
longer time to expiry has a larger value. A European put only pays at maturity: if the maturity is very far, the 
positive effect of the longer maturity is offset by the time value of money. Therefore, the price is affected by 
both factors and strictly depends on which of the two factors is dominant. 
The early exercise of an American put written on an equity underlying that does not pay dividends could be 
valuable. 
 

Let us now consider the general arbitrage relationships with an equity underlying that pays dividends during the 
life of the option. 
 

Property 12 
 

The value of a European call option can never be less than the share price diminished by the present value of 
the strike price and the present value of the dividends paid over the life of the derivative. In mathematical 

notation: 𝐶𝐸(𝑆, 𝜏, 𝐾) ≥ 𝑆𝑡 − 𝐾𝑒
−𝑟𝜏 − 𝐷. 

 

If this relationship were not true, a trader could implement the following strategy: go short on the stock, buy 

the call, and buy zero-coupon bonds for an amount equal to 𝐾𝑒−𝑟𝜏. Such a portfolio would give an immediate 
profit of: 
 

−𝐶𝐸(𝑆, 𝜏, 𝐾) + 𝑆𝑡 − 𝐾𝑒
−𝑟𝜏 − 𝐷 > 0 (Eq. III.27) 

 

𝐷 zero-coupon bonds are sold to pay dividends at the maturity to the buyer of the short position in the stock.  

Then the trader buys back the stock, sells (or exercises) the call, and sells 𝐾 zero-coupon bonds. The pay-off 
of the strategy at maturity is summarized in the following table: 
 

Value at time T 

ST ≤ K ST >K 

We do not exercise the Call 

−𝑆𝑇 + 0 + 𝐾 = 𝐾 − 𝑆𝑇 

We exercise the Call 

−𝑆𝑇 + (𝑆𝑇 − 𝐾) + 𝐾 = 0 
 

 Table III.6 Option Property 12: proof  
 

There can be no losses at time T and therefore the implementation of such a strategy would ensure a certain 
initial minimum profit. Since we have hypothesized the absence of arbitrage opportunities, we reach an 
absurdity. Thereby, the consistency of the relationship has been proved: 
 

𝐶𝐸(𝑆, 𝜏, 𝐾) ≥ 𝑆𝑡 − 𝐾𝑒
−𝑟𝜏 − 𝐷 (Eq. III.28) 

 

Property 13 
 

For American calls, if there is a dividend payment, it may be optimal to exercise the call shortly before its 
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payment. If the following relationship holds just before dividend payment: 𝐾(1 − 𝑒−𝑟𝜏) ≥ 𝐷 then the 
discounted value of the interest that can be earned by investing the strike price is greater than the discounted 
value of the dividends that will be paid during the life of the option. In this case, an American call option will 
not be exercised earlier and its value will be equal to the corresponding European option. Otherwise, it may be 
optimal to exercise the call and therefore its value may be greater compared to the European correspondent. 
 

Property 14 
 

The value of a European put option is never less than the discounted value of the strike price, plus the 
discounted value of the dividends that will be paid during the life of the option, minus the share price. 
 

𝑃𝐸(𝑆, 𝜏, 𝐾) ≥ −𝑆𝑡 + 𝐾𝑒
−𝑟𝜏 + 𝐷 (Eq. III.29) 

 

Property 15 
 

Since an American put option gives its holder the same rights as a European put, plus the possibility of its early 
exercise, it follows that: 
 

𝑃𝑈𝑆(𝑆, 𝜏, 𝐾) ≥ 𝑃𝐸(𝑆, 𝜏, 𝐾) ≥ −𝑆𝑡 + 𝐾𝑒
−𝑟𝜏 +𝐷 (Eq. III.30) 

 

From properties 14 and 15, we can establish the lower and upper bounds for a European put option. 
 

 

 
 

Figure III.19 European Put option boundaries 
 
The put-call parity links the prices of European-style call options with puts having the same strike price and 
the same expiration date. 
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Let us now prove such relationship in the different cases, first for European calls and puts written on an 
underlying equity that does not pay dividends (A), then for European options with an underlying that pays 
known dividends (B). The following step is to consider the relationships between American call and put options 
with an underlying equity with no dividend (C) and known remuneration (D). 
 
 

A. Put-call parity: European Options written on equity without dividends 
 

Let us consider the following portfolio: 
 

- A long position on a stock. 
 

- A short position on a call written on the same share, having a strike price K and a time to expiry equal to 

𝜏=𝑇−𝑡. 
 

- A long position on a put written on the same share, having a strike price K and a time to maturity equal to 

𝜏=𝑇−𝑡. 
 

- Borrowing 𝐾𝑒−𝑟(𝑇−𝑡) through the sale of zero-coupon bonds with a maturity of 𝜏=𝑇−𝑡. 
 

  Current Date 
Expiration Date 

𝑆𝑇 < 𝐾 𝑆𝑇 > 𝐾 

Write Call 𝐶𝐸 0 𝐾 − 𝑆𝑇 

Buy Put −𝑃𝐸 𝐾 − 𝑆𝑇 0 

Buy Stock −𝑆 𝑆𝑇 𝑆𝑇 

Borrow 𝐾𝑒−𝑟(𝑇−𝑡) −𝐾 −𝐾 

Total 𝐶𝐸 − 𝑃𝐸 − 𝑆 + 𝐾𝑒
−𝑟(𝑇−𝑡) 0 0 

 

Table III.7 Put-call parity proof 
 

This strategy gives an amount equal to 𝐶𝐸 − 𝑃𝐸 − 𝑆 + 𝐾𝑒
−𝑟(𝑇−𝑡) at the current date. But, as can be seen from 

the table, the future cash flows at maturity of this portfolio will be zero, regardless of the share price. Here are 
the different outcomes: 
 

- If 𝑆𝑇 = 𝐾 both options expire unexercised, and the gains realized from the sale of the stock exactly repay the 
debt. 

- If 𝑆𝑇 < 𝐾 the put option ends in the money, the call expires unexercised: the share is delivered at the strike 
price of the put and the profits exactly repay the debt. 

- If 𝑆𝑇 > 𝐾 the call option ends in the money, the put expires unexercised: the share is delivered when the call 
is exercised by the counterparty and the profits exactly repay the debt. 
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The reverse position (long a call, write a put, short a stock, and lend money for 𝐾𝑒−𝑟(𝑇−𝑡) will also give a zero 
future cash flow under all circumstances. Consequently, in order to avoid arbitrage opportunities, the initial 
investment should be zero: 
 

𝐶𝐸 − 𝑃𝐸 − 𝑆 + 𝐾𝑒
−𝑟(𝑇−𝑡) = 0 (Eq. III.31) 

 

This equation is known as “put-call parity” for a European option written on an underlying that does not pay 
a dividend. 
 

B. Put-call parity: European Options written on equity with a known dividend 
 

We start by examining the effect of a cash dividend payment on the relationship found in point A. Experience 
shows that the share price level will decrease by an amount equal to the amount paid per share (cash-dividend 
per share). This effect would cause an increase in the put value and a decrease in the call value. Let us consider 
a stock that pays a dividend d1 at time t1 and two portfolios as follows: 
 

Portfolio A includes a share and a put option written on this share with maturity T. 
 

Portfolio B includes a call option written on the share with maturity T, K, a pure discount bond (with face 
value 1) that matures at time T, and d1, a pure discount bond (with face value 1) that matures at time t1 . 

The table below shows the final value of the two portfolios, assuming that the dividend is reinvested at the risk-
free rate. 

 

  Initial Value 
Final Value 

𝑆𝑇 < 𝐾 𝑆𝑇 ≥ 𝐾 

Portfolio A 𝑃𝐸 + 𝑆 𝐾 + 𝑑1 ∙ 𝑒
𝑟(𝑇−𝑡1) 𝑆𝑇 + 𝑑1 ∙ 𝑒

𝑟(𝑇−𝑡1) 

Portfolio B 𝐶𝐸 + 𝐾 ∙ 𝑒
−𝑟(𝑇−𝑡) + 𝑑1 ∙ 𝑒

−𝑟(𝑡1−𝑡) 𝐾 + 𝑑1 ∙ 𝑒
𝑟(𝑇−𝑡1) 𝑆𝑇 + 𝑑1 ∙ 𝑒

𝑟(𝑇−𝑡1) 

 
Table III.8 Put-call parity proof with dividends 

 
The final value of portfolios A and B is the same, regardless of the share price at maturity. Therefore, to avoid 
arbitrage opportunities, the initial values of the two strategies must be equal. 
 

𝑃𝐸 + 𝑆 = 𝐶𝐸 + 𝐾 ∙ 𝑒
−𝑟(𝑇−𝑡) + 𝑑1 ∙ 𝑒

−𝑟(𝑡1−𝑡) (Eq. III.32) 
 

𝐶𝐸 − 𝑃𝐸 − 𝑆 + 𝐾 ∙ 𝑒
−𝑟(𝑇−𝑡) + 𝑑1 ∙ 𝑒

−𝑟(𝑡1−𝑡) = 0 (Eq. III.33) 
 

This relationship can be generalized for a generic number of dividend payments. 
 

Now, let 𝐷 be the sum of the discounted values of all cash dividends paid by the stock during the life of the 
option, the relation can be rewritten as follows: 
 

𝐶𝐸 − 𝑃𝐸 − 𝑆 + 𝐷 + 𝐾 ∙ 𝑒
−𝑟 𝜏 = 0 (Eq. III.34) 
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In other words, the share price is replaced by the difference between its price level and the present value of the 
dividends paid. It should be specified that the relations discussed in points A) and B) can only be applied for 
European-type options. 
 

C. Put-call parity: American Options written on equity without dividend 
 

As stated by Property 8, let us prove that American calls written on an underlying stock that does not pay 
dividends should not rationally be exercised before their maturity. Under these conditions, an American call 
option can be managed like a European one and therefore the considerations made in the previous section are 
valid. In any case, this characteristic does not apply to American put options, for which the convenience of 
being exercised in advance may occur during the life of the option instead. Therefore, the value of an American 
put will be higher than its European equivalent. Thus the existing put-call relationship becomes: 
 

𝐶𝑈𝑆 − 𝑆 + 𝐾𝑒
−𝑟𝜏 ≤ 𝑃𝑈𝑆 ≤ 𝐶𝑈𝑆 − 𝑆 + 𝐾 (Eq. III.35) 

 

This statement can be proved in two steps: first, the right-hand side of the inequality is verified (𝑃𝑈𝑆 ≤ 𝐶𝑈𝑆 −
𝑆 + 𝐾) and secondly we verify the left-hand side (𝑃𝑈𝑆 ≥ 𝐶𝑈𝑆 − 𝑆 + 𝐾𝑒

−𝑟𝜏). 
 

As a first step, let us suppose 𝑃𝑈𝑆 > 𝐶𝑈𝑆 − 𝑆 + 𝐾; in this case, we could sell the put, buy the call, short the 

stock and invest K in risk-free bonds. The initial cash flow (𝑃𝑈𝑆 − 𝐶𝑈𝑆 + 𝑆 − 𝐾) is positive and therefore 
implies an initial profit. At maturity, if the put option is not exercised, the position can be closed according to 
table III.9. On the other hand, if the put were exercised earlier, the K invested in the risk-free bonds would be 
used to buy the put holder's stock and liquidate the short position in the stock. The profit would be equal to 
the price of the call plus the interest on the cash K. This strategy would lead to a risk-free profit, which is in 

contradiction with the hypothesis of no arbitrage opportunities. Therefore, the following is verified: 𝑃𝑈𝑆 ≤
𝐶𝑈𝑆 − 𝑆 + 𝐾. 
 

 𝑆𝑇 < 𝐾 𝑆𝑇 ≥ 𝐾 

Buy the Put −(𝐾 − 𝑆𝑇) 0 

Sell the Call 0 𝑆𝑇 − 𝐾 

Buy the Stock −𝑆𝑇 −𝑆𝑇 

Proceeds from the loan 𝐾𝑒𝑟𝜏 𝐾𝑒𝑟𝜏 

Result 𝐾𝑒𝑟𝜏 − 𝐾 𝐾𝑒𝑟𝜏 − 𝐾 

 
Table III.9 Put-call parity proof with dividends – Step 1 

 
The second step is proved in a similar way, considering the following trading position: we buy a put option, we 
sell a call, and we lend an amount of money equal to the discounted value of the strike price. 
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If 𝑃𝑈𝑆 < 𝐶𝑈𝑆 − 𝑆 + 𝐾 ∙ 𝑒
−𝑟𝜏 then the initial investment would give an initial profit. The call option would not 

be exercised prematurely, since the share does not issue a dividend, and upon expiry, the position would be 
closed as shown in table III.10: 
 

 𝑆𝑇 < 𝐾 𝑆𝑇 ≥ 𝐾 

Sell the Put 𝐾 − 𝑆𝑇 0 

Buy the Call 0 −(𝑆𝑇 −𝐾) 

Sell the Stock 𝑆𝑇 𝑆𝑇 

Pay back the loan −𝐾 −𝐾 

Result 0 0 

 
Table III.10 Put-call parity proof with dividends – Step 2 

 
As a result, we would obtain a risk-free strategy with an initial profit. In order to avoid arbitrage opportunities, 
the following has to be valid: 
 

𝑃𝑈𝑆 ≥ 𝐶𝑈𝑆 − 𝑆 + 𝐾 ∙ 𝑒
−𝑟𝜏 (Eq. III.36) 

 
 

D. Put-call parity: American Options written on equity with dividend 
 

In the case of American options written on dividend-paying stocks, the put-call parity relationship becomes: 
 

𝐶𝑈𝑆 − 𝑆 + 𝐾𝑒
−𝑟𝜏 ≤ 𝑃𝑈𝑆 ≤ 𝐶𝑈𝑆 − 𝑆 + 𝐾 + 𝐷 (Eq. III.37) 

 

Where 𝐷 is the discounted value of the dividends. The upper bound is modified to consider the dividend 
payment, which has a positive effect on the put price. We omit the proof of this last relation because it can be 
proved in a very similar way to case C).  
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Figure III.20 Calls/Puts written on the Euro Stoxx 50 Index (SX5E Index). Center Strike. 
OMON (Option Monitor). Reference Date: 4th January 2023.Source: Bloomberg®   

 
 

 
 

 

Figure III.21 Calls/Puts written on the Euro Stoxx 50 Index (SX5E Index). Moneyness. OMON (Option 
Monitor). Reference Date: 4th January 2023.Source: Bloomberg 
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Figure III.22 Calls/Puts written on the Euro Stoxx 50 Index (SX5E Index). Term Structure. 
OMON (Option Monitor). Reference Date: 4th January 2023.Source: Bloomberg®   

 

 
 

Figure III.23 SX5E 03/17/23 C3950 - Source: Bloomberg® - Reference Date: 4th January 2023
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III.2 PLAIN VANILLA OPTIONS 
 
 

Considering the option properties derived from the application of non-arbitrage principles we come to the 
definition of lower and upper bounds for European and American options prices. If we wish to compute a 
single value that expresses the fair value of the derivative, it is necessary to make additional assumptions though. 
As known, the most popular and applied formula is the Black, Scholes and Merton model (1973), which 
provides an analytical expression for the value of a European call and put option written on a single underlying 
equity. The ideas underlying the option pricing have proved revolutionary in the financial field both at a 
theoretical level and for the important practical implications they have had over the years. Merton and Scholes 
were awarded the Nobel Prize for their outstanding contributions in 1997 (Black had died two years before). 
We also know that the formal proof of the closed valuation formula for European options is based on the 
analytical solution of a partial differential equation (Black-Scholes-Merton’s fundamental PDE) in continuous 
time and under certain assumptions. In this context, we only mention the assumptions and explain the final 
result. The initial assumptions made to derive the traditional Black-Scholes formula (1973) are the following: 
 

- Markets are perfect and continuous over time: a trader can negotiate at any time, there are no transaction costs 
and/or taxes, there are no restrictions on short-selling. 
- There are no arbitrage opportunities. 
- The risk-free rate is constant over the life of the option. 
- The volatility of the price for the underlying asset is constant over time. 
- The changes of the underlying price level follow a lognormal distribution, which implies a normal distribution 
of continuously compounded returns. 
- The underlying asset pays no dividends or cash flows during the life of the option. 
 

In the following years some of these hypotheses were relaxed, obtaining models capable of describing the 
dynamics of the underlying more realistically and with such adjustments, the B&S pricing framework is still 
today the most widespread model for pricing options on different types of underlyings. In accordance with the 
BS framework, the formula for a European call option is: 
 

𝐶𝐸 = 𝑆 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(𝑑2) (Eq. III.38) 
 

 

𝑑1 =
ln (

𝑆
𝐾 ∙ 𝑒−𝑟𝜏

)

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln (
𝑆
𝐾
) + (𝑟 + 𝜎2 2⁄ )𝜏

𝜎√𝜏
; 

 

 𝑑2 = 𝑑1 − 𝜎√𝜏 
 
Where: 
 

𝑆 is the current underlying spot price. 

𝜏 is the Time to maturity for the call option, expressed in years. 
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𝐾 is the Strike price of the call. 

𝜎 is the Annualized volatility of the underlying. 

𝑟 is the Annualized and continuously compounded risk-free rate. 

𝑁(𝑥) is the cumulative probability distribution function for a standard normal variable. 
 

The pricing formula for European put options can be derived using the put-call parity: 
 

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(−𝑑2) − 𝑆 ∙ 𝑁(−𝑑1) (Eq. III.39) 

 

𝑁(𝑥) is thus the area under the standard normal 𝑛(𝑥) up to value 𝑥. 
 

 
 

Figure III.24 Standard Normal Distribution (PDF – Probability Density Function) 
 

The value of 𝑁(𝑥) for a given 𝑥 (𝑥 = 𝑑1) can be estimated using dedicated statistical functions.  
 

𝑁(1.5) = 0.933. 
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Figure III.25 Standard Normal Distribution (CDF – Cumulative Distribution Function) 
 
Example 
 

In accordance with the Black-Scholes pricing framework, estimate the price of an option which has the 
following financial characteristics: 
 

- Stock Price, 𝑆 = EUR 100 

- Exercise price, 𝐾 = EUR 90 

- Interest Rate: 𝑅 = 0.3% p.a. (simple interest rate) 

- Time to Maturity: 3 months, ACT/365. 𝑇 = 90/365 = 0.247 

- Standard deviation of return: 𝜎 = 30% p.a. 

- 𝑟 (continuous compounded rate) = ln(1 + 𝑅) = ln(1 + 0.003) = 0.29955% 
 

𝑑1 =
ln(

𝑆

𝐾∙𝑒−𝑟𝜏
)

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln(
100

90∙𝑒−0.0029955∙0.247
)

0.3∙√0.247
+
1

2
0.3√0.247 = 0.786707  

 

 𝑑2 = 𝑑1 − 𝜎√𝜏 = 0.786707 − 0.3 ∙ √0.247 = 0.637738 
 

 𝑁(𝑑1) = 0.784273; 𝑁(𝑑2) = 0.738178 
 

  𝐶𝐸 = 𝑆 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(𝑑2)= 

 

= 100 ∙ 0.784273 − 90 ∙ 𝑒−0.0029955∙0.247 ∙ 0.738178 = EUR 12.04038  
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Let us examine a market case, based on the following data, as shown in the figure below: 
 

Stock Price, 𝑆 = EUR 0.7511; Exercise price, 𝐾 = EUR 0.7511; Interest Rate: 𝑟 = 2.286% p.a.; Time to 

Maturity: 𝑇 = 90 days (ACT/360) 90/360=0.25 and Historical Volatility: 𝜎 = 72.836% p.a. 
 

 
 

Figure III.26 European Call Option pricing written on a share without a pay-out. Source: Bloomberg® 
 

𝑑1 =
ln(

𝑆

𝐾∙𝑒−𝑟𝜏
)

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln(
0.7511

0.7511∙𝑒−0.02286⋅0.25
)

0.72836∙√0.25
+
1

2
0.72836√0.25 = 0.197606  

 

𝑑2 = 𝑑1 − 𝜎√𝜏 = 0.197606 − 0.72836 ∙ √0.25 = −0.16657  
 

𝑁(𝑑1) = 0.578323; 𝑁(𝑑2) = 0.433853  
 

𝐶𝐸 = 𝑆 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(𝑑2) = 0.7511 ∙ 0.578323 − 0.7511 ∙ 𝑒

−0.02286∙0.25 ∙ 0.433853 =
EUR 0.11  
 

𝑃𝑟𝑖𝑐𝑒[%] =
𝐶𝐸

𝑆𝑝𝑜𝑡
= 14.6%   
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The traditional Black and Scholes formula refers to an underlying equity that does not pay any dividend. We 
now assume that this underlying pays known dividends during the life of the option. Such remuneration will 
be received by the trader who invested directly in the stock, and nothing is paid by the option holder. The idea 
behind the adjustment of the initial formula is to reduce the spot value of the share observed on the market by 
the sum of the discounted values of the expected dividends that will be paid during the life of the derivative: 

𝑆∗ =  𝑆 − ∑ 𝐷𝑖 ∙ 𝑒
−𝑟𝜏𝑖𝐼

𝑖=1  
 

Assuming that there will be 𝐼 dividend payments, the formula becomes: 
 

𝐶𝐸 = (𝑆 − ∑ 𝐷𝑖 ∙ 𝑒
−𝑟𝜏𝑖𝐼

𝑖=1 ) ∙ 𝑁(𝑑1
∗) − 𝐾 ∙ 𝑒−𝑟𝜏 ∙ 𝑁(𝑑2

∗)  (Eq. III.40) 
 

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(−𝑑2

∗) − (𝑆 − ∑ 𝐷𝑖 ∙ 𝑒
−𝑟𝜏𝑖𝐼

𝑖=1 ) ∙ 𝑁(−𝑑1
∗)  (Eq. III.41) 

 

𝑑1
∗ =

ln [
(𝑆 − ∑ 𝐷𝑖 ∙ 𝑒

−𝑟𝜏𝑖𝐼
𝑖=1 )
𝐾 ∙ 𝑒−𝑟𝜏

]

𝜎√𝜏
+
1

2
𝜎√𝜏                 𝑑2

∗ = 𝑑1
∗ − 𝜎√𝜏 

 

𝑡𝑖 is the payment date of dividend 𝑖. 
𝜏 = 𝑇 − 𝑡 is the Time to maturity of the option. 

𝑡 is the Valuation or Reference date. 

𝜏𝑖 = 𝑇 − 𝑡𝑖 represents the time between the ex-dividend date of the 𝑖 -th dividend (in years), 𝑡𝑖 and the maturity 

date 𝑇. 

𝐷𝑖 is the dividend paid at time 𝑡𝑖. 
 

Let us analyze as an example a European call option written on an underlying equity that expires in 3 months 
(30/360). The spot market value is EUR 61.7, the exercise price of the option is EUR 62. Assuming an 
annualized historical volatility of 35% and a continuously compounded risk-free rate of 2%, the fair-value of 
the call is determined in accordance with the BS closed-formula. Here are the data: 
 

Stock Price, 𝑆 = EUR 61.7 

Exercise price, 𝐾 = EUR 62 

Interest Rate: 𝑟 = 2% p.a. 

Time to Maturity: 𝑇 = 0.25 

Historical Volatility: 𝜎 = 35% p.a. 
 
Thus, the following can be calculated: 
 

𝑑1 = 0.088073, 𝑑2 = −0.08693; 𝑁(𝑑1) = 0.535091, 𝑁(𝑑2) = 0.465365 and 𝐶𝐸 = 4.306382. 
 

A financial analyst expects a dividend of € 1.5 in one month (day count 30/360). We wish to determine the 
decrease in the value of the call option. 
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𝑆∗ = 61.7 − 1.5 ⋅ exp (−0.02 ⋅
1

12
) = EUR 60.2025; 𝐾 =EUR 62, 𝑟 = 2% p.a. , 𝑇 = 0.25 and 𝜎 = 35% 

p.a. 
 

𝑑1 = −0.05205, 𝑑2 = −0.22705; 𝑁(𝑑1) = 0.479246, 𝑁(𝑑2) = 0.410194 and 𝐶𝐸
∗ = 3.546624  

 
A similar logic can be applied if the European option is written on an underlying that pays a known and constant 

dividend yield (𝑞). 
 

We can define the Dividend yield as the ratio of dividends paid by the company in the year to the share price. 
 

𝑞 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
 (Eq. III.42) 

 

The key idea is that the payment of a continuous dividend at rate 𝑞 causes the growth rate in the share price to 

be lower than it would have been in the absence of a continuous remuneration of an amount equal to 𝑞. Thus, 

from a financial point of view, an investor holding a stock that pays a continuous dividend yield 𝑞 and that 

grows from 𝑆𝑡 at time 𝑡 to 𝑆𝑇 at time 𝑇 is equivalent to holding a stock that does not pay dividends and which 

increases from 𝑆𝑡 at time 𝑡 to 𝑆𝑇 exp[+𝑞(𝑇 − 𝑡)] at time 𝑇, or, equivalently, from 𝑆𝑡 exp[−𝑞(𝑇 − 𝑡)] at time 

𝑡 to 𝑆𝑇 at time 𝑇. Taking this fact into account, a European option written on a stock with a price 𝑆 that pays 

a continuous dividend 𝑞 has the same value as the corresponding European option written on a stock with a 

price level equal to 𝑆𝑡 exp[−𝑞(𝑇 − 𝑡)] and which pays no dividends. 
 

The traditional set of Black-Scholes framework formulas can be adjusted in this case as follows: 
 

𝐶𝐸 = 𝑆 ∙ 𝑒
−𝑞𝜏 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒

−𝑟𝜏 ∙ 𝑁(𝑑2) (Eq. III.43) 
 

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(−𝑑2) − 𝑆 ∙ 𝑒

−𝑞𝜏 ∙ 𝑁(−𝑑1) (Eq. III.44) 
 

𝑑1 =
ln (

𝑆
𝐾
) + (𝑟 − 𝑞) ∙ 𝜏

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln (
𝑆
𝐾
) + (𝑟 − 𝑞 + 𝜎2 2⁄ )𝜏

𝜎√𝜏
; 𝑑2 = 𝑑1 − 𝜎√𝜏 

 

Where 𝑞 is the continuous dividend yield. 
 

In market practice, this formulation is useful when the precise amount of the dividend and/or the dates on 
which it will be paid is not known and therefore a common approach is to estimate the parameter by looking 
at the historical trend of the share and applying the ratio: 
 

𝑞 = 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑞𝑢𝑜𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑒⁄  (Eq. III.45) 
 
We will now illustrate a market case based on the following data, as shown in the figure: 
 

Stock Price, 𝑆 = EUR 2.0315; Exercise price, 𝐾 = EUR 2.20; Interest Rate: 𝑟 = 3.172% p.a.; Historical 

Volatility: 𝜎 = 42.774% p.a.; Time to Maturity: 𝑇 = 360 days (ACT/365) 360/365=0.9863 and Dividend 

Yield: 𝑞 = 3.418% p.a. 
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Figure III.27 European Put Option pricing written on a share with a pay-out. Source: Bloomberg® 
 
We can proceed and calculate: 
 

𝑑1 =
ln(

𝑆

𝐾
)+(𝑟−𝑞+𝜎2 2⁄ )𝜏

𝜎√𝜏
=

ln(
2.0315

2.20
)+(0.03172−0.03418+0.427742 2⁄ )0.9863

0.42774√0.9863
= 0.231511  

 

𝑑2 = 𝑑1 − 𝜎√𝜏 = 0.231511 − 0.42774 ∙ √0.9863 = −0.19329  
 

𝑁(−𝑑1) = 0.408459,   𝑁(−𝑑2) = 0.576634  
 

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(−𝑑2) − 𝑆 ∙ 𝑒

−𝑞𝜏 ∙ 𝑁(−𝑑1) =  
 

      = 2.20 ∙ 𝑒−0.03172∙0.9863 ∙ 0.576634 − 2.0315 ∙ 𝑒−0.03418∙0.9863 ⋅ 0.408459 = EUR 0.427   
 
A call option on a stock index would give its holder the right (but not the obligation) to buy the stock index 
(underlying asset) by a certain date and for a specified price. On the other hand, a put option on a stock index 
would give its holder the right (but not the obligation) to sell the index by a certain date and at the agreed price. 
Since an index is not physically deliverable, a cash settlement must be performed. 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

187 

Consequently, the main difference between calls written on indices and calls written on an equity underlying is 
the settlement procedure: 
 

- The holder of an in-the-money call option on a single share could receive a given number of shares (depending 
on the contract size) against payment of a strike price, while the holder of an in-the-money call on a stock index 
would receive the difference between the index value and the strike price, multiplied by the contract size. 
 

- The holder of an in-the-money put option on a single share could deliver a given number of shares (depending 
on the contract size) against payment of a strike price, while the holder of an in-the-money put on a stock index 
would pay the difference between the strike price and the value of the index, multiplied by the contract size. 
 

Thus, an option written on a stock index can be priced as an option written on a dividend paying stock where 
the index takes the role of the share. The formula for a European stock index option is given by: 
 

𝐶𝐸 = (𝑆 − ∑ ∑ 𝐷𝑗,𝑖 ∙ 𝑒
−𝑟𝜏𝑗,𝑖𝐼

𝑖=1
𝐽
𝑗=1 ) ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒

−𝑟𝜏 ∙ 𝑁(𝑑2)  (Eq. III.46) 
 

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(−𝑑2) − (𝑆 − ∑ ∑ 𝐷𝑗,𝑖 ∙ 𝑒

−𝑟𝜏𝑗,𝑖𝐼
𝑖=1

𝐽
𝑗=1 ) ∙ 𝑁(−𝑑1) (Eq. III.47) 

 

𝑑1 =

ln [
(𝑆 − ∑ ∑ 𝐷𝑗,𝑖 ∙ 𝑒

−𝑟𝜏𝑗,𝑖𝐼
𝑖=1

𝐽
𝑗=1 )

𝐾 ∙ 𝑒−𝑟𝜏 ]

𝜎√𝜏
+
1

2
𝜎√𝜏                 𝑑2 = 𝑑1 − 𝜎√𝜏 

 

𝐶𝐸 (/𝑃𝐸) is the price of the European call(/put) on date 𝑡. 
𝑆 is the price of the index on date 𝑡.  
𝜎 is the standard deviation of the instantaneous returns of the stock index. 

𝐷𝑗,𝑖 is the dividend paid at time 𝑡𝑖 by company 𝑗 . 

𝜏𝑗,𝑖  is the time between the payment date 𝑡𝑖 of company 𝑗 and the maturity date. 
 

Similarly to options written on dividend-paying stocks, the assumption of a continuous dividend yield is also 
often made for indices. Under this consideration, the pricing formulas become: 
 

𝐶𝐸 = 𝑆 ∙ 𝑒
−𝑞𝜏 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒

−𝑟𝜏 ∙ 𝑁(𝑑2) (Eq. III.48) 
 

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(−𝑑2) − 𝑆 ∙ 𝑒

−𝑞𝜏 ∙ 𝑁(−𝑑1) (Eq. III.49) 
 

𝑑1 =
ln (

𝑆
𝐾) + (𝑟 − 𝑞) ∙ 𝜏

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln (
𝑆
𝐾) +

(𝑟 − 𝑞 + 𝜎2 2⁄ )𝜏

𝜎√𝜏
;   𝑑2 = 𝑑1 − 𝜎√𝜏 

 

Where 𝑞 is the continuous dividend yield. 
 
Let us now make an example, considering a European call option written on an index. The current value of the 
underlying is 700 and the strike price is 750. The continuously compounded risk-free rate is 1% p.a., the 
volatility of the equity index is 30% p.a. 
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The option will expire in 2 months and the expected dividend yield over that period is 0.33%. In short, the 
input parameters are: 
 

𝑆 = 700; 𝐾 = 750; 𝜏 = 0.1667; 𝜎 = 30%; 
 

𝑞 = 1.98%  (0.33% in 2 months, which means 1.98% per annum under a simple compounding regime); 
 

𝑟 = 1%. 
 

After implementing the calculations, here are the output parameters: 
 

𝑑1 =
ln(

𝑆

𝐾
)+(𝑟−𝑞)∙𝜏

𝜎√𝜏
+
1

2
𝜎√𝜏 = −0.51536    𝑑2 = 𝑑1 − 𝜎√𝜏 = −0.6379 

 

𝑁(𝑑1) = 0.30315 𝑁(𝑑2) = 0.26179 
 

𝐶𝐸 = 𝑆 ∙ 𝑒
−𝑞𝜏 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒

−𝑟𝜏 ∙ 𝑁(𝑑2) = 15.4903  
 
We now proceed with a real market case based on the following data as shown in the below figure: 
 

Stock Price, 𝑆 = USD 3828.04  
 

Exercise price, 𝐾 = USD 3828.04  
 

Interest Rate: 𝑟 = 4.604% p.a. 
 

Time to Maturity: 𝑇 = 90 days (ACT/365) 90/365=0.24657 
 

Implied Volatility: 𝜎 = 22.417% p.a. 
 

Dividend Yield: 𝑞 = 1.876% p.a. 
 

𝑑1 =
ln(

𝑆

𝐾
)+(𝑟−𝑞)∙𝜏

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln(
3828.04

3828.04
)+(0.04604−0.01876)∙0.24657

0.22417√0.24657
+
1

2
0.22417√0.24657 = 0.1160858   

 

𝑑2 = 𝑑1 − 𝜎√𝜏 = 0.1160858 − 0.22417√0.24657 = 0.0047712  
 

𝑁(𝑑1) = 0.546208,   𝑁(𝑑2) = 0.501903  

 
𝐶𝐸 = 𝑆 ∙ 𝑒

−𝑞𝜏 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(𝑑2) =  

 

= 3828.04 ∙ 𝑒−0.01876∙0.24657 ∙ 0.546208 − 3828.04 ∙ 𝑒−0.04604∙0.24657 ⋅ 0.501903 = USD 181.64   
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Figure III.28 European Call Option pricing written on an Equity index. Source: Bloomberg® 
 
The traditional log-normal pricing framework can easily be extended to the valuation of options written on 
futures contracts. When applying the cost-of-carry model, futures contracts can be treated as assets that pay a 
dividend equal to the risk-free rate. Thus, an option on a futures contract can be financially modelled as an 

option on a stock that pays a continuous dividend yield, where the price of the futures (𝐹) takes the place of 

the stock price level and the ongoing dividend yield equals the risk-free rate (𝑞 = 𝑟). 
For European options and under the hypothesis of use of this valuation framework, the pricing formula (called 
Black model) becomes: 
 

𝐶𝐸 = 𝐹 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒

−𝑟𝜏 ∙ 𝑁(𝑑2) = 𝑒
−𝑟𝜏 [𝐹 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑁(𝑑2)]  (Eq. III.50) 

 

𝑃𝐸 = 𝑒
−𝑟𝜏 [𝐾 ∙ 𝑁(−𝑑2) − 𝐹 ∙ 𝑁(−𝑑1)]  (Eq. III.51) 

 

𝑑1 =
ln(

𝐹

𝐾
)

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln(
𝐹

𝐾
)+(𝜎2 2⁄ )𝜏

𝜎√𝜏
    𝑑2 = 𝑑1 − 𝜎√𝜏 

 
Let us consider the example of a European ATM (at-the-money) put option written on a futures contract. 
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Assuming the time to expiry equal to 4 months, the current price of the Futures is USD 15. The continuously 
compounded risk-free rate is 2% p.a. and the futures price volatility is 30% p.a. 
 

In short, the input parameters are: 
 

𝐹 = USD 15  
 

𝐾 = USD 15 (given that the option is At-The-Money: 𝐹 = 𝐾) 
 

𝑟 = 2%  
 

𝜎 = 30%  
 

After the calculations, here is the output: 
 

𝑑1 =
ln(

𝐹

𝐾
)

𝜎√𝜏
+
1

2
𝜎√𝜏 =

1

2
𝜎√𝜏 = 0.086603, 𝑁(−𝑑1) = 0.465494 

 

𝑑2 = 𝑑1 − 𝜎√𝜏 =
1

2
𝜎√𝜏 − 𝜎√𝜏 = −0.086603, 𝑁(−𝑑2) = 0.534506 

 

𝑃𝐸 = 𝑒
−𝑟𝜏 [𝐾 ∙ 𝑁(−𝑑2) − 𝐹 ∙ 𝑁(−𝑑1)] = 1.02831  

 
Let us now present a market case based on the data shown hereafter and in the figure below: 
 

Future Price, 𝐹 = USD 838.375  
 

Exercise price, 𝐾 = USD 838.375  
 

Interest Rate: 𝑟 = 4.663% p.a. 
 

Time to Maturity: 𝑇 = 110 days (ACT/365) 110/365=0.30137 
 

Implied Volatility: 𝜎 = 29.624% p.a. 
 

𝑑1 =
ln(

𝐹

𝐾
)

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln(
838.375

838.375
)

0.29624√0.30137
+
1

2
0.29624√0.30137 = 0.167725, 

 

𝑁(−𝑑1) = 0.4334  
 

𝑑2 = 𝑑1 − 𝜎√𝜏 = 0.167725 − 0.29624√0.30137 = 0.005098, 
 

𝑁(−𝑑2) = 0.497966  
 

𝑃𝐸 = 𝑒
−𝑟𝜏 [𝐾 ∙ 𝑁(−𝑑2) − 𝐹 ∙ 𝑁(−𝑑1)] = 𝑒

−0.04663⋅0.30137 [838.375 ∙ 0.497966 − 838.375 ∙ 0.4334] = 
 

      = 53.3756  
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Figure III.29 European Call Option pricing written on a Futures contract. Source: Bloomberg® 
 
The Black Scholes model can be extended to the valuation of European options written on a foreign currency,  
since a foreign currency can be represented as an asset that pays a continuous dividend equal to the risk-free 
rate of the foreign currency. Therefore, a foreign currency option can be priced as an option on a stock paying 
a known, continuous and constant dividend where the value of the foreign currency (the exchange rate) plays 
the role of the share price and its current dividend yield equals the foreign currency risk-free rate. 
 

The resulting pricing formula for European currency options, also called Garman-Kohlhagen model, is: 
 

𝐶𝐸 = 𝑆 ∙ 𝑒
−𝑟𝐹𝑂𝑅𝜏 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒

−𝑟𝜏 ∙ 𝑁(𝑑2) (Eq. III.52) 
  

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(−𝑑2) − 𝑆 ∙ 𝑒

−𝑟𝐹𝑂𝑅𝜏 ∙ 𝑁(−𝑑1)  (Eq. III.53) 
 

𝑑1 =
ln(

𝑆

𝐾
)+(𝑟−𝑟𝐹𝑂𝑅)∙𝜏

𝜎√𝜏
+
1

2
𝜎√𝜏 =

ln(
𝑆

𝐾
)+(𝑟−𝑟𝐹𝑂𝑅+𝜎

2 2⁄ )𝜏

𝜎√𝜏
 ; 𝑑2 = 𝑑1 − 𝜎√𝜏 

 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

192 

Where: 
 

𝑆 is the current exchange rate. 

𝑟𝐹𝑂𝑅 is the continuously compounded foreign risk-free rate. 

𝜎 is the annualized volatility of the exchange rate. 

𝑟 is the continuously compounded domestic risk-free rate. 
 
We now describe an example, considering a European USD-call/EUR-put option with six months to 
expiration. The USD/EUR exchange rate is 1.56, the strike is 1.6, the domestic risk-free interest rate in EUR 
is 8% per year, the foreign risk-free interest rate in USD is 6% per year and the volatility is 12% per year. Here 
are the calculations: 
 

𝑆 = 1.56, 𝑋 = 1.6, 𝑇 = 0.5, 𝑟 = 0.06, 𝑟𝐹𝑂𝑅 = 0.08 and 𝜎 = 0.12 
 

𝑑1 =
ln(

𝑆

𝐾
)+(𝑟−𝑟𝐹𝑂𝑅+𝜎

2 2⁄ )𝜏

𝜎√𝜏
=

ln(
1.56

1.6
)+(0.06−0.08+0.122 2⁄ )0.5

0.12√0.5
= −0.3738,  𝑁(𝑑1) = 𝑁(−0.3738) = 0.3543 

 

𝑑2 = −0.3738 − 0.12√0.5 = −0.4587, 𝑁(𝑑2) = 𝑁(−0.4587) = 0.3232 
 

𝐶𝐸 = 𝑆 ∙ 𝑒
−𝑟𝐹𝑂𝑅𝜏 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒

−𝑟𝜏 ∙ 𝑁(𝑑2) = 1.56 ∙ 𝑒
−0.08⋅0.5 ∙ 0.3543 − 1.6 ∙ 𝑒−0.06⋅0.5 ∙ 0.3232 =

      = 0.0291   
 

The option premium is thus 0.0291 USD per EUR. Alternatively, the premium can be quoted in EUR per USD 
0.0291/1,562=0.012 – or as percentage of the spot, 0.0291/1.56=1.8654% of EUR (or the spot price). 
 

Hence, if the option has a notional of EUR 100 million, the total option premium is EUR 1,865,384.62 or 
1,865,384.62 x 1.56 = USD 2,910,000.00. 
 

 
The most common options on interest rates are caps and floors. An interest rate cap consists of a series of 
European call options, called caplets, and each caplet can be priced using an analytical formula derived by the 
Black-Scholes framework (Modified Black-76 Formula). This extension may be possible using the implicit 

forward rate (𝐹) calculated at each maturity of the caplet (𝑇) or at each re-fixing of the interest rate. The fair 
value of the option is therefore calculated as the sum of the caplets premiums which constitute the cap. A 
completely similar logic can be applied to the fair value estimation of the price of a floor, which can be broken 
down into a sum of individual European put options (or floorlets). 
 

𝐶𝑎𝑝 𝑉𝑎𝑙𝑢𝑒 = ∑ 𝐶𝑎𝑝𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒𝑖
𝑛
𝑖=1   (Eq. III.54) 

 

𝐶𝑎𝑝𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 =
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙×

𝜏

𝐵𝑎𝑠𝑖𝑠

1+𝐹𝑊𝐷
𝜏

𝐵𝑎𝑠𝑖𝑠

× 𝐵𝑙𝑎𝑐𝑘76 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒  (Eq. III.55) 

 

𝐵𝑙𝑎𝑐𝑘76 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 = 𝑒−𝑟𝑇[𝐹 𝑁(𝑑1) − 𝐾 𝑁(𝑑2)]  (Eq. III.56) 
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𝐹𝑙𝑜𝑜𝑟 𝑉𝑎𝑙𝑢𝑒 = ∑ 𝐹𝑙𝑜𝑜𝑟𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒𝑖
𝑛
𝑖=1   (Eq. III.57) 

 

𝐹𝑙𝑜𝑜𝑟𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 =
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙×

𝜏

𝐵𝑎𝑠𝑖𝑠

1+𝐹𝑊𝐷
𝜏

𝐵𝑎𝑠𝑖𝑠

× 𝐵𝑙𝑎𝑐𝑘76 𝑃𝑢𝑡 𝑉𝑎𝑙𝑢𝑒  (Eq. III.58) 

 

𝐵𝑙𝑎𝑐𝑘76 𝑃𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝑒−𝑟𝑇[𝐾 𝑁(−𝑑2) − 𝐹 𝑁(−𝑑1)]  (Eq. III.59) 
 

With 𝑑1 =
ln(

𝐹

𝐾
)+(

𝜎2

2
)𝑇

𝜎√𝑇
   and  𝑑2 =

ln(
𝐹

𝐾
)−(

𝜎2

2
)𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇  

 
Where: 
 

𝜏 is the number of days included in the forward rate (tenor). 

𝐵𝑎𝑠𝑖𝑠 is the number of days in a year according to the convention applied by the market. 

𝐾 is the strike price of the option. 

𝑒−𝑟𝑇 is the discount factor calculated starting from the continuously compounded zero-rate to be applied for 

maturity 𝑇. 

𝑁(𝑥) is the standard normal cumulative distribution computed in 𝑥. 

𝜎 is the Black volatility of the forward rate. 
 

This model, together with all the other analytical formulas for evaluating options deriving from the Black-
Scholes framework, has had a considerable diffusion in the world of quantitative finance. All the formulas we 
have examined have been implemented for evaluating vanilla options in all the evaluation modules of the main 
market platforms, such as Bloomberg and Reuters and in the main OTC derivatives management softwares. 
 

In recent years, two relevant questions have arised: is the Black76 model still valid in a low-rates environment? 

And what is the main problem associated with the log-normal model if the forward rate 𝐹 is negative? 
 

We will start our dissertation with an example. We wish to calculate the value of a caplet written on a semi-
annual forward rate, expiring exactly in six months and with a notional amount of EUR 100 million. We assume 
for our calculation that the forward rate implied by the EURIBOR 6 months term structure is 2%, the exercise 
price is 2%, the risk-free rate is 1% and the annualized volatility of the underlying is 25%. 
 

𝐵𝑎𝑠𝑖𝑠=360 days, 𝜏=180 days, 𝐹=2%, 𝐾=2%, 𝑟=1%, 𝜎=25%, 𝑇 = 0.5, 𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙= EUR 100,000,000. 
 

𝑑1 =
ln(

𝐹

𝐾
)+(

𝜎2

2
)𝑇

𝜎√𝑇
= 0.088388   , 𝑑2 = 𝑑1 − 𝜎√𝑇 = −0.088388 

 

𝑁(𝑑1) = 0.535216 e 𝑁(𝑑2) = 0.464784  
 

𝐵𝑙𝑎𝑐𝑘76 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 = 𝑒−𝑟𝑇[𝐹 𝑁(𝑑1) − 𝐾 𝑁(𝑑2)] = 0.001401614  
 

𝐶𝑎𝑝𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 =
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙×

𝜏

𝐵𝑎𝑠𝑖𝑠

1+𝐹𝑊𝐷
𝜏

𝐵𝑎𝑠𝑖𝑠

× 𝐵𝑙𝑎𝑐𝑘76 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 = EUR 69,386.82848  
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Let us now review another case, where we wish to price a cap written on a bullet notional amount of USD 
10,000,000. The derivative is evaluated on 30th June 2021 and it is “forward start”, i.e. the protection of the 
rate begins from 30th September 2021 and lasts five years, consequently the maturity date is on 30th September 
2026. Given the quarterly payments, the benchmark parameter has the same tenor, i.e. the 3-month USD Libor, 
or US0003M Index on the Bloomberg platform. 
 

The customer wants to protect against a rise of the interest rate over 0.5%, which is then the Strike price for all 
the 20 caplets (X = 0.005). Considering an ACT/360 convention, the Basis is equal to 360 and the ti are the 
exact number of days included in the forward rate (considering that the fixing takes place two days before the 
payment dates). 
 

The maturity dates for each caplet are shown in the second column of the Table III.12. 
The payment dates are the dates on which cash flows are paid out. They are useful for calculating the maturity 
of each caplet expressed in year fractions, T. They are summarized in the third column of the Table III.12. 
 

The zero rates interpolated from the risk free term structure (r) denominated in USD are used for the estimation 
of the discount factors to be applied at each payment date T and for the forward rates computation. 
 

The interest rates of the 3-month USD swap curve have been reported below. The interpolated zero-rates used 
for pricing the caplets are reported in the fourth column of Table III.12 
 

 

Term Type Maturity Market Rates Zero Rates Discount Fact. 

EDU1 Futures 09/13/21 0.1396 0.1444 0.9993 

3 MO Cash Rates 09/30/21 0.1458 0.1478 0.9996 

EDZ1 Futures 12/13/21 0.2038 0.1663 0.9988 

EDH2 Futures 03/14/22 0.1978 0.1751 0.9983 

EDM2 Futures 06/13/22 0.2663 0.1959 0.9676 

EDU2 Futures 09/19/22 0.3595 0.2243 0.9967 

EDZ2 Futures 12/19/22 0.5126 0.2641 0.9955 

2 YR Swap 06/30/23 0.3284 0.3279 0.9934 

3 YR Swap 06/30/24 0.5711 0.5708 0.983 

4 YR Swap 06/30/25 0.793 0.7946 0.9687 

5 YR Swap 06/30/26 0.965 0.9691 0.9526 

6 YR Swap 06/30/27 1.1054 1.1125 0.9353 
 

Table III.11 Interest rates term structure 
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Caplet Start Date End Date 
Zero Rate 

r[%] 
Forward Rates 

F[%] 
Black Volatility 

[%] 
Bachelier Volatility 

[bps] 

1 09/28/21 12/31/21 0.168 0.188 100.35 49.28 

2 12/29/21 03/31/22 0.179 0.201 100.35 49.28 

3 03/29/22 06/30/22 0.201 0.266 100.35 49.28 

4 06/28/22 09/30/22 0.229 0.341 100.35 49.28 

5 09/28/22 12/30/22 0.268 0.461 92.37 49.18 

6 12/28/22 93/31/23 0.298 0.479 84.3 49.07 

7 03/29/23 06/30/23 0.328 0.539 76.24 48.97 

8 06/28/23 09/29/23 0.388 0.867 68.17 48.86 

9 09/27/23 12/29/23 0.449 0.994 67.45 51.18 

10 12/27/23 03/28/24 0.508 1.114 66.9 53.54 

11 03/26/24 06/28/24 0.569 1.235 66.36 55.89 

12 06/26/24 09/30/24 0.627 1.302 65.8 58.28 

13 09/26/24 12/31/24 0.684 1.413 65.38 59.66 

14 12/27/24 03/31/25 0.739 1.525 64.97 61.01 

15 03/27/25 06/30/25 0.795 1.636 64.56 62.33 

16 06/26/25 09/30/25 0.839 1.546 64.15 63.67 

17 09/26/25 12/31/25 0.883 1.626 63.96 64.56 

18 12/29/25 03/31/26 0.926 1.714 63.77 65.46 

19 03/27/26 06/30/26 0.969 1.8 63.6 66.3 

20 06/26/26 09/30/26 1.005 1.73 63.42 67.17 

 
Table III.12 Caplets market data. Source: Bloomberg® 

 
Analysts generally use the implied volatility quoted on the market. It is called implied because it has been derived  
from the listed options premiums. When the price is known, it is possible to apply a numerical inversion of the 
Black formula through a Newton-Raphson algorithm. 
 

Let us observe the section of the surface closest to the relevant strike in the first row of the Implied Volatility 
Table below. We notice some market imperfections associated to these contributions, and the main cause for 
them can be found observing that the level of interest rates in 2021 was very low in America.  

This negatively impacted the computation of the logarithm in auxiliary variable 𝑑1 when the solver routine was 
performed by the info-provider for calculating the implied volatility. 
 

Interpolating the 3 month USD forward volatilities along the only available strike of 1%, we can compute a 

proxy of the 𝜎 to be used for each caplet. The market implied volatility surface has been reported in the 

following figure. The interpolated Black 𝜎 used for pricing the caplets have been reported in the Table III.12 . 
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Volatility/Tenor Strike 1Y 2Y 3Y 4Y 5Y 6Y 

Black[%] 1% 100.35 67.99 65.78 64.14 63.41 62.46 

Bachelier[bps] 0.50% 49.28 48.86 58.36 63.71 67.2 69.28 

 
Table III.13 Implied volatilities using a normal (Bachelier) and a log-normal (Black) model 

 

 
 
Figure III.30 Black Log-Normal Volatility [%] versus Normal Implied Volatility [bps]. Source: Bloomberg® 
 
The gap in the Black market implied volatilities between the first and the second year, caused by the low-rates 
recorded on American markets, is evident. The main info providers, among them Bloomberg®, actually 
announced in the summer 2020, they would change the valuation model switching from the traditional well 
established Black 76 model to the Bachelier (also known as Normal) model. This change had already happened 
in the Euro Area in 2015 when the first negative rates started to appear on the European financial markets. The 
main concept is to model the underlying of the option using an Arithmetic instead of a Geometric Brownian 
motion. Such assumption allows to handle low and negative rates, as shown in the following equation, as the 
logarithmic term is no longer there. 
 

𝐶𝑎𝑝𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 =
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙×

𝜏

𝐵𝑎𝑠𝑖𝑠

1+𝐹𝑊𝐷
𝜏

𝐵𝑎𝑠𝑖𝑠

× 𝐵𝑎𝑐ℎ𝑒𝑙𝑖𝑒𝑟 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒  (Eq. III.60) 

 

𝐵𝑎𝑐ℎ𝑒𝑙𝑖𝑒𝑟 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 = 𝑒−𝑟𝑇[(𝐹 − 𝑋) 𝑁(𝑑) + 𝜎√𝑇𝑛(𝑑)]  (Eq. III.61) 

𝐹𝑙𝑜𝑜𝑟𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 =
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙×

𝜏

𝐵𝑎𝑠𝑖𝑠

1+𝐹𝑊𝐷
𝜏

𝐵𝑎𝑠𝑖𝑠

× 𝐵𝑎𝑐ℎ𝑒𝑙𝑖𝑒𝑟 𝑃𝑢𝑡 𝑉𝑎𝑙𝑢𝑒  (Eq. III.62) 
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𝐵𝑎𝑐ℎ𝑒𝑙𝑖𝑒𝑟 𝑃𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝑒−𝑟𝑇[(𝑋 − 𝐹) 𝑁(−𝑑) + 𝜎√𝑇𝑛(𝑑)]  (Eq. III.63) 

 

With: 𝑑 =
𝐹−𝑋

𝜎√𝑇
 and 𝑛(𝑥) is the probability density function for a standard normal distribution. 

 

𝑛(𝑑) =
1

√2𝜋
exp (−

𝑑2

2
) (Eq. III.64) 

 

The change of the model leads to different implied volatility quotations, which are now expressed not in 
percentage but in basis points (bps). Given that the evident volatility bias in the estimation of the first eight 
caplets (i.e. the options which mature before two years) is no longer present, we can consider applying this 
pricing model for having a fairer theoretical valuation for the cap. The implied forward normal volatilities term 
structure is reported in the second row of the “Implied Volatility Table” above, and this time there is also the 
proper strike in the surface, that is 0.5% allowing a better estimation of the twenty options on the short rate, 

US0003M Index. The Bachelier 𝜎 used for pricing are reported in the last column of the Table III.12. 
 
At this point, we have all the market inputs for pricing all the caplets through the two interest rates pricing 
models. We report here the valuation of the seventh caplet, i.e., the call option written on the US003M forward 
that starts on 29th March 2023 and matures on the expiration date of the cap, on 30th June 2023. 
 

Here is the valuation of the 7th caplet applying the Black model: 
 

𝐵𝑎𝑠𝑖𝑠=360 days, 𝜏= 30 June 2023 − 29 March 2023 = 93 days, 𝐹=0.539%, 𝐾=0.5%, 𝑟=0.328%, 
 

𝑇 =
29 March 2023−Valuation Date

360
= 1.769 𝜎𝐵𝑙𝑎𝑐𝑘=76.24%, 𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙= USD 10,000,000  

 

𝑑1 =
ln(

𝐹

𝐾
)+(

𝜎2

2
)𝑇

𝜎√𝑇
=

ln(
0.00539

0.005
)+(

0.76242

2
)⋅1.769

0.7624√1.769
= 0.58216   

 

𝑑2 = 𝑑1 − 𝜎√𝑇 = 0.58216 − 0.7624√1.769 = −0.434386  
 

𝑁(𝑑1) = 0.719769  
 

𝑁(𝑑2) = 0.332004  
 

𝐵𝑙𝑎𝑐𝑘76 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 = 𝑒−𝑟𝑇[𝐹 𝑁(𝑑1) − 𝐾 𝑁(𝑑2)] =  

                                        = 𝑒−0.00328⋅1.769 ⋅ [0.00539 ⋅  0.719769 − 0.005 ⋅ 0.332004] = 0.002207  
 

𝐶𝑎𝑝𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 =
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙×

𝜏

𝐵𝑎𝑠𝑖𝑠

1+𝐹𝑊𝐷
𝜏

𝐵𝑎𝑠𝑖𝑠

× 𝐵𝑙𝑎𝑐𝑘76 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 =
10,000,000×

93

360

1+0.00539
93

360

× 0.002207 = USD 5692.70   

 
Here is the same valuation applying the Bachelier model: 
 

𝐵𝑎𝑠𝑖𝑠=360 days, 𝜏= 30 June 2023 − 29 March 2023 = 93 days, 𝐹=0.539%, 𝐾=0.5%, 𝑟=0.328%,  
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𝑇 =
29 March 2023−Valuation Date

360
= 1.769,  

𝜎𝑁𝑂𝑅𝑀=48.97 bps=
48.97

10000
=0.004897, 

 

𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙= USD 10,000,000 
 

𝑑 =
𝐹−𝑋

𝜎√𝑇
=

0.00539−0.005

0.004897√1.769
= 0.0598785   

 

𝑁(𝑑) = 0.52387378  
 

𝑛(𝑑) = 0.39822773  
 

𝐵𝑎𝑐ℎ𝑒𝑙𝑖𝑒𝑟 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 = 𝑒−𝑟𝑇[(𝐹 − 𝑋) 𝑁(𝑑) + 𝜎√𝑇𝑛(𝑑)]  =  
 

𝑒−0.00328⋅1.769 ⋅ [(0.00539 − 0.005) ⋅  0.52387378 + 0.004897 ⋅ √1.769 ⋅ 0.39822773] = 0.002782  
 

𝐶𝑎𝑝𝑙𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 =
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙×

𝜏

𝐵𝑎𝑠𝑖𝑠

1+𝐹𝑊𝐷
𝜏

𝐵𝑎𝑠𝑖𝑠

× 𝐵𝑎𝑐ℎ𝑒𝑙𝑖𝑒𝑟 𝐶𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 =
10,000,000×

93

360

1+0.00539
93

360

× 0.002782 = USD  7,176.47   

 
 

 
 

Figure III.31 SWPM module > Products > Options > Cap. Source: Bloomberg® 
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Applying iteratively the two pricing formulas, we obtain the theoretical price for each caplet. The sum of these 
20 values then gives the cap price. In accordance with the Black log-normal model the cap is worth USD 
344,052, while using the Bachelier Normal model its price is USD 360,294.  
 

We compare these results using the Bloomberg® module and obtain a very close result. The spread over the 
benchmark parameter can easily be taken into consideration adding this quantity to the implied forward rates. 
 

Considering the traditional formula proposed by Black-Scholes for European options: 
 

𝐶𝐸 = 𝑆 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒
−𝑟𝑇 ∙ 𝑁(𝑑2) 

 

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝑇 ∙ 𝑁(−𝑑2) − 𝑆 ∙ 𝑁(−𝑑1) 

 

𝑑1 =
ln (

𝑆
𝐾 ∙ 𝑒−𝑟𝑇

)

𝜎√𝜏
+
1

2
𝜎√𝑇 =

ln (
𝑆
𝐾
) + (𝑟 + 𝜎2 2⁄ )𝑇

𝜎√𝑇
; 𝑑2 = 𝑑1 − 𝜎√𝑇 

 

A sensitivity analysis of the price can be implemented to assess how the price changes in function of the 
variation of one of the parameters. 
 

The input data are the following: S=50, K=55, T=0.5, r=5%, σ=30%. 
 

In accordance with the BS framework, the price of a European call option is 𝐶𝐸 = 2.7935 and the theoretical 

fair value of a put option is 𝑃𝐸 = 6.4356. 
 

 
 

Figure III.32 European Call Price change as the spot varies. Input: S=1:100, K=55, T=0.5, r=5%, σ=30% 
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Figure III.33 European Put Price change as the spot varies. Input: S=1:100, K=55, T=0.5, r=5%, σ=30% 
 

 
 
Figure III.34 European Call Price change as the strike varies. Input: S=50, K=1:100, T=0.5, r=5%, σ=30% 
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Figure III.35 European Put Price change as the strike varies. Input: S=50, K=1:100, T=0.5, r=5%, σ=30% 
 

 
 

Figure III.36 European Call Price change as the Time to Maturity varies. Input: S=50, K=55, T =1 month 
to 1 year, r=5%, σ=30% 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

202 

 
 

Figure III.37 European Put Price change as the Time to Maturity varies. Input: S=50, K=55, T =1 month to 
1 year, r=5%, σ=30% 

 

 

Figure III.38 European Call Price change as the risk-free rate varies. Model Input: S=50, K=55, T=0.5, 
r=0.5%:10%, σ=30% 
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Figure III.39 European Put Price change as the risk-free rate varies. Model Input: S=50, K=55, T=0.5, 
r=0.5%:10%, σ=30% 

 

 

Figure III.40 European Call Price change as the volatility varies. Model Input: S=50, K=55, T=0.5, r=5%, 
σ=1%:100% 
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Figure III.41 European Put Price change as the volatility varies. Model Input: S=50, K=55, T=0.5, r=5%, 
σ=1%:100% 

 

From the what-if analyses conducted in accordance with the Black-Scholes-Merton pricing framework, the 
following relationships between the variables can be deduced (ceteris paribus): 

- As the price level of the underlying increases, the value of a European call increases, while the value of a put 
decreases. 

- As the strike price increases, the value of a European call decreases, while the value of a put increases. 

- As the volatility of the underlying on which a European option is written increases, its value increases. 

- As the risk-free rate increases, the value of a European call increases, while the value of a put decreases. 

The sensitivity analysis of the options premium with respect to a significant pricing parameter (for example: S, 
K, r, T, σ) can be managed in a more complete way by calculating the partial derivatives of the price with respect 
to one of the inputs. 

These quantities representing the sensitivities are called “Greeks” in the financial jargon and here is a brief 
description of them: 
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Delta measures the sensitivity of the option price to a small change in the price level of the underlying: 

Δ =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑎𝑠𝑠𝑒𝑡
 (Eq. III.65) 

Gamma measures the sensitivity of the Delta to a small change in the price level of the underlying: 

Γ =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑒𝑙𝑡𝑎

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑎𝑠𝑠𝑒𝑡
  (Eq. III.66) 

Theta measures the sensitivity of the option price with respect to the passage of time (i.e. it quantifies the 
temporal decay in the value of the option): 

Θ =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒
  (Eq. III.67) 

Rho measures the sensitivity of the option price to a small change in the interest rate: 

𝜌 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒𝑠
 (Eq. III.68) 

Vega measures the sensitivity of the option price to a small change in the volatility of the underlying: 

𝜗 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
 (Eq. III.69) 

Within the Black-Scholes pricing framework and for standard European options, the Greeks can be analytically 
calculated in a closed form by solving the partial derivatives of the price with respect to the reference risk 
parameter. Expressing the concept in mathematical terms, we obtain: 
 

Δ =
𝜕𝑃𝑟𝑖𝑐𝑒

𝜕𝑆
, Γ =

𝜕2𝑃𝑟𝑖𝑐𝑒

𝜕𝑆2
=

𝜕Δ

𝜕𝑆
,  Θ =

𝜕𝑃𝑟𝑖𝑐𝑒

𝜕𝜏
,  𝜌 =

𝜕𝑃𝑟𝑖𝑐𝑒

𝜕𝑟
, 𝜗 =

𝜕𝑃𝑟𝑖𝑐𝑒

𝜕𝜎
  

𝛥𝐶𝐴𝐿𝐿 =
𝜕𝐶𝐸

𝜕𝑆
= 𝑁(𝑑1) > 0 (Eq. III.70) 

ΔPUT =
𝜕𝑃𝐸

𝜕𝑆
= 𝑁(𝑑1) − 1 < 0 (Eq. III.71) 

The Delta of a call option is a positive number while the delta of a put option is a negative value, since, as 
already seen in the what-if analysis, the value of the put moves in the opposite direction compared to the price 
level of the underlying. Then the value of the delta depends on whether the option is in, at or out of the money: 

- For in-the-money options, the delta approaches +1 for calls and -1 for puts. 

- For at-the-money options, the delta approaches +0.5 for calls and -0.5 for puts. 

- For out-of-the-money options, the delta approaches zero. 

In the case of the base scenario (S=50, K=55, T=0.5, r=5%, σ=30%), we can estimate a 𝛥𝐶𝐴𝐿𝐿 = 0.4108 and 

a 𝛥𝑃𝑈𝑇 = −0.5892. 
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Figure III.42 Spot Delta Call Surface. Parameters: S=1:100, K=55, T=from 10 to 360 days, r=5%, σ=30% 

 

Figure III.43 Spot Delta Put Surface. Parameters: S=1:100, K=55, T=from 10 to 360 days, r=5%, σ=30% 
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As regards the Gamma, the following holds: 

Γ𝐶𝐴𝐿𝐿 = Γ𝑃𝑈𝑇 =
𝜕Δ𝐸

𝐶𝐴𝐿𝐿

𝜕𝑆
=

𝜕2𝐶𝐸

𝜕𝑆2
=

𝑛(𝑑1)

𝑆𝜎√𝜏
> 0 (Eq. III.72) 

where: 

𝑛(𝑑1) =
1

√2𝜋
∙ 𝑒−

𝑑1
2

2   is the standard normal probability distribution. 

𝜏 = 𝑇 − 𝑡 is the time to maturity, expressed in fractions of a year. 

𝑆 is the spot price of the underlying on which the option is written. 

𝜎 is the annualized volatility of the underlying. 

If the Gamma is small, the option’s Delta will vary slowly; if the Gamma is large, the Delta will be very sensitive 
to changes in the underlying. Gamma is a fundamental measurement that traders usually observe to correctly 
rebalance a “Delta neutral” portfolio, i.e. a portfolio that does not have risk exposures to changes in the price 
levels of the underlying. 

In the case of the base scenario (S=50, K=55, T=0.5, r=5%, σ=30%), the Gamma is Γ𝐶𝐴𝐿𝐿 = Γ𝑃𝑈𝑇 = 0.0367. 

 

Figure III.44 Gamma Call/Put Surface. Parameters: S=1:100, K=55, T=from 10 to 360 days, r=5%, σ=30% 
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Here are the relations regarding Theta: 

Θ𝐶𝐴𝐿𝐿 =
𝜕𝐶𝐸

𝜕𝑡
= −

𝑆∙𝜎

2∙√𝜏
∙ 𝑛(𝑑1) − 𝐾𝑒

−𝑟𝜏 ∙ 𝑟 ∙ 𝑁(𝑑2) (Eq. III.73) 

𝛩𝑃𝑈𝑇 =
𝜕𝑃𝐸

𝜕𝑡
= −

𝑆∙𝜎

2∙√𝜏
∙ 𝑛(𝑑1) − 𝐾𝑒

−𝑟𝜏 ∙ 𝑟 ∙ [𝑁(−𝑑2)] (Eq. III.74) 

𝑛(𝑑1) =
1

√2𝜋
∙ 𝑒−

𝑑1
2

2  is the standard normal probability distribution. 

𝑁(𝑑2) is the standard normal cumulative probability distribution. 

𝜏 = 𝑇 − 𝑡 is the time to maturity, expressed in year fractions. 

It is a good and common practice to divide the Theta by 360 (or 365, depending on the adopted day basis 
convention) with the aim of expressing the time decay of the option price for one day. 

In the case of the base scenario presented above (S=50, K=55, T=0.5, r=5%, σ=30%), we obtain: 

Θ𝐶𝐴𝐿𝐿 = −
5.0127

360
= −0.0139; Θ𝑃𝑈𝑇 = −

2.3306

360
= −0.0065  

 
 

Figure III.45 Theta Call Surface (one-day time decay). Parameters: S=1:100, K=55, T=from 10 to 360 days, 
r=5%, σ=30% 
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Figure III.46 Theta Put Surface (one-day time decay). Parameters: S=1:100, K=55, T=from 10 to 360 days, 
r=5%, σ=30% 

 

We now present the relations valid for Rho: 

𝜌𝐶𝐴𝐿𝐿 =
𝜕𝐶𝐸

𝜕𝑟
= 𝜏 ∙ 𝐾 ∙ 𝑒−𝑟𝜏 ∙ 𝑁(𝑑2) > 0 (Eq. III.75) 

𝜌𝑃𝑈𝑇 =
𝜕𝑃𝐸

𝜕𝑟
= 𝜏 ∙ 𝐾 ∙ 𝑒−𝑟𝜏 ∙ [𝑁(𝑑2) − 1] < 0 (Eq. III.76) 

In the case of the base scenario (S=50, K=55, T=0.5, r=5%, σ=30%), we obtain: 𝜌𝐶𝐴𝐿𝐿 = +8.8743  and 

𝜌𝑃𝑈𝑇 = −17.9467. 

Lastly, the relations that hold for Vega are the following: 

𝜗𝐶𝐴𝐿𝐿 =
𝜕𝐶𝐸

𝜕𝜎
= 𝑆 ∙ √𝜏 ∙ 𝑛(𝑑1) > 0 (Eq. III.77) 

𝜗𝑃𝑈𝑇 =
𝜕𝑃𝐸

𝜕𝜎
= 𝑆 ∙ √𝜏 ∙ 𝑛(𝑑1) = 𝜗𝐶𝐴𝐿𝐿 > 0 (Eq. III.78) 

The price of an option (call/put) is an increasing function as the volatility of the underlying asset increases. 

In the case of the base scenario (S=50, K=55, T=0.5, r=5%, σ=30%), we have 𝜗𝐶𝐴𝐿𝐿 = 𝜗𝑃𝑈𝑇 = +13.7510. 
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Figure III.47 Rho Call Surface. Parameters: S=1:100, K=55, T=from 10 to 360 days, r=5%, σ=30% 

 

Figure III.48 Rho Put Surface. Parameters: S=1:100, K=55, T=from 10 to 360 days, r=5%, σ=30% 
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Figure III.49 Vega Call/Put Surface. Parameters: S=1:100, K=55, T=from 10 to 360 days, r=5%, σ=30% 

 

The previous formulas can be “generalized” introducing the cost-of-carry parameter, 𝑏. Depending on the 
value assumed by this parameter, the following formula (known in the literature as the Generalized BSM 
formula) can be used for pricing European plain-vanilla call and put options written on different kinds of 
underlyings: 

𝐶𝐸 = 𝑆 ∙ 𝑒
(𝑏−𝑟)𝜏 ∙ 𝑁(𝑑1) − 𝐾 ∙ 𝑒

−𝑟𝜏 ∙ 𝑁(𝑑2) (Eq. III.79) 

𝑃𝐸 = 𝐾 ∙ 𝑒
−𝑟𝜏 ∙ 𝑁(−𝑑2) − 𝑆 ∙ 𝑒

(𝑏−𝑟)𝜏 ∙ 𝑁(−𝑑1) (Eq. III.80) 

𝑑1 =
ln (

𝑆
𝐾
) + (𝑏 + 𝜎2 2⁄ )𝜏

𝜎√𝜏
,   𝑑2 = 𝑑1 − 𝜎√𝜏 

In this context: 

- If 𝑏 = 𝑟, the GBSM formula returns the classic Black-Scholes 73 formula suitable for pricing options written 
on shares that do not pay a dividend. 

- If 𝑏 = 𝑟 − 𝑞, the GBSM formula returns the Black-Scholes formula used for pricing options on 

shares/indexes characterized by a continuous dividend yield 𝑞. 
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- If 𝑏 = 0, the GBSM formula returns the formula suitable for the pricing of options on futures. 

- If 𝑏 = 𝑟 − 𝑟𝐹𝑂𝑅 , the GBSM formula can be traced back to the Garman-Kohlhagen framework. 

The table below represents a summary of the main Greeks described above. 

 

Greeks Call option Put Option 

Delta 𝑒(𝑏−𝑟)𝜏 ∙ 𝑁(𝑑1) > 0 𝑒(𝑏−𝑟)𝜏 ∙ [𝑁(𝑑1) − 1] < 0 

Gamma 
𝑛(𝑑1) ∙ 𝑒

(𝑏−𝑟)𝜏

𝑆𝜎√𝜏
> 0 

Theta 
−
𝑆 ∙ 𝑒(𝑏−𝑟)𝜏 ∙ 𝜎 ∙ 𝑛(𝑑1)

2 ∙ √𝜏
− 𝐾𝑒−𝑟𝜏 ∙ 𝑟 ∙ 𝑁(𝑑2) + 

−(𝑏 − 𝑟) ∙ 𝑆 ∙ 𝑒(𝑏−𝑟)𝜏𝑁(𝑑1) 

−
𝑆 ∙ 𝑒(𝑏−𝑟)𝜏 ∙ 𝜎 ∙ 𝑛(𝑑1)

2 ∙ √𝜏
+ 𝐾𝑒−𝑟𝜏 ∙ 𝑟 ∙ 𝑁(−𝑑2) + 

+(𝑏 − 𝑟) ∙ 𝑆 ∙ 𝑒(𝑏−𝑟)𝜏𝑁(−𝑑1) 

Rho 𝜏 ∙ 𝐾 ∙ 𝑒−𝑟𝜏 ∙ 𝑁(𝑑2) > 0 −𝜏 ∙ 𝐾 ∙ 𝑒−𝑟𝜏 ∙ 𝑁(−𝑑2) < 0 

Vega 𝑆 ∙ 𝑒(𝑏−𝑟)𝜏𝑛(𝑑1)√𝜏 > 0 

 
Table III.14 The main generalized Black-Scholes Greeks 

The problem of pricing vanilla options characterized by early exercise features or derivatives with highly non-
linear payoffs, in jargon called “exotic options”, cannot be solved using an exact closed-form formula. For 
such cases, we have to implement numerical methodologies such as Stochastic Trees, Finite Difference Method 
(FDM) applied to Partial Differential Equation (PDE) or Monte Carlo simulations that provide a solution to 
the problem using approximation schemes. On the other hand, if the Greeks of the financial derivatives are 
provided/computed, an approximated valuation of the instrument can be implemented, since Greeks provide 
a good approximation of the option price, given a small change in the risk parameter. 
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Using the first-order derivatives of the option price with respect to the risk parameter considered (for example: 
Delta, Vega, Rho and Theta), the following formula can be used to obtain a linear approximation: 

Approx. New Price = Old Price + First Order Greek x (parameter shock) (Eq. III.81) 

In order to incorporate the second order term (called convexity) we can use the more accurate formula: 

Approx. New Price = Old Price + First Order Greek x (parameter shock) + 

+ 0.5 x Second Order Greek x (parameter shock)2 (Eq. III.82) 

Obviously, the greater the shock applied to the reference parameter, the less the approximation will be precise. 
Let us now examine an example of an approximation of the price of a European call as the underlying on which 
it is written varies. The Greeks to be estimated are therefore Delta (for a linear approximation of the first order) 
and Gamma (for a convex approximation of the second order). 

For this Delta-Gamma approximation, let us consider the base scenario presented above for a European call: 
S=50, K=55, T=0.5, r=5%, σ=30%. The key parameters for estimating the approximated price as the 
underlying varies are: 

𝛥𝐶𝐴𝐿𝐿 = 0.4108, Γ𝐶𝐴𝐿𝐿 = 0.0367, C𝐸 = 2.7935 

Starting from the approximation provided by the partial derivatives, we want to estimate a reasonable price of 
the call option assuming a change in the reference risk parameter of + EUR 1: 

Approx. New Price = Old Price + First Order Greek x (parameter shock) 

Approx. New Price = 2.7935 + 0.4108 x (51-50) = EUR 3.2043 

The new exact price of the European call option calculated from the BS formula would be EUR 3.2227. 

Using the first-order approximation provided by the Delta, an estimation error of less than 2 cents would be 
committed. In order to make an even more precise estimate, convexity, i.e. the second order partial derivative, 
can be added to the linear approximation. 

Approx. New Price = Old Price + First Order Greek x (parameter shock) + 

+ 0.5 x Second Order Greek x (parameter shock)2 

Approx. New Price = 2.7935 + 0.4108 x (51-50) + 0.5 x 0.0367 x (51-50)2 = EUR 3.2227 

Implementing the second-order approximation provided by the Delta-Gamma, an estimation error would be 
committed to the fourth decimal digit. As the bump applied to the price level of the underlying increases, the 
error in approximation of the option premium increases. The following graphs compare the exact value of the 
derivative, estimated starting from the BS closed formula, with the one approximated by Delta and Delta-
Gamma, as the magnitude of the shock applied to S varies. The baseline scenario has been reported in bold, 
and the values in red do not represent a feasible approximated price for the call option. 

 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

214 

S BS formula [A] Shock Delta Approx. [B] 
First order 
error [A-B] 

Delta-Gamma  
Approx [C] 

Second order 
error [A-C] 

40 0.372246642 -10 -1.314453107 ND 0.520546893 -0.148300251 

41 0.483828236 -9 -0.903653107 ND 0.582696893 -0.098868657 

42 0.618783998 -8 -0.492853107 ND 0.681546893 -0.062762894 

43 0.779601982 -7 -0.082053107 ND 0.817096893 -0.03749491 

44 0.968614938 -6 0.328746893 0.639868045 0.989346893 -0.020731955 

45 1.187943734 -5 0.739546893 0.448396842 1.198296893 -0.010353158 

46 1.439449309 -4 1.150346893 0.289102416 1.443946893 -0.004497584 

47 1.724694737 -3 1.561146893 0.163547844 1.726296893 -0.001602156 

48 2.044918348 -2 1.971946893 0.072971455 2.045346893 -0.000428545 

49 2.401018105 -1 2.382746893 0.018271212 2.401096893 -7.8788E-05 

50 2.793546893 0 2.793546893 0 2.793546893 0 

51 3.222717852 1 3.204346893 0.018370959 3.222696893 2.09594E-05 

52 3.688418547 2 3.615146893 0.073271654 3.688546893 -0.000128346 

53 4.190232498 3 4.025946893 0.164285605 4.191096893 -0.000864395 

54 4.727466506 4 4.436746893 0.290719613 4.730346893 -0.002880387 

55 5.299182146 5 4.847546893 0.451635253 5.306296893 -0.007114747 

56 5.904229897 6 5.258346893 0.645883004 5.918946893 -0.014716996 

57 6.541284498 7 5.669146893 0.872137606 6.568296893 -0.027012394 

58 7.208880275 8 6.079946893 1.128933382 7.254346893 -0.045466618 

59 7.905445404 9 6.490746893 1.414698511 7.977096893 -0.071651489 

60 8.629334285 10 6.901546893 1.727787392 8.736546893 -0.107212608 

 

Table III.15 Delta vs Delta-Gamma price approximation 
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In Figure III.50 below, the black price curve is the one related to the exact valuation of the European call 
recalculated using the BS formula; while the red line is its approximation using the Delta. 

 

 

Figure III.50 Approximation of the price using Greeks: first-order approximation 
 

In Figure III.51 below, the black price curve has been computed using the exact European call option BS 
formula; while the green one constitutes its approximation carried out using the Delta-Gamma Greeks. 
 

 

Figure III.51 Approximation of the price using Greeks: second-order approximation 
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In Figure III.52 below, the red line represents the Delta approximation, the green line shows the Delta-Gamma 
approximation and the black line shows the BS formula. 

 

Figure III.52 Approximation of the price using Greeks: comparison 
 

In analogy with what was discussed for the Delta and Gamma, the other Greeks can also be used to obtain 
linear approximations of the price, as the reference risk parameter varies. This will be shown through examples 
for the three remaining Greeks. 

Example for Theta: taking  the base scenario as a reference, we calculate the approximation of the fair value 
of the option using Theta for a decrease in the time to maturity of 5 days. 

Approx. New Price = Old Price + First Order Greek x (parameter shock) 

Θ𝐶𝐴𝐿𝐿 = −0.0139 𝐶𝐸 = 2.7935 , 𝑇  varies from 0.5 to 0.48611 years (parameter shock is 5/360) 

Approximated New Price = 2.7935 – 0.0139 x (0.01318889) = 2.793317 vs Exact New Price = 2.7236 
 

Example for Vega: we want to calculate the variation in the price of the call option, if volatility increases by 
1%. 

Approximated New Price = 2.7935 + 13.751 x (0.01) = 2.93101 vs Exact New Price = 2.9313 
 

Example for Rho: lastly, we calculate the variation in the price of the call option, if the interest rate decreases 
by 30bps. 

Approximated New Price = 2.7935 + 8.8743 x (0.003) = 2.8201 vs Exact Price = 2.8203. 
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III.3 OPTION STRATEGIES 
 
 

We have analyzed the profit profiles originating with a single European option, now we consider the patterns 
that result when an option is traded together with other financial instruments. In particular, we examine the 
properties of portfolios having the following positions: 
 

- An option and a zero-coupon bond. 
- An option and the asset underlying the option. 
- Two or more options written on the same asset. 
 

Options are often used to create principal-protected notes for the retail market sector, which is primarily 
composed of very prudent investors. A typical feature of these financial products is that the financial return 
earned by an investor depends on the performance of a risky asset (shares, indices, exchange rates) but the 
initial amount invested is not at risk. A principal-protected note can be synthetized as a European call option 
plus a zero-coupon bond. 
 

Let us examine an example, assuming that the continuously compounded 3-year interest rate is 5%. This means 

that 1000 exp(−0.05 ⋅ 3) = EUR 860.708  will grow to EUR 1,000 in three years. The difference between 
EUR 1,000 and EUR 860.708 is EUR 139.292. 
 
Now let us suppose a customer has a portfolio of shares with a value of  EUR 1,000 that provides a return of 
1.5% per annum. Let us then suppose that a European at-the-money call option (strike equal to EUR 1,000) 
on this stock portfolio can be bought for less than EUR 139.292. A bank can offer the customer the opportunity 
to invest EUR 1,000 in the following strategy: 
 

- A zero coupon bond with a principal of EUR 1,000.  
- An at-the-money call option written on the stock portfolio. 
 

If the value of the portfolio increases, the investor receives the interest accrued from the zero coupon and the 
yield given by the option. If the call option has no value, the investor still receives the initial investment amount 
(EUR 1,000). 
 
Let us now present a real market case on principal protected notes. In this case, the note starts on 9th January 
2023 and expires after three years, at par. No coupons are paid during its life. The advantage for the holder is 
to link the final pay-off of the structured note to the performance of the index. 
In the worst case, the holder does not receive any remuneration from the equity market and receives the initial 
amount of his investment (ATM Long call). The main data are shown in the below table: 
 

Long Call Price: 8.2840% 
Zero Coupon Bond: 91.3036% 
 

Total structured notes: 99.5875% 
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Figure III.53 Principal-protected notes. Source: Bloomberg® 
 

It is assumed that the underlying asset of the option is a stock, Although very similar trading strategies can also 
be developed for different underlyings. 
The profit deriving from the strategy will be calculated as the final pay-off minus the initial costs, without 
considering the discount factor. 
 
There are in fact different trading strategies that can be formed by investing in an option written on the 
underlying and the underlying itself. Some of the most popular profit patterns include: 
 

(a) Long position in a stock + Short position in a call. 
(b) Short position in a stock + Long position in a call. 
(c) Long position in a put + Long position in a stock. 
(d) Short position in a put + Short position in a stock. 
 

In the following figures, the dotted line shows the relationship between the profit and the share price level, for 
the single security included in the portfolio, while the solid line shows the relationship between the profit and 
the share price for the entire portfolio. 
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Let us analyze the four cases: 
 

(a) Long position in a stock + Short position in a call 
 

The portfolio consists of a long position in the stock and a short position in a European call option written on 
such stock. This strategy is known in the literature as writing a covered call. The long position on the stock 
hedges the investor from the characteristic pay-off of the short position in the call, in case of a sharp rise in the 
level of the share price at maturity. 
 

We illustrate this case with an example: 
 

Call Strike Price = 50 
 

Call Premium = 1 
 

Initial value of the stock S(0) = 48 

 
S(T) long stock short call initial premium final pay-off 

35 -13 0 1 -12 

36 -12 0 1 -11 

37 -11 0 1 -10 

38 -10 0 1 -9 

39 -9 0 1 -8 

40 -8 0 1 -7 

41 -7 0 1 -6 

42 -6 0 1 -5 

43 -5 0 1 -4 

44 -4 0 1 -3 

45 -3 0 1 -2 

46 -2 0 1 -1 

47 -1 0 1 0 

48 0 0 1 1 

49 1 0 1 2 

50 2 0 1 3 

51 3 -1 1 3 

52 4 -2 1 3 

53 5 -3 1 3 

54 6 -4 1 3 

 
Table III.16 Covered call strategy 
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Figure III.54 Writing a Covered Call strategy 

 

 
 

Figure III.55 Writing a Covered Call strategy. Source: Bloomberg® 
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Figure III.56 Writing a Covered Call strategy: Terminal pay-off. Source: Bloomberg® 
 

 

(b) Short position in a stock + Long position in a call 
 

The portfolio consists of a short position in the stock and a long position in a European call option written on 
such stock. This strategy is known in the literature as the reverse of writing a covered call. The long position in 
the call hedges the investor from the characteristic pay-off of the short position on the stock, in case of a sharp 
rise in the level of the stock price at maturity. 
 

Let us make an example of this strategy: 
 

Call Strike Price = 50; Initial investment for the Call = 1 and Initial value of the stock S(0) = 48. 
 

S(T) short stock long call initial premium final pay-off 

43 5 0 -1 4 

44 4 0 -1 3 

45 3 0 -1 2 

46 2 0 -1 1 

47 1 0 -1 0 

48 0 0 -1 -1 

49 -1 0 -1 -2 

50 -2 0 -1 -3 

51 -3 1 -1 -3 

52 -4 2 -1 -3 

53 -5 3 -1 -3 
 

Table III.17 Reverse of writing a Covered call 
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Figure III.57 Reverse of writing a Covered Call strategy 

 

 
 

Figure III.58 Reverse of writing a Covered Call strategy. Source: Bloomberg® 
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Figure III.59 Reverse of Writing a Covered Call strategy: Terminal pay-off. Source: Bloomberg® 
 

(c) Long position in a stock + Long position in a put 
 

The portfolio consists of a long position in the stock and a long position in a European put option written on 
such stock. This strategy is known in literature with the name of protective put. The long position in the put 
hedges the investor from the characteristic pay-off of the long position on the stock, in the event of a sharp 
decline in the level of the share price at maturity. 
 

Let us present an example: 
 

Put Strike Price = 50; Initial investment for the Put = 4; Initial value of the stock S(0) = 48. 

 

S(T) long stock long put initial premium final pay-off 

48 0 2 -4 -2 

49 1 1 -4 -2 

50 2 0 -4 -2 

51 3 0 -4 -1 

52 4 0 -4 0 

53 5 0 -4 1 

54 6 0 -4 2 

55 7 0 -4 3 

56 8 0 -4 4 

57 9 0 -4 5 
 

Table III.18 Protective Put strategy 
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Figure III.60 Protective put strategy 
 

 
 

Figure III.61 Protective Put strategy. Source: Bloomberg® 
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Figure III.62 Protective Put strategy: Terminal pay-off. Source: Bloomberg® 
 

 

(d) Short position in a stock + Short position in a put 
 

The portfolio consists of a short position in the stock and a short position in a European put option written 
on the stock itself. This strategy is known in literature with the name of reverse of protective put. The short 
position in the stock hedges the investor from the characteristic pay-off of the short position on the put, in 
case of a sharp fall in the level of the share price at maturity. 
 

Let us examine an example of this strategy: 
 

Put Strike Price = 50; Initial Put Premium = 4 and Initial value of the stock S(0) = 48. 
 

S(T) short stock short put initial premium final pay-off 

48 0 -2 4 2 

49 -1 -1 4 2 

50 -2 0 4 2 

51 -3 0 4 1 

52 -4 0 4 0 

53 -5 0 4 -1 

54 -6 0 4 -2 

55 -7 0 4 -3 

56 -8 0 4 -4 

57 -9 0 4 -5 
 

Table III.19 Reverse of Protective Put 
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 Figure III.63 Reverse of Protective Put strategy  
 

 
 

Figure III.64 Reverse of a Protective Put strategy. Source: Bloomberg® 
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Figure III.65 Reverse of a Protective Put strategy: Terminal pay-off. Source: Bloomberg® 
 

The profit patterns generated by the combinations between an option and the corresponding underlying 
generate the following pay-off: 
 

(a) a Long position in a stock + a Short position in a call generates a short put. 
(b) a Short position in a stock + a Long position in a call generates a long put. 
(c) a Long position in a put + a Long position in a stock generates a long call. 
(d) a Short position in a put + a Short position in a stock generates a short call. 
 

The Put-call parity can help to generalize these statements: 
 

𝑝 + 𝑆0 = 𝑐 + 𝐾 ⋅ exp(−𝑟 ⋅ 𝑇) + 𝐷 (Eq. III.83) 
 

where: 

𝑝 is the price of a European put. 

𝑆0 is the price level of the asset. 

𝐾 is the same strike price for both the call and the put. 

𝐷 is the discounted value of dividends paid during the life of the options. 

𝑟 is the risk-free interest rate. 

𝑇 is the time to maturity, equal for the call and for the put. 

𝑐 is the price of a European call. 
 

The Put-Call parity shows that a long position in a European put option, combined with a long position in 

the stock equals a long position in a European call option, plus a certain amount of money 𝐾 ⋅
exp(−𝑟 ⋅ 𝑇) + 𝐷. 
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This explains the profit pattern in the case of a protective put strategy, or case (c) above. 
On the other hand, the strategy payoff graph (d) is the inverse of the case just discussed and leads to having a 
short position in a European call. 
 

For the other two cases, the put-call parity relationship can be rearranged as follows: 
 

𝑆0 − 𝑐 = 𝐾 ⋅ exp(−𝑟 ⋅ 𝑇) + 𝐷 − 𝑝 (Eq. III.84) 
 

The equation shows that a long position in a stock combined with a short position in a European call option 

equals a short position in a European put, plus a certain amount of cash exp(−𝑟 ⋅ 𝑇) + 𝐷 – case (a). 
 

Strategy payoff graph (b) is the inverse of case (a) and leads to having a long position in a European put option. 
 

 
We now introduce another strategy, called spread trading strategy, which requires investing in two or more 
options of the same type. Among them, one of the most popular types is the bull spread. This strategy can 

be created by buying a European call option written on a stock with a given strike (𝐾1) and selling a European 

call option on the same underlying, but with a higher strike price (𝐾2). Both options must have the same 

maturity (𝑇). Another way in which a bull spread can be synthetized is by using two European put options: a 

long position is assumed on the put with a lower strike price (𝐾1) and a short position on the European put 

with a higher strike price (𝐾2). In this case, again, both options must obviously have the same maturity date 

(𝑇). This strategy requires an initial investment if the bull spread strategy is implemented using call options. In 
fact, the price of a call decreases as the strike price increases: the value of the option sold will therefore always 
be lower than the one purchased. On the other hand, if the strategy is implemented by buying and selling puts, 
there is a positive up-front cash flow (assuming we disregard any margin requirements).  
 

In fact, the price of a put option increases as the strike price increases: the value of the sold option will be 
characterized by a higher value than the one purchased. Such an options strategy limits upside and downside 

risk and this is ideal for an investor who has bought a call option with a strike price of 𝐾1 and is willing to 

sacrifice part of the potential future profit by selling a call with a strike price of 𝐾2 , 𝐾2 > 𝐾1 in order to spend 
less for the hedging. 
 
 

The payoff created by a bull spread strategy using call options is shown in Table III.20 below: 
 

Stock Price Range Payoff Long Call Payoff Short Call Total Payoff 

𝑆𝑇 ≤ 𝐾1 0 0 0 

𝐾1 ≤ 𝑆𝑇 < 𝐾2 𝑆𝑇 − 𝐾1 0 𝑆𝑇 − 𝐾1 

𝑆𝑇 ≥ 𝐾2 𝑆𝑇 − 𝐾1 −(𝑆𝑇 − 𝐾2) 𝐾2 − 𝐾1 
 

Table III.20 Bull spread strategy using calls 
 

The payoff created by a bull spread strategy using put options is shown below in Table III.21: 
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Stock Price Range Payoff Long Put Payoff Short Put Total Payoff 

𝑆𝑇 ≤ 𝐾1 𝐾1 − 𝑆𝑇 −(𝐾2 − 𝑆𝑇) 𝐾1 −𝐾2 

𝐾1 ≤ 𝑆𝑇 < 𝐾2 0 −(𝐾2 − 𝑆𝑇) 𝑆𝑇 − 𝐾2 

𝑆𝑇 ≥ 𝐾2 0 0 0 
 

Table III.21 Bull spread strategy using puts 
 

If the bull spread strategy is synthesized via calls, an initial investment is necessary for the holder: 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 −
𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 = Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚 < 0. 
 

Stock Price Range Payoff Long Call Payoff Short Call Total Payoff 

𝑆𝑇 ≤ 𝐾1 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 +𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝐾1 ≤ 𝑆𝑇 < 𝐾2 𝑆𝑇 − 𝐾1 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 +𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝑆𝑇 − 𝐾1 +  Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝑆𝑇 ≥ 𝐾2 𝑆𝑇 − 𝐾1 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 −(𝑆𝑇 − 𝐾2) + 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝐾2 − 𝐾1 +  Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

 

Table III.22 Bull spread strategy using calls with premiums 
 

On the other hand, if the bull spread is obtained through puts, an upfront premium is received:  
 

Stock Price Range Payoff Long Put Payoff Short Put Total Payoff 

𝑆𝑇 ≤ 𝐾1 𝐾1 − 𝑆𝑇 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 −(𝐾2 − 𝑆𝑇) + 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝐾1 − 𝐾2 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
+  

𝐾1 ≤ 𝑆𝑇 < 𝐾2 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 −(𝐾2 − 𝑆𝑇) + 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝑆𝑇 − 𝐾2 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
+  

𝑆𝑇 ≥ 𝐾2 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 +𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
+  

 

Table III.23 Bull spread strategy using puts with premiums 
 

Here is an example of a Bull Spread strategy implemented using call options: 
 

Long position in a call,  𝐾1 = 50 
 

Short position in a call, 𝐾2 = 55 
 

Investment for the Call with Strike 𝐾1 = 3 
 

Premium for the Call with Strike 𝐾2 = 1 
 

 

Stock Price Range Total Payoff 

𝑆𝑇 ≤ 50 1 − 3 = −2 

50 ≤ 𝑆𝑇 < 55 𝑆𝑇 − 50 − 2 = 𝑆𝑇 − 52 

𝑆𝑇 ≥ 55 55 − 50 − 2 = 3 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

231 

S(T) Long call (1) Initial investment Short call (2) Initial premium Final pay-off 

46 0 -3 0 1 -2 

47 0 -3 0 1 -2 

48 0 -3 0 1 -2 

49 0 -3 0 1 -2 

50 0 -3 0 1 -2 

51 1 -3 0 1 -1 

52 2 -3 0 1 0 

53 3 -3 0 1 1 

54 4 -3 0 1 2 

55 5 -3 0 1 3 

56 6 -3 -1 1 3 
 

Table III.24 Bull spread strategy using Calls 
 

 
 

Figure III.66 Bull spread strategy using Calls 
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Figure III.67 Bull spread strategy using Calls. Source: Bloomberg® 
 

 
 

Figure III.68 Bull spread strategy using Calls: Terminal pay-off. Source: Bloomberg® 
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Here is an example of a Bull Spread strategy implemented using put options: 
 

Long position in a put,  𝐾1 = 50 
 

Short position in a put, 𝐾2 = 55 
 

Investment for the Put with Strike, 𝐾1 = 1 
 

Premium for the Put with Strike, 𝐾2 = 3 
 

S(T) Long put (1) Initial investment Short put (2) Initial premium Final pay-off 

48 2 -1 -7 3 -3 

49 1 -1 -6 3 -3 

50 0 -1 -5 3 -3 

51 0 -1 -4 3 -2 

52 0 -1 -3 3 -1 

53 0 -1 -2 3 0 

54 0 -1 -1 3 1 

55 0 -1 0 3 2 

56 0 -1 0 3 2 
 

Table III.25 Bull spread strategy using Puts 

 
Figure III.69 Bull spread strategy using Puts 

Stock Price Range Total Payoff 

𝑆𝑇 ≤ 50 50 − 55 + 2 = 3 

50 ≤ 𝑆𝑇 < 55 𝑆𝑇 − 55 + 2 = 𝑆𝑇 − 53 

𝑆𝑇 ≥ 55 3 − 1 = +2 
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Figure III.70 Bull spread strategy using Puts. Source: Bloomberg® 

 

 
 

Figure III.71 Bull spread strategy using Puts: Terminal pay-off. Source: Bloomberg® 
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We have analyzed the bull spread strategy, and it is clearly implemented by an investor having the expectation 
that the price level of the stock will rise. 
Conversely, when the investor believes that the stock price will fall, then he will enters a bear spread strategy. 

Such a strategy can be created by selling a put option with a strike 𝐾1 and buying a put with a different strike 

price 𝐾2, in particular 𝐾1 < 𝐾2. 
Since the price of the sold put is lower than the price of the purchased put, a bear spread strategy is characterized 
by an initial cash outflow. 
Essentially, the investor bought a put option with a specified strike price and chose to sacrifice part of the 
potential profit by selling a put option with a lower strike price. 
In return for the potential sacrificed profit, the investor receives the premium of the derivative. Like bull 
spreads, bear spreads also limit both upside and downsize risk. Another way to implement a bear spread strategy 
is by using call options. 

In this case, the trader will take a long position in a call option with a higher strike price (𝐾2) and a short 

position in a call with a lower strike price (𝐾1). Thanks to this strategy, if we disregard margin requirements, 
the investor receives an initial cash inflow. 
 

The payoff created by a bear spread strategy using put options is shown in Table III.26: 

 
Stock Price Range Payoff Long Put Payoff Short Put Total Payoff 

𝑆𝑇 ≥ 𝐾2 0 0 0 

𝐾1 < 𝑆𝑇 < 𝐾2 𝐾2 − 𝑆𝑇 0 𝐾2 − 𝑆𝑇 

𝑆𝑇 ≤ 𝐾1 𝐾2 − 𝑆𝑇 −(𝐾1 − 𝑆𝑇) 𝐾2 − 𝐾1 
 

Table III.26 Bear spread strategy using Puts 

 
The payoff created by a bear spread strategy using call options is shown below in Table III.27: 

 
Stock Price Range Payoff Long Call Payoff Short Call Total Payoff 

𝑆𝑇 ≥ 𝐾2 𝑆𝑇−𝐾2 −(𝑆𝑇−𝐾1) 𝐾1 −𝐾2 

𝐾1 < 𝑆𝑇 < 𝐾2 0 −(𝑆𝑇−𝐾1) 𝐾1 − 𝑆𝑇 

𝑆𝑇 ≤ 𝐾1 0 0 0 
 

Table III.27 Bear spread strategy using Calls 
 

In case the spread strategy is synthesized via put options, an initial investment is necessary for the holder: 

𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 = Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚 < 0. 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

236 

 

Stock Price Range Payoff Long Put Payoff Short Put Total Payoff 

𝑆𝑇 ≥ 𝐾2 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 +𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝐾1 < 𝑆𝑇 < 𝐾2 𝐾2 − 𝑆𝑇 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 +𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 𝐾2 − 𝑆𝑇 +  Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝑆𝑇 ≤ 𝐾1 𝐾2 − 𝑆𝑇 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 −(𝐾1 − 𝑆𝑇) + 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 𝐾2 −𝐾1 +  Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

 
Table III.28 Bear spread strategy using Puts with premiums 

 
On the other hand, if the bull spread is obtained through call options, an upfront premium is received:  

𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 = Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚 > 0 

 
Stock Price Range Payoff Long Call Payoff Short Call Total Payoff 

𝑆𝑇 ≥ 𝐾2 𝑆𝑇−𝐾2 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 −(𝑆𝑇−𝐾1) + 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 𝐾1 − 𝐾2 +  Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
+  

𝐾1 < 𝑆𝑇 < 𝐾2 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 −(𝑆𝑇−𝐾1) + 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 𝐾1 − 𝑆𝑇 +  Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
+  

𝑆𝑇 ≤ 𝐾1 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 +𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
+  

 
Table III.29 Bear spread strategy using Calls with premiums 

 
Let us make an example of a Bear Spread strategy using Put options: 

 
Long position in a put,  𝐾2 = 55 
 

Short position in a put, 𝐾1 = 50 
 

Investment for the put with Strike 𝐾2 = 3 
 

Premium for the put with Strike 𝐾1 = 1 
 
 
 
 
 
 

Stock Price  Range Total Payoff 

𝑆𝑇 ≥ 55 1 − 3 = −2 

50 < 𝑆𝑇 < 55 55 − 𝑆𝑇 − 2 = 53 − 𝑆𝑇 

𝑆𝑇 ≤ 50 55 − 50 − 2 = +3 
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S(T) Long put (2) Initial investment Short put (1) Initial premium Final pay-off 

47 8 -3 -3 1 3 

48 7 -3 -2 1 3 

49 6 -3 -1 1 3 

50 5 -3 0 1 3 

51 4 -3 0 1 2 

52 3 -3 0 1 1 

53 2 -3 0 1 0 

54 1 -3 0 1 -1 

55 0 -3 0 1 -2 

56 0 -3 0 1 -2 

57 0 -3 0 1 -2 

 

Table III.30 Bear spread strategy using Puts 
 

 
 

Figure III.72 Bear spread strategy using Puts 
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Figure III.73 Bear spread strategy using Puts. Source: Bloomberg® 
 

 
 

Figure III.74 Bear spread strategy using Puts: Terminal pay-off. Source: Bloomberg® 
 
 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

239 

Here is an example of a Bear Spread strategy using Call options: 
 

Long position in a call, 𝐾2 = 55 
 

Short position in a call, 𝐾1 = 50 
 

Investment for the call with Strike 𝐾2 = 1 
 

Premium for the call with Strike 𝐾1 = 3 
 

S(T) Long Call (2) Initial investment Short Call (1) Initial premium Final pay-off 

49 0 -1 0 3 2 

50 0 -1 0 3 2 

51 0 -1 -1 3 1 

52 0 -1 -2 3 0 

53 0 -1 -3 3 -1 

54 0 -1 -4 3 -2 

55 0 -1 -5 3 -3 

56 1 -1 -6 3 -3 
 

Table III.31 Bear spread strategy using Calls 
 

 
 

Figure III.75 Bear spread strategy using Calls 

Stock Price Range Total Payoff 

𝑆𝑇 ≥ 55 50 − 55 + 2 = −3 

50 < 𝑆𝑇 < 55 50 − 𝑆𝑇 + 2 = 52 − 𝑆𝑇 

𝑆𝑇 ≤ 50 3 − 1 = +2 
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Figure III.76 Bear spread strategy using Calls. Source: Bloomberg® 
 

 
 

Figure III.77 Bear spread strategy using Puts: Terminal pay-off. Source: Bloomberg® 
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Let us now introduce another strategy, called a box spread: it is a combination of a bull call spread with strike 

prices 𝐾1 and 𝐾2 and a bear put spread with the same strike prices. 
 

The profit profile of such a strategy is fixed and is equal to: 𝐾2 − 𝐾1. The value of a box spread is therefore 

constituted by the value of the discounted deterministic pay-off: (𝐾2 −𝐾1) ⋅ exp(−𝑟 ⋅ 𝑇). 
 

As per our typical reasoning, we observe that, if it were traded for different values, arbitrage opportunities 
would arise. Specifically: 
 

- If the market price of the box spread were too low, it would be worth buying it. This would mean buying a 

call option with strike price 𝐾1, buying a put with strike price 𝐾2, selling a call with strike price 𝐾2 and selling 

a put with strike price 𝐾1. 
 

- On the other hand, if the market price of the box spread were too high, it would be worth selling it. This 

would involve buying a call option with strike price 𝐾2, buying a put with strike price 𝐾1, selling a call with 

strike price 𝐾1 and selling a put with strike price 𝐾2. 
 

It is worth to highlight that this arbitrage must be implemented using exclusively European-type options. 
 

The payoff generated by a box spread strategy is shown below in Table III.32: 
 

Stock Price Range Payoff bull call spread Payoff bear put spread Total Payoff 

𝑆𝑇 ≥ 𝐾2 𝐾2 − 𝐾1 0 𝐾2 − 𝐾1 

𝐾1 < 𝑆𝑇 < 𝐾2 𝑆𝑇 − 𝐾1 𝐾2 − 𝑆𝑇 𝐾2 − 𝐾1 

𝑆𝑇 ≤ 𝐾1 0 𝐾2 − 𝐾1 𝐾2 − 𝐾1 

 
Table III.32 Box strategy 

 
Considering the initial rewards/investments to implement the strategy, the payoff becomes: 

 

Stock Price Range Payoff bull call spread Payoff bear put spread Total Payoff 

𝑆𝑇 ≥ 𝐾2 𝐾2 −𝐾1 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚

+  𝐾2 − 𝐾1 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚 

𝐾1 < 𝑆𝑇 < 𝐾2 𝑆𝑇 − 𝐾1 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  𝐾2 − 𝑆𝑇 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚

+  𝐾2 − 𝐾1 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚 

𝑆𝑇 ≤ 𝐾1 Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  𝐾2 − 𝐾1 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚

+  𝐾2 − 𝐾1 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚 

 
Table III.33 Box strategy with premiums 
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We present an example of a Box strategy: 
 

Long position in a call, 𝐾1 = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 3 

Short position in a call, 𝐾2 = 55, 𝑖𝑛𝑓𝑙𝑜𝑤 = 1 

Long position in a put, 𝐾2 = 55, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 3 

Short position in a put, 𝐾1 = 50, 𝑖𝑛𝑓𝑙𝑜𝑤 = 1 
 

S(T) 
Long 
Call 
(1) 

Initial 
Investment 

Short 
Call 
(2) 

Initial 
Premium 

Bull call 
spread 

Long 
put 
(2) 

Initial 
Investment 

Short 
Put 
(1) 

Initial 
Premium 

Bear put 
spread 

Final 
payoff 

46 0 -3 0 1 -2 9 -3 -4 1 3 1 

47 0 -3 0 1 -2 8 -3 -3 1 3 1 

48 0 -3 0 1 -2 7 -3 -2 1 3 1 

49 0 -3 0 1 -2 6 -3 -1 1 3 1 

50 0 -3 0 1 -2 5 -3 0 1 3 1 

51 1 -3 0 1 -1 4 -3 0 1 2 1 

52 2 -3 0 1 0 3 -3 0 1 1 1 

53 3 -3 0 1 1 2 -3 0 1 0 1 

54 4 -3 0 1 2 1 -3 0 1 -1 1 

55 5 -3 0 1 3 0 -3 0 1 -2 1 

56 6 -3 -1 1 3 0 -3 0 1 -2 1 

57 7 -3 -2 1 3 0 -3 0 1 -2 1 
 

Table III.34 Box spread strategy 
 

 
Figure III.78 Box spread strategy (Bull Call spread + Bear Put Spread) 

Stock Price Range Total Payoff 

𝑆𝑇 ≥ 55 55 − 50 − 4 = +1 

50 < 𝑆𝑇 < 55 55 − 50 − 4 = +1 

𝑆𝑇 ≤ 50 55 − 50 − 4 = +1 
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Figure III.79 Box spread strategy 

 

 
 

Figure III.80 Box spread strategy. Source: Bloomberg® 
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Figure III.81 Box spread strategy. Terminal Payoff. Source: Bloomberg® 
 

We now introduce the butterfly spread, which is a strategy that can be implemented by taking a position on 
options with three different strike prices. In other words: 
 

- Buying a call option with a relatively low strike price 𝐾1. 

- Buying a call option with a relatively high strike price 𝐾3. 

- Selling two call options with a strike price 𝐾2 such that 𝐾1 < 𝐾2 < 𝐾3. 
 

Typically, 𝐾2 is close to the current level of the stock price. The generated payoff is shown in Table III.35 
below: 

 

Stock Price Range Payoff long call (1) Payoff long call (3) Payoff from short calls (2) Final Payoff 

𝑆𝑇 ≤ 𝐾1 0 0 0 0 

𝐾1 < 𝑆𝑇 ≤ 𝐾2 𝑆𝑇 − 𝐾1 0 0 𝑆𝑇 − 𝐾1 

𝐾2 < 𝑆𝑇 ≤ 𝐾3 𝑆𝑇 − 𝐾1 0 −2(𝑆𝑇 − 𝐾2) 2𝐾2 − 𝐾1 − 𝑆𝑇 

𝑆𝑇 > 𝐾3 𝑆𝑇 − 𝐾1 𝑆𝑇 − 𝐾3 −2(𝑆𝑇 − 𝐾2) 2𝐾2 − 𝐾1 −𝐾3 

 
Table III.35 Butterfly spread using calls 

 

In the particular case where 𝐾2 =
𝐾1+𝐾3

2
, the profit profile of the strategy simplifies: for 𝐾2 < 𝑆𝑇 < 𝐾3 we have 

𝐾3 − 𝑆𝑇 and for 𝑆𝑇 > 𝐾3 we have 0. 
 

Such a strategy is suitable for investors who believe that the future value of the asset will not change very much 
from the current spot price level. 
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The specific strategy requires a small initial investment. Thus, considering the initial rewards/investments to 
create the strategy, we obtain: 
 

Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
− = 2 ⋅ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚3 

 
Stock Range Payoff long call (1) Payoff long call (3) Payoff from short calls Final Payoff 

𝑆𝑇 ≤ 𝐾1 −𝑝𝑟𝑒𝑚1 −𝑝𝑟𝑒𝑚3 +2 ⋅ 𝑝𝑟𝑒𝑚2 Δ𝑝𝑟𝑒𝑚
−  

𝐾1 < 𝑆𝑇 ≤ 𝐾2 𝑆𝑇 − 𝐾1 − 𝑝𝑟𝑒𝑚1 −𝑝𝑟𝑒𝑚3 +2 ⋅ 𝑝𝑟𝑒𝑚2 𝑆𝑇 − 𝐾1 + Δ𝑝𝑟𝑒𝑚
−  

𝐾2 < 𝑆𝑇 ≤ 𝐾3 𝑆𝑇 − 𝐾1 − 𝑝𝑟𝑒𝑚1 −𝑝𝑟𝑒𝑚3 −2(𝑆𝑇 − 𝐾2) + 2𝑝𝑟𝑒𝑚2 2𝐾2 − 𝐾1 − 𝑆𝑇 + Δ𝑝𝑟𝑒𝑚
−  

𝑆𝑇 > 𝐾3 𝑆𝑇 − 𝐾1 − 𝑝𝑟𝑒𝑚1 𝑆𝑇 −𝐾3 − 𝑝𝑟𝑒𝑚3 −2(𝑆𝑇 − 𝐾2) + 2𝑝𝑟𝑒𝑚2 2𝐾2 − 𝐾1 − 𝐾3 + Δ𝑝𝑟𝑒𝑚
−  

 

Table III.36 Butterfly strategy using calls with premiums 
 

In case 𝐾2 =
𝐾1+𝐾3

2
, the profit pattern for the butterfly spread simplifies: 

 

Stock Range Payoff long call (1) Payoff long call (3) Payoff from short calls Final Payoff 

𝑆𝑇 ≤ 𝐾1 −𝑝𝑟𝑒𝑚1 −𝑝𝑟𝑒𝑚3 +2 ⋅ 𝑝𝑟𝑒𝑚2 Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝐾1 < 𝑆𝑇 ≤ 𝐾2 𝑆𝑇 − 𝐾1 − 𝑝𝑟𝑒𝑚1 −𝑝𝑟𝑒𝑚3 +2 ⋅ 𝑝𝑟𝑒𝑚2 𝑆𝑇 − 𝐾1 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝐾2 < 𝑆𝑇 ≤ 𝐾3 𝑆𝑇 − 𝐾1 − 𝑝𝑟𝑒𝑚1 −𝑝𝑟𝑒𝑚3 −2(𝑆𝑇 −𝐾2) + 2 ⋅ 𝑝𝑟𝑒𝑚2 𝐾3 − 𝑆𝑇 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝑆𝑇 > 𝐾3 𝑆𝑇 − 𝐾1 − 𝑝𝑟𝑒𝑚1 𝑆𝑇 − 𝐾3 − 𝑝𝑟𝑒𝑚3 −2(𝑆𝑇 −𝐾2) + 2 ⋅ 𝑝𝑟𝑒𝑚2 Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

 
Table III.37 Symmetric Butterfly strategy using calls with premiums 

 
Here is an example of a Butterfly strategy using call options: 
 

Long position in a call, 𝐾1 = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 10 
 

Short position in a call 𝐾2 = 55, 𝑖𝑛𝑓𝑙𝑜𝑤 = 7 
 

Short position in a call 𝐾2 = 55, 𝑖𝑛𝑓𝑙𝑜𝑤 = 7 
 

Long position in a call, 𝐾3 = 60, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 5 
 
 

 

Stock Price Range Total Payoff 

𝑆𝑇 ≤ 50 −10 + 7 + 7 − 5 = −1 

50 < 𝑆𝑇 ≤ 55 𝑆𝑇 − 50 − 1 = 𝑆𝑇 − 51 

55 < 𝑆𝑇 ≤ 60 60 − 𝑆𝑇 − 1 = 59−𝑆𝑇 

𝑆𝑇 > 60 −10 + 7 + 7 − 5 = −1 
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S(T) 
Long 

Call (1) 
Initial 

Investment 
Long 

Call (3) 
Initial 

Investment 
Short Call x 2 (2) Initial Premium Final Pay-off 

49 0 -10 0 -5 0 14 -1 

50 0 -10 0 -5 0 14 -1 

51 1 -10 0 -5 0 14 0 

52 2 -10 0 -5 0 14 1 

53 3 -10 0 -5 0 14 2 

54 4 -10 0 -5 0 14 3 

55 5 -10 0 -5 0 14 4 

56 6 -10 0 -5 -2 14 3 

57 7 -10 0 -5 -4 14 2 

58 8 -10 0 -5 -6 14 1 

59 9 -10 0 -5 -8 14 0 

60 10 -10 0 -5 -10 14 -1 

61 11 -10 1 -5 -12 14 -1 
 

Table III.38 Butterfly strategy using calls 
 

 
 

Figure III.82 Butterfly strategy using calls 
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Figure III.83 Butterfly strategy using calls. Source: Bloomberg® 
 

 
 

Figure III.84 Butterfly strategy using calls. Terminal Payoff. Source: Bloomberg® 
 

In a similar way, a butterfly spread strategy can also be created using put options: 
 

- the investor buys a put option with a low strike price. 
- the investor buys a put with a high strike price. 
- the investor sells two put options with an intermediate strike price. 
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Stock Price Range Payoff long put (1) Payoff long put (3) Payoff short puts (2) Final Payoff 

𝑆𝑇 ≥ 𝐾3 0 0 0 0 

𝐾2 < 𝑆𝑇 ≤ 𝐾3 0 𝐾3−𝑆𝑇 0 𝐾3 − 𝑆𝑇 

𝐾1 < 𝑆𝑇 ≤ 𝐾2 0 𝐾3−𝑆𝑇 −2(𝐾2 − 𝑆𝑇) 𝑆𝑇 − 2𝐾2 + 𝐾3 

𝑆𝑇 < 𝐾1 𝐾1−𝑆𝑇 𝐾3−𝑆𝑇 −2(𝐾2 − 𝑆𝑇) 𝐾1 +𝐾3 − 2𝐾2 
 

Table III.39 Butterfly strategy using puts 
 

In the particular case where 𝐾2 =
𝐾1+𝐾3

2
, the profit profile of the strategy simplifies: for 𝐾1 < 𝑆𝑇 < 𝐾2 we have 

𝑆𝑇 − 𝐾1 and for 𝑆𝑇 < 𝐾1 we have 0. The Put-call parity can then be used to demonstrate that the strategy cost 
of a butterfly spread strategy implemented using calls is equivalent to that using put options. 
 

We now present an example of a Butterfly strategy implemented using put options: 
 

Long position in a put, 𝐾1 = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 5 
 

Short position in a put 𝐾2 = 55, 𝑖𝑛𝑓𝑙𝑜𝑤 = 7 
 

Short position in a put 𝐾2 = 55, 𝑖𝑛𝑓𝑙𝑜𝑤 = 7 
 

Long position in a put, 𝐾3 = 60, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 10. 
 
 

S(T) 
Long 

Put (1) 
Initial 

Investment 
Long 

Put (3) 
Initial 

Investment 
Short Put x 2 (2) Initial Premium Final Pay-off 

49 1 -5 11 -10 -12 14 -1 

50 0 -5 10 -10 -10 14 -1 

51 0 -5 9 -10 -8 14 0 

52 0 -5 8 -10 -6 14 1 

53 0 -5 7 -10 -4 14 2 

54 0 -5 6 -10 -2 14 3 

55 0 -5 5 -10 0 14 4 

56 0 -5 4 -10 0 14 3 

57 0 -5 3 -10 0 14 2 

58 0 -5 2 -10 0 14 1 

59 0 -5 1 -10 0 14 0 

60 0 -5 0 -10 0 14 -1 

61 0 -5 0 -10 0 14 -1 
 

Table III.40 Butterfly strategy using puts 
 

Stock Price Range Total Payoff 

𝑆𝑇 < 50 −10 + 7 + 7 − 5 = −1 

50 < 𝑆𝑇 ≤ 55 𝑆𝑇 − 50 − 1 = 𝑆𝑇 − 51 

55 < 𝑆𝑇 ≤ 60 60 − 𝑆𝑇 − 1 = 59−𝑆𝑇 

𝑆𝑇 ≥ 60 −10 + 7 + 7 − 5 = −1 
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Figure III.85 Butterfly strategy using puts 

 

 
 

Figure III.86 Butterfly strategy using puts. Source: Bloomberg® 
 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

250 

 
                    

Figure III.87 Butterfly strategy using puts. Terminal Payoff. Source: Bloomberg® 
 

Let us now define a combination: it is a trading strategy that is implemented by taking a position in both call 
options and put options written on the same underlying. The most popular combinations are straddles, strips, 
straps and strangles. Here comes a brief description of each of them. 
 

The straddle consists of buying a call and a put option with the same strike price 𝐾 and the same maturity 𝑇. 
 

Stock Price Range Payoff long call (1) Payoff long put (2) Final Payoff 

𝑆𝑇 ≤ 𝐾 0 𝐾 − 𝑆𝑇 𝐾 − 𝑆𝑇 

𝑆𝑇 > 𝐾 𝑆𝑇 −𝐾 0 𝑆𝑇 − 𝐾 

 
Table III.41 Straddle 

 

Considering the initial investment of the strategy we have:  Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
− = −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2. 

 

Stock Price Range Payoff long call (1) Payoff long put (2) Final Payoff 

𝑆𝑇 ≤ 𝐾 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 𝐾 − 𝑆𝑇 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝐾 − 𝑆𝑇 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝑆𝑇 > 𝐾 𝑆𝑇 − 𝐾 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝑆𝑇 − 𝐾 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

 

Table III.42 Straddle with premiums 
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If the share price level is close to the strike price at the expiry date, the strategy leads to a loss; on the other 
hand, if the price of the underlying is far from the exercise price, the strategy leads to a profit. A straddle is, 
therefore, appropriate when an investor expects a large change in the stock price level but does not want to 
make assumptions about the direction. Such strategy is also called bottom straddle or straddle purchase and 
the reverse position, i.e. a top straddle or straddle write, is also reported in the literature. In this latter case, 
the strategy is created by selling a call and a put option with the same strike price and maturity. 
It should be considered a decidedly risky trading strategy because if the price level is close to the strike price at 
maturity, the profit is substantial, but in the event of strong movements of the underlying, then the losses are 
potentially unlimited. 
 

Here is an example of a Bottom Straddle: 
 

Long position in a call, K = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 3 

Long position in a put, K = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 2 
 

 

S(T) Long Call Initial investment Long put Initial Investment Final pay-off 

41 0 -3 9 -2 4 

42 0 -3 8 -2 3 

43 0 -3 7 -2 2 

44 0 -3 6 -2 1 

45 0 -3 5 -2 0 

46 0 -3 4 -2 -1 

47 0 -3 3 -2 -2 

48 0 -3 2 -2 -3 

49 0 -3 1 -2 -4 

50 0 -3 0 -2 -5 

51 1 -3 0 -2 -4 

52 2 -3 0 -2 -3 

53 3 -3 0 -2 -2 

54 4 -3 0 -2 -1 

55 5 -3 0 -2 0 

56 6 -3 0 -2 1 

 
Table III.43 Bottom Straddle 

Stock Price Range Total Payoff 

𝑆𝑇 ≤ 50 50 − 𝑆𝑇 − 5 = 45 − 𝑆𝑇 

𝑆𝑇 > 50 𝑆𝑇 − 50 − 5 = 𝑆𝑇 − 55 
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Figure III.88 Bottom Straddle 
 

 
 

Figure III.89 Bottom Straddle. Source: Bloomberg® 
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Figure III.90 Bottom Straddle. Terminal Payoff. Source: Bloomberg® 
 

Here is an example of a Top Straddle: 
 

Short position in a call, K = 50, 𝑖𝑛𝑓𝑙𝑜𝑤 = 3 

Short position in a put, K = 50, 𝑖𝑛𝑓𝑙𝑜𝑤 = 2 
 
 

S(T) Short Call (1) Initial Premium Short Put (2) Initial Premium Final Pay-off 

40 0 3 -10 2 -5 

41 0 3 -9 2 -4 

42 0 3 -8 2 -3 

43 0 3 -7 2 -2 

44 0 3 -6 2 -1 

45 0 3 -5 2 0 

46 0 3 -4 2 1 

47 0 3 -3 2 2 

48 0 3 -2 2 3 

49 0 3 -1 2 4 
 

Table III.44 Top Straddle 

Stock Price Range Total Payoff 

𝑆𝑇 ≤ 50 𝑆𝑇 − 50 + 5 = 𝑆𝑇 − 45 

𝑆𝑇 > 50 50 − 𝑆𝑇 + 5 = 55 − 𝑆𝑇 
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Figure III.91 Top Straddle 
 

 
 

Figure III.92 Top Straddle. Source: Bloomberg® 
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Figure III.93 Top Straddle. Terminal Payoff. Source: Bloomberg® 
 

Another particular strategy is the strip, consisting of a long position in a call option and two puts with the same 

strike price 𝐾 and the same expiry date. 
 

Stock Price Range Payoff long call (1) Payoff long puts (2) Final Payoff 

𝑆𝑇 ≤ 𝐾 0 2 ⋅ (𝐾 − 𝑆𝑇) 2 ⋅ (𝐾 − 𝑆𝑇) 

𝑆𝑇 > 𝐾 𝑆𝑇 −𝐾 0 𝑆𝑇 −𝐾 

 
Table III.45 Strip 

 

Considering the initial investment, we have: Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
− = −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 − 2 ⋅ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 

 

Stock Price Range Payoff long call (1) Payoff long puts (2) Final Payoff 

𝑆𝑇 ≤ 𝐾 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 2 ⋅ (𝐾 − 𝑆𝑇) − 2 ⋅ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 2 ⋅ (𝐾 − 𝑆𝑇) + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝑆𝑇 > 𝐾 𝑆𝑇 −𝐾 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 −2 ⋅ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝑆𝑇 − 𝐾 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

 
Table III.46 Strip with premiums 

 

In a strip, the investor bets that there will be a large change in the price level of the stock and believes that a 
decrease in price is more likely than an increase. 
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Let us present an example of a Strip: 
 

Long position in a call, K = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 3 

Long position in a put, K = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 2 

Long position in a put, K = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 2 
 

S(T) Buy Call (1) Initial Investment Buy Puts (2) Initial Investment Final pay-off 

44 0 -3 12 -4 5 

45 0 -3 10 -4 3 

46 0 -3 8 -4 1 

47 0 -3 6 -4 -1 

48 0 -3 4 -4 -3 

49 0 -3 2 -4 -5 

50 0 -3 0 -4 -7 

51 1 -3 0 -4 -6 

52 2 -3 0 -4 -5 
 

Table III.47 Strip 
 

 
 

Figure III.94 Strip 

Stock Price Range Total Payoff 

𝑆𝑇 ≤ 50 2 ⋅ (50 − 𝑆𝑇) − 7 

𝑆𝑇 > 50 𝑆𝑇 − 50 − 7 = 𝑆𝑇 − 57 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

257 

 
 

Figure III.95 Strip. Source: Bloomberg® 
 

 
 

Figure III.96 Strip. Terminal Payoff. Source: Bloomberg® 
 

We now introduce the strategy called strap, which consists of a long position in a put option and two calls, 

with the same strike price 𝐾 and the same expiry. 
 

Stock Price Range Payoff long calls (1)  Payoff long put (2) Final Payoff 

 𝑆𝑇 ≤ 𝐾   0 𝐾 − 𝑆𝑇 𝐾 − 𝑆𝑇 

 𝑆𝑇 > 𝐾 2 ⋅ (𝑆𝑇 − 𝐾) 0 2 ⋅ (𝑆𝑇 − 𝐾) 
 

Table III.48 Strap 
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Considering the initial investment, we have: Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
− = −2 ⋅ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 

 

Stock Price Range Payoff long calls (1) Payoff long put (2) Final Payoff 

𝑆𝑇 ≤ 𝐾 −2 ⋅ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 𝐾 − 𝑆𝑇 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝐾 − 𝑆𝑇 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝑆𝑇 > 𝐾 2 ⋅ (𝑆𝑇 − 𝐾) − 2 ⋅ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 2 ⋅ (𝑆𝑇 − 𝐾) + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

 

Table III.49 Strap with premiums 
 

Here is an example of a Strap strategy: 
 

Long position in a call, K = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 3 

Long position in a call, K = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 3 

Long position in a put, K = 50, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 2 

 
S(T) Buy Calls (1) Initial Investment Buy Put (2) Initial Investment Final pay-off 

40 0 -6 10 -2 2 

41 0 -6 9 -2 1 

42 0 -6 8 -2 0 

43 0 -6 7 -2 -1 

44 0 -6 6 -2 -2 

45 0 -6 5 -2 -3 

46 0 -6 4 -2 -4 

47 0 -6 3 -2 -5 

48 0 -6 2 -2 -6 

49 0 -6 1 -2 -7 

50 0 -6 0 -2 -8 

51 2 -6 0 -2 -6 

52 4 -6 0 -2 -4 

53 6 -6 0 -2 -2 

54 8 -6 0 -2 0 

55 10 -6 0 -2 2 

56 12 -6 0 -2 4 
 

Table III.50 Strap 

Stock Price Range Total Payoff 

𝑆𝑇 ≤ 50 50 − 𝑆𝑇 − 8 = 42 − 𝑆𝑇 

𝑆𝑇 > 50 2 ⋅ (𝑆𝑇 − 50) − 8 
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Figure III.97 Strap 
 

 
 

Figure III.98 Strap. Source: Bloomberg® 
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Figure III.99 Strap. Terminal Payoff Source: Bloomberg® 
 

The last strategy we present is the strangle, also called bottom vertical combination, according to which the 
investor buys a put and a call option, with the same maturity but different strike prices. The strike price of the 

call, 𝐾2 is higher than the strike of the put, 𝐾1. 
 

Stock Price Range Payoff long put (1) Payoff long call (2) Final Payoff 

𝑆𝑇 ≤ 𝐾1 𝐾1 − 𝑆𝑇 0 𝐾1 − 𝑆𝑇 

𝐾1 < 𝑆𝑇 < 𝐾2 0 0 0 

𝑆𝑇 ≥ 𝐾2 0 𝑆𝑇 − 𝐾2 𝑆𝑇 − 𝐾2 
 

Table III.51 Strangle 
 

Considering the initial investment of the strategy, we have Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
− = −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 

 

Stock Price Range Payoff long put (1) Payoff long call (2) Final Payoff 

𝑆𝑇 ≤ 𝐾1 𝐾1 − 𝑆𝑇 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝐾1 − 𝑆𝑇 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝐾1 < 𝑆𝑇 < 𝐾2 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

𝑆𝑇 ≥ 𝐾2 −𝑝𝑟𝑒𝑚𝑖𝑢𝑚1 𝑆𝑇 − 𝐾2 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚2 𝑆𝑇 − 𝐾2 + Δ𝑝𝑟𝑒𝑚𝑖𝑢𝑚
−  

 

Table III.52 Strangle with premiums 
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A strangle is in fact similar to a straddle: the investor bets that the stock will have a strong price change without 
overreacting on direction. In a strangle, however, the price will have to move more compared to the straddle 
in order to make a profit. 
 
 
Here is an example of a Strangle strategy: 
 

Long position in a put, K1 = 48, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 2 

Long position in a call, K2 = 52, 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 1 
 

 

S(T) Buy Put (1) Initial Investment Buy Call (2) Initial Investment Final Pay-off 

43 5 -2 0 -1 2 

44 4 -2 0 -1 1 

45 3 -2 0 -1 0 

46 2 -2 0 -1 -1 

47 1 -2 0 -1 -2 

48 0 -2 0 -1 -3 

49 0 -2 0 -1 -3 

50 0 -2 0 -1 -3 

51 0 -2 0 -1 -3 

52 0 -2 0 -1 -3 

53 0 -2 1 -1 -2 

54 0 -2 2 -1 -1 

55 0 -2 3 -1 0 

56 0 -2 4 -1 1 

57 0 -2 5 -1 2 

58 0 -2 6 -1 3 

59 0 -2 7 -1 4 

60 0 -2 8 -1 5 

61 0 -2 9 -1 6 

62 0 -2 10 -1 7 

 

Table III.53 Strangle 

Stock Price Range Total Payoff 

𝑆𝑇 ≤ 48 48 − 𝑆𝑇 − 3 = 45 − 𝑆𝑇 

48 < 𝑆𝑇 < 52 −2− 1 = −3 

𝑆𝑇 ≥ 52 𝑆𝑇 − 52 − 3 = 𝑆𝑇 − 55 
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Figure III.100 Strangle 

 

 
 

Figure III.101 Strangle. Source: Bloomberg® 
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Figure III.102 Strangle. Terminal Payoff. Source: Bloomberg® 
 

 

On the other hand, if the price level of the stock at maturity is close to the central value, the downside risk is 
lower in the strangle than in a straddle. The profit pattern obtained with a strangle actually depends on how 

close the strike prices 𝐾1 and 𝐾2 are to each other: the further apart they are, the lower the downside risk and 
the more distant the price level of the underlying must be in order to make a profit. 
 

In this chapter I have discussed the most widespread techniques using options to produce interesting patterns 

between a stock price level and profit/hedge. If European options expiring at time 𝑇 were available for every 

single possible strike price, any generic pay-off at time 𝑇 could theoretically be obtained. The easiest way to 
demonstrate this concept is to consider a series of butterfly spreads. The correct combination of a large number 
of such strategies can approximate a generic pay-off. 
 
“With derivatives you can have almost any payoff pattern you want. If you can draw it on paper, or describe it in words, someone 

can design a derivative that gives you that payoff.” 
 

Fischer Black 
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Figure III.103 Option Strategy Menu. OVME Bloomberg® module 
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III.4 EXOTIC OPTIONS 
 
 

Derivatives such as European/American call/put options are plain-vanilla products as we have seen in the 
previous chapters. They have well-defined characteristics, and they are actively traded and listed by brokers on 
a regular basis. A different, and quite interesting aspect of the OTC market is represented by the wide variety 
of non-standard (or exotic) products. These products are important to investment banks, even if they represent 
a small part of their portfolio, because they generally allow much higher intermediary margins than those on 
standard products. 
 

Such Exotic products have been created for several reasons. First of all, they answer genuine hedging needs 
of the operators, with the goal of offsetting the Greeks of their portfolio. Then, they are supported by tax, 
accounting, legal or regulatory reasons that make them attractive to company treasurers, and lastly, they are 
structured to reflect a treasurer’s particular opinion on the future evolution of a market variable. 
 

It should be noted that options can be sporadically designed with a speculative purpose by financial institutions 
to make them appear more interesting than they really are to the eyes of a careless treasurer. 
 

This section describes the main types of single-asset exotic European options and provide analytical models 
(exact or approximate) for estimating their values. The analyst must take into account that if he deems the 
approximation of the closed valuation formula unsatisfactory for his needs, he can resort to the implementation 
of a numerical methodology (stochastic trees or Monte Carlo). Given the nature of exotic options, which pay-
off can be subjected to strong customizations, it becomes almost a titanic undertaking to provide an exhaustive 
classification of all possible types. Furthermore, it is not always possible to derive a closed valuation formula in 
accordance with the Black-Scholes-Merton pricing framework, it often becomes necessary to use a numerical 
algorithm. 
 

The notations for exotic options are consistent with those already used to describe plain-vanilla options. 
 

We start with Forward start options, which are derivatives characterized by a deferred start over time, i.e.,  

given times 𝑡0, 𝑡1 and 𝑇, this type of options are issued in 𝑡0, but start to be effective from time 𝑡1 with a 

residual life equal to 𝑇 − 𝑡1 and with strike price 𝐾 = 𝑆(𝑡1). In other words, the strike price 𝐾 will be equal to 

the price level that the underlying will assume at time 𝑡1. 
 

The value of a forward start option is given by the current value of an at-the money option, with a time to 

maturity equal to 𝑇 − 𝑡1. In fact, discounting the potential final value of a Forward Start at the initial date, it 
can be expressed as:  
 

𝑉𝑎𝑙𝑢𝑒 = exp[−𝑟(𝑇 − 𝑡0)] ⋅ 𝐸[max(𝑆𝑇 − 𝑆𝑡1; 0)]  (Eq. III.85) 
 

Analyzing the formula, it can be observed that the final value of the financial instrument depends on: 
 

- The price level 𝑆𝑡1 assumed by the financial asset at time 𝑡1. 

- The price level 𝑆𝑇 assumed by the underlying security at the expiry 𝑇 of the deferred option. 
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However, this latter value is a function of the price reached by the underlying financial asset at time 𝑡1, since 
the two values are linked by the relationship: 
 

𝑆𝑇 = 𝑆𝑡1 ⋅ exp[+𝑟 ⋅ (𝑇 − 𝑡1)] (Eq. III.86) 
 

Therefore, the expression of the option value can be rewritten: 
 

𝑉𝑎𝑙𝑢𝑒 = exp[−𝑟(𝑇 − 𝑡0)] ⋅ 𝐸(𝑆𝑇) ⋅ 𝐸(𝑆𝑇|𝑆𝑡1) ⋅ [max(𝑆𝑇 − 𝑆𝑡1; 0)] (Eq. III.87) 
 

The terms 𝐸(𝑆𝑇) and 𝐸(𝑆𝑇|𝑆𝑡1) mean that the option pay-off depends on the expected value that the price of 

the underlying security will assume at time 𝑡1 and at time 𝑇, i.e. respectively 𝑆𝑡1 and 𝑆𝑇. 
 

The term [max(𝑆𝑇 − 𝑆𝑡1; 0)] represents the pay-off of an at-the-money plain vanilla call with a time to 

maturity equal to 𝑇 − 𝑡1. Thus, at time 𝑡1, both the price level of the underlying security and that of the strike 

price are equal to 𝑆𝑡1; the latter, in turn, is a function of the current spot price as follows: 
 

𝑆𝑡1 = 𝑆0 ⋅ exp[+𝑟 ⋅ (𝑡1 − 𝑡0)] (Eq. III.88) 
 

Bearing these relationships in mind, the payoff of a forward start option can be rewritten: 
 

𝑉𝑎𝑙𝑢𝑒 𝐶𝑎𝑙𝑙 = exp[−𝑟(𝑡1 − 𝑡0)] ⋅ 𝐸(𝑆𝑡1) ⋅ [𝑐(𝑆𝑡1 , 𝑆𝑡1 , 𝑇 − 𝑡1)] (Eq. III.89) 
 

𝑉𝑎𝑙𝑢𝑒 𝑃𝑢𝑡 = exp[−𝑟(𝑡1 − 𝑡0)] ⋅ 𝐸(𝑆𝑡1) ⋅ [𝑝(𝑆𝑡1 , 𝑆𝑡1 , 𝑇 − 𝑡1)] (Eq. III.90) 
 

Having obtained an analytically tractable form of pay-off, it is possible to reach a closed valuation formula for 
this type of derivative. 

 

𝑐 = 𝑆 exp[(𝑏 − 𝑟)(𝑡1 − 𝑡0)]{exp[(𝑏 − 𝑟) ⋅ (𝑇 − 𝑡1)]𝑁(𝑑1) − exp[−𝑟(𝑇 − 𝑡1)]𝑁(𝑑2)}  (Eq. III.91) 
 

𝑝 = 𝑆 exp[(𝑏 − 𝑟)(𝑡1 − 𝑡0)]{exp[−𝑟(𝑇 − 𝑡1)]𝑁(−𝑑2) − exp[(𝑏 − 𝑟)(𝑇 − 𝑡1)]𝑁(−𝑑1)} (Eq. III.92) 
 

Where: 𝑑1 =
(𝑏+𝜎2/2)⋅(𝑇−𝑡1)

𝜎√𝑇−𝑡1
 and 𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡1 

 

With 𝑆 being the current price of the underlying security, 𝑟 the risk-free rate, 𝑏 the cost-of-carry, 𝑡0 the initial 

valuation time (if today 𝑡0 = 0), 𝑡1 the maturity date of the forward start option, 𝜎 being the volatility of the 

underlying, and 𝑇 being the time to maturity of the option expressed in year fractions. 
 
Let us examine a practical example, considering an investor who goes long on a call option with a 3 month 
delayed departure from today. The time to maturity is one year from the signing of the derivative contract (i.e. 
today). The market parameters and financial characteristics are the following: 
 

𝑆0 = 30, 𝑟 = 2%, 𝑏 = 1%, 𝜎 = 25%, 𝑡1 = 0.25, 𝑇 = 1. 
 

𝑑1 =
(𝑏+𝜎2/2)⋅(𝑇−𝑡1)

𝜎√𝑇−𝑡1
= 0.142894,   𝑁(𝑑1) = 0.556813   
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𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡1 = −0.07361,   𝑁(𝑑2) = 0.470659   
 

𝑐 = 𝑆 exp[(𝑏 − 𝑟)(𝑡1 − 𝑡0)]{exp[(𝑏 − 𝑟) ⋅ (𝑇 − 𝑡1)]𝑁(𝑑1) − exp[−𝑟(𝑇 − 𝑡1)]𝑁(𝑑2)}   
 

𝑐 = 29.925 ⋅ {0.992528 ⋅ 𝑁(𝑑1) − 0.985112 ⋅ 𝑁(𝑑2)} = 2.6633  
 

 
A second type of exotic option is constituted by Cliquet options, also known as Rachet Options, which pay 
the maximum between zero and the sum of the appreciations relating to the price of the underlying financial 
asset, recorded in certain time intervals over the life of the option. 
 

Appreciations are calculated as the difference between the price of the underlying asset, effective at the end of 
each reporting period, and the value itself, recorded on the previous Strike Price reset date. Cliquet  options are 
therefore options whose exercise price is determined at periodic intervals with reference to values that reflect 
market prices. The valuation of this financial instrument using closed formulas can be obtained as the sum of 
the value of a plain vanilla option, with a time to maturity equal to the first reporting period, and those relating 
to a series of forward start options, which are equal to the number of sub-periods, stipulated in the option 
contract.  
 

Therefore, in mathematical terms, we have: 
 

𝐶𝑎𝑙𝑙𝐶𝑙𝑖𝑞𝑢𝑒𝑡 = [𝑆 ⋅ exp[−𝑞(𝑡1 − 𝑡0)]] ⋅ 𝑁(𝑑1) − 𝐾 ⋅ exp[−𝑟(𝑡1 − 𝑡0)]𝑁(𝑑2) +  
 

+∑ 𝑆[exp[−𝑞(𝑡𝑖 − 𝑡0)]𝑁(𝑑1
∗) − exp[−𝑟(𝑡𝑖 − 𝑡𝑖−1) − 𝑞(𝑡𝑖−1 − 𝑡0)]𝑁(𝑑2

∗)]𝑛
𝑖=2   (Eq. III.93) 

 

𝑃𝑢𝑡𝐶𝑙𝑖𝑞𝑢𝑒𝑡 = 𝐾 ⋅ exp[−𝑟(𝑡1 − 𝑡0)]𝑁(−𝑑2) − [𝑆 ⋅ exp[−𝑞(𝑡1 − 𝑡0)]] ⋅ 𝑁(−𝑑1) + 
 

+∑ 𝑆[exp[−𝑟(𝑡𝑖 − 𝑡𝑖−1) − 𝑞(𝑡𝑖−1 − 𝑡0)]𝑁(−𝑑2
∗) − exp[−𝑞(𝑡𝑖 − 𝑡0)]𝑁(−𝑑1

∗)]𝑛
𝑖=2  (Eq. III.94) 

 

With: 
 

𝑑1 =
ln(

𝑆

𝐾
)+(𝑟−𝑞+

𝜎2

2
)⋅(𝑡1−𝑡𝑖−1)

𝜎√𝑡1−𝑡0
,   𝑑2 = 𝑑1 − 𝜎√𝑡1 − 𝑡0  (Eq. III.95) 

 

𝑑1
∗ =

(𝑟−𝑞+
𝜎2

2
)⋅(𝑡𝑖−𝑡𝑖−1)

𝜎√𝑡𝑖−𝑡𝑖−1
,   𝑑2

∗ = 𝑑1
∗ − 𝜎√𝑡𝑖 − 𝑡1  (Eq. III.96) 

 
Unlike vanilla options, Binary options or Digital options are characterized by a discontinuous pay-off, as 
their final value depends on the fact that the price of the underlying asset does or does not satisfy a particular 
condition at maturity. European  binary options are divided into three different types: 
 

[A] Cash-or-Nothing Options. 
[B] Asset-or-Nothing Options. 
[C] Gap Options. 
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[A] Cash-or-Nothing Options 
 

Cash-or-Nothing options provide for the payment of a fixed sum equal to 𝑋 if, in the case of a call option, 

the price of the underlying security at maturity exceeds the exercise price 𝐾, otherwise the investor will receive 
nothing. Conversely, in the case of a purchase of a binary put option, the price of the underlying security should 

be lower than the Strike Price 𝐾 to obtain the sum 𝑋. The pay-off of a Cash-or-Nothing Option can be 
represented as follows: 
 

Call: If 𝑆(𝑇) ≤ 𝐾 → 𝑃𝑎𝑦𝑂𝑓𝑓 = 0; otherwise 𝑃𝑎𝑦𝑂𝑓𝑓 = 𝑋 (Eq. III.97) 
 

Put: If 𝑆(𝑇) ≥ 𝐾 → 𝑃𝑎𝑦𝑂𝑓𝑓 = 0; otherwise 𝑃𝑎𝑦𝑂𝑓𝑓 = 𝑋 (Eq. III.98) 
 

The price of this derivative can be calculated analytically using the Reiner and Rubinstein formulas: 
 

𝐶𝑎𝑙𝑙 = 𝑋 ⋅ exp(−𝑟𝑇)𝑁(𝑑) (Eq. III.99) 
 

𝑃𝑢𝑡 = 𝑋 ⋅ exp(−𝑟𝑇)𝑁(−𝑑) (Eq. III.100) 
 

𝑑 =
ln(

𝑆

𝐾
)+(𝑏−𝜎2/2)𝑇

𝜎√𝑇
 (Eq. III.101) 

 

Where 𝑆 is the current price of the underlying, 𝑟 is the risk-free rate, 𝑏 = 𝑟 − 𝑞 represents the cost of carry,  𝜎 

is the underlying volatility,  𝑇 is the time to maturity in years, 𝐾 is the strike price and 𝑋 is the amount of money 
of the pay-off. 
 

We now present an example regarding the Reiner and Rubinstein model. We wish to compute the value of a 
Cash-or-Nothing put option with 9 months to maturity. The spot level is 100, the strike price is 80, the cash 
payout is 10, the risk-free rate is 1.5% per annum and the annualized volatility is 25%. 
 

Thus: 𝑆 = 100, 𝐾 = 80, 𝑋 = 10, 𝑏 = 𝑟 = 0.015, 𝜎 = 0.25, 𝑇 = 0.75 
 

𝑑 =
ln(

𝑆

𝐾
)+(𝑏−𝜎2/2)𝑇

𝜎√𝑇
=

ln(
100

80
)+(0.015−0.252/2)⋅0.75

0.25⋅√0.75
= 0.974364  

 

𝑁(−𝑑) = 𝑁(−0.974364) = 0.164938  
 

𝑃𝑢𝑡 = 𝑋 ⋅ exp(−𝑟𝑇)𝑁(−𝑑) = 10 ⋅ exp(−0.015 ⋅ 0.75) ⋅ 0.164938 = 1.630927  
 
[B] Asset-or-Nothing Options 
 

Asset-or-Nothing options provide for the payment of the value of a predetermined underlying security in 
favor of the buyer if, upon expiry of the call, its price level is higher than the Strike Price. For the put option, 
the underlying price must be lower than the Strike Price. The Pay-off for this category of derivatives can be 
represented as follows: 
 

Call: If 𝑆(𝑇) ≤ 𝐾 → 𝑃𝑎𝑦𝑂𝑓𝑓 = 0; otherwise 𝑃𝑎𝑦𝑂𝑓𝑓 = 𝑆(𝑇) (Eq. III.102) 
 

Put: If 𝑆(𝑇) ≥ 𝐾 → 𝑃𝑎𝑦𝑂𝑓𝑓 = 0; otherwise 𝑃𝑎𝑦𝑂𝑓𝑓 = 𝑆(𝑇) (Eq. III.103) 
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The Cox and Rubinstein analytical pricing formulas are obtained by replacing the sum of money 𝑋 with the 
price of the asset on the expiry date, in the equations of case [A]. 
 

𝐶𝑎𝑙𝑙 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]⋅ 𝑁(𝑑) ,  𝑃𝑢𝑡 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]⋅ 𝑁(−𝑑) (Eq. III.104) 
 

𝑑 =
ln(

𝑆

𝐾
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
 (Eq. III.105) 

 

Here is an example of the use of the Cox and Rubinstein model for calculating the value of an Asset-or-Nothing 
put option with 9 months to maturity. The price level is 100, the strike price is 80, the risk-free rate is 1.5% per 
annum and the annualized volatility is 25%. 
 

Thus: 𝑆 = 100, 𝐾 = 80, 𝑏 = 𝑟 = 0.015, 𝜎 = 0.25, 𝑇 = 0.75 
 

𝑑 =
ln(

𝑆

𝐾
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
=

ln(
100

80
)+(0.015+0.252/2)⋅0.75

0.25⋅√0.75
= 1.190871  

 

𝑁(−𝑑) = 𝑁(−1.190871) = 0.116852  
 

𝑃𝑢𝑡 = 𝑆 ⋅ exp[(𝑏 − 𝑟) ⋅ 𝑇]𝑁(−𝑑) =100 ⋅ exp(−0.015 ⋅ 0.75) ⋅ 0.116852 = 11.5545 
 

 
[C] Gap Options 
 

A call gap option provides for the payment of the difference between the value of the underlying financial asset 

𝑆(𝑇) and a specific level 𝑍, with 𝐾 ≠ 𝑍, under the condition that the underlying price exceeds the strike price 

set equal to 𝐾. Conversely, in the case of a purchase of a put gap option, the investor will have the right to 

receive the difference between a predetermined level 𝑍 of the underlying asset and its price at maturity, 

conditional on the fact that the final price is lower than the strike price 𝐾. In short, the Pay-Off of a Gap 
Option can be represented as: 
 

Call: If 𝑆(𝑇) ≤ 𝐾 → 𝑃𝑎𝑦𝑂𝑓𝑓 = 0; otherwise 𝑃𝑎𝑦𝑂𝑓𝑓 = 𝑆(𝑇) − 𝑍 (Eq. III.106) 
 

Put: If 𝑆(𝑇) ≥ 𝐾 → 𝑃𝑎𝑦𝑂𝑓𝑓 = 0; otherwise 𝑃𝑎𝑦𝑂𝑓𝑓 = 𝑍 − 𝑆(𝑇) (Eq. III.107) 
 
The analytical pricing formulas of this derivative were developed by Reiner and Rubinstein and they are quite 
similar to the traditional Black-Scholes-Merton formula: 
 

𝐶𝑎𝑙𝑙 = 𝑆 exp[(𝑏 − 𝑟)𝑇]𝑁(𝑑1) − 𝑍 exp(−𝑟𝑇)𝑁(𝑑2) (Eq. III.108) 
 

𝑃𝑢𝑡 = 𝑍 exp(−𝑟𝑇)𝑁(−𝑑2) − 𝑆 exp[(𝑏 − 𝑟)𝑇]𝑁(−𝑑1) (Eq. III.109) 
 

𝑑1 =
ln(

𝑆

𝐾
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
,   𝑑2 = 𝑑1 − 𝜎√𝑇 (Eq. III.110) 

 

Let us now examine an example involving the Reiner and Rubinstein model considering a gap call option that 
expires in six months. The spot price of the share on which the exotic option is written is 50, the first strike 
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price is 50, the pay-off strike price is 54, the risk-free rate is 1% p.a., and the volatility is 20% p.a. In short, 𝑆 =
50, 𝐾 = 50, 𝑍 = 54, 𝑏 = 𝑟 = 0.01, 𝜎 = 0.20, 𝑇 = 0.5. 
We calculate and obtain: 
 

𝑑1 = 0.106066, 𝑑2 = −0.03536, 𝑁(𝑑1) = 0.542235, 𝑁(𝑑2) = 0.485898,  𝑐 = 1.004. 
 

It should be highlighted that the pay-off of this exotic option can be negative, depending on the price levels of 

𝐾 and 𝑍. Repricing the previous contract with 𝑍 = 57, we obtain a negative value: 𝑐 = −0.44631. 
 

Another particular kind of exotic option is the Chooser Option (also called As-you-like-it option), which  

allows the buyer to choose whether the option in his possession is a call or a put, at a certain date 𝑡1. In other 

words, the buyer of such a derivative initially pays a premium to decide at a later time 𝑡1 whether to take a 
bullish (a long call position) or a bearish (a long put position) position on the underlying security. The pay-off 
of a chooser option can be summarized as follows: 
 

𝑃𝑎𝑦𝑂𝑓𝑓 = max(𝐶𝑎𝑙𝑙, 𝑃𝑢𝑡) (Eq. III.111) 
 

By making the value explicit, as a function of the underlying asset 𝑆(𝑡1), the residual time to maturity (𝑇𝐶 − 𝑡1) 
and (𝑇𝑃 − 𝑡1), the Strike Price 𝐾𝐶 and 𝐾𝑃, we obtain: 
 

𝑃𝑎𝑦𝑂𝑓𝑓 = max[𝐶𝑎𝑙𝑙(𝑆(𝑡1), 𝑇𝐶 − 𝑡1, 𝐾𝐶), 𝑃𝑢𝑡(𝑆(𝑡1), 𝑇𝑃 − 𝑡1, 𝐾𝑃)] (Eq. III.112) 
 

The holder of a chooser option therefore comes into possession of a right which expires at time 𝑡1 and which 

allows him to choose between a call option with strike price equal to 𝐾𝐶 and expiry 𝑇𝐶 or a put option with 

strike price 𝐾𝑃 and expiry 𝑇𝑃 . The simplest case occurs when the strike price and the time to maturity price 

coincide for both the Call and the Put options: 𝐾𝐶 = 𝐾𝑃 = 𝐾 and 𝑇𝐶 = 𝑇𝑃 = 𝑇. The derivative that satisfies 
this characteristic is called Simple Chooser Option. The analytical pricing formula for the valuation of such a 
contract was developed by Rubinstein: 
 

𝑉𝑎𝑙𝑢𝑒 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(𝑑) − 𝐾 ⋅ exp(−𝑟𝑇) ⋅ 𝑁(𝑑 − 𝜎√𝑇) + 
 

−𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(−𝑦) + 𝐾 ⋅ exp(−𝑟𝑇)𝑁(−𝑦 + 𝜎√𝑡1) (Eq. III.113) 
 

Where: 
 

𝑑 =
ln(

𝑆

𝐾
)+(𝑏+𝜎2/2)⋅𝑇

𝜎√𝑇
  (Eq. III.114) 

 

𝑦 =
ln(

𝑆

𝐾
)+𝑏𝑇+𝜎2𝑡1/2

𝜎√𝑡1
  (Eq. III.115) 

 

We now present a practical example using the Rubinstein model for the valuation of a simple chooser option 
with a six month maturity. After three months, the holder must decide whether the purchased option is a call 
or a put. The spot price level of the underlying equity is 50, the strike price is 50 and the risk-free rate is 2% 

p.a., and volatility is 25% p.a. In short: 𝑆 = 50, 𝐾 = 50, 𝑇 = 0.5, 𝑡1 = 0.25, 𝑟 = 0.02, 𝑏 = 0.02, 𝜎 = 0.25  
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The calculations aimed at deciding which is best between call or put are the following: 
 

𝑑 =
ln(

𝑆

𝐾
)+(𝑏+𝜎2/2)⋅𝑇

𝜎√𝑇
=

ln(
50

50
)+(0.02+0.252/2)⋅0.5

0.25√0.5
= 0.144957  

 

𝑦 =
ln(

𝑆

𝐾
)+𝑏𝑇+𝜎2𝑡1/2

𝜎√𝑡1
=

ln(
50

50
)+0.02⋅0.5+0.252⋅0.25/2

0.25√0.25
= 0.1425  

 

𝑁(𝑑) = 0.5576, 𝑁(𝑑 − 𝜎√𝑇) = 0.4873, 𝑁(−𝑦) = 0.4433, 𝑁(−𝑦 + 𝜎√𝑡1) = 0.4930  
 

𝑉𝑎𝑙𝑢𝑒 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(𝑑) − 𝐾 ⋅ exp(−𝑟𝑇) ⋅ 𝑁(𝑑 − 𝜎√𝑇) +  
 

−𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(−𝑦) + 𝐾 ⋅ exp(−𝑟𝑇)𝑁(−𝑦 + 𝜎√𝑡1) = 5.99696  
 

In the case that the maturity date and the strike price of the options are different, 𝑇𝐶 ≠ 𝑇𝑃 and 𝐾𝐶 ≠ 𝐾𝑃 it is 
not possible to apply the call-put parity and therefore the valuation in the closed formula becomes complicated. 
Derivatives characterized by this peculiarity are defined as Complex Chooser Options. Thus, a complex 

chooser option allows the holder to choose whether the option is a standard call, after an interval 𝑡1, with 

maturity 𝑇𝐶 and strike price 𝐾𝐶 or a put with maturity 𝑇𝑃 and strike price 𝐾𝑃. The analytical valuation formulas 
were first studied by Rubinstein and subsequently by Nelken: 
 

𝑉𝑎𝑙𝑢𝑒 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇𝐶] ⋅ 𝑀(𝑑1, 𝑦1, 𝜌1) − 𝐾𝐶 ⋅ exp(−𝑟𝑇𝐶)𝑀(𝑑2, 𝑦1 − 𝜎√𝑇𝐶 , 𝜌1) +  
 

−𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇𝑃] ⋅ 𝑀(−𝑑1, −𝑦2, 𝜌2) + 𝐾𝑃 ⋅ exp(−𝑟𝑇𝑃)𝑀(−𝑑2, −𝑦2 + 𝜎√𝑇𝑃 , 𝜌2)  (Eq. III.116) 
 

𝑑1 =
ln(

𝑆

𝐼
)+(𝑏+𝜎2/2)⋅𝑡1

𝜎√𝑡1
, 𝑑2 = 𝑑1 − 𝜎√𝑡1, 𝑦1 =

ln(
𝑆

𝐾𝐶
)+(𝑏+𝜎2/2)⋅𝑇𝐶

𝜎√𝑇𝐶
,  𝑦2 =

ln(
𝑆

𝐾𝑃
)+(𝑏+𝜎2/2)⋅𝑇𝑃

𝜎√𝑇𝑃
   

𝜌1 = √
𝑡1

𝑇𝐶
  and 𝜌2 = √

𝑡1

𝑇𝑃
  (Eq. III.117) 

 

Where: 
 

𝑀(𝑥, 𝑦, 𝜌 ) is the bivariate cumulative normal probability distribution. 
 

𝐼 is the solution of the following equation: 
 

𝐼 ⋅ exp[(𝑏 − 𝑟)(𝑇𝐶 − 𝑡1)] ⋅ 𝑁(𝑧1) − 𝐾𝐶 ⋅ exp[−𝑟 ⋅ (𝑇𝐶 − 𝑡1)] ⋅ 𝑁(𝑧1 − 𝜎√𝑇𝐶 − 𝑡1) +  
 

𝐼 ⋅ exp[(𝑏 − 𝑟)(𝑇𝑃 − 𝑡1)] ⋅ 𝑁(−𝑧2) − 𝐾𝑃 ⋅ exp[−𝑟(𝑇𝑃 − 𝑡1)] ⋅ 𝑁(−𝑧2 − 𝜎√𝑇𝑃 − 𝑡1) = 0  (Eq. III.118) 
 

With: 
 

𝑧1 =
ln(

𝐼

𝐾𝐶
)+(𝑏+𝜎2/2)⋅(𝑇𝐶−𝑡1)

𝜎√𝑇𝐶−𝑡1
  and  𝑧2 =

ln(
𝐼

𝐾𝑃
)+(𝑏+𝜎2/2)⋅(𝑇𝑃−𝑡1)

𝜎√𝑇𝑃−𝑡1
  (Eq. III.119) 
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Since the expression is not analytically invertible, it must be solved by implementing a numerical root-finding 
algorithm, typically the Newton-Raphson iterative procedure. Let us present an example using the Rubinstein-
Nelken model for the valuation of a complex chooser option which gives the holder the right to choose whether 
the option is a call with a maturity of 6 months and a strike price of 55 or a put with 7 months to maturity and 
a strike price of 48. The time for the investor to decide the nature of the option is 3 months. In short, the 
market data are: price level of the underlying equal to 50, risk-free rate of 10%, dividend yield equal to 5% p.a., 

volatility is 35%. Referring to the set of formulas presented, we have: 𝑆 = 50, 𝐾𝐶 = 55, 𝐾𝑃 = 48, 𝑇𝐶 = 0.5, 

𝑇𝑃 = 0.5833, 𝑡1 = 0.25, 𝑟 = 0.10, 𝜎 = 0.35 and 𝑏 = 𝑟 − 𝑞 = 0.1 − 0.05 = 0.05 
 

The first step is to find the critical value for 𝐼, and for this pricing problem it is 𝐼 = 51.1158. 
 

𝐼 ⋅ exp[(𝑏 − 𝑟)(𝑇𝐶 − 𝑡1)] ⋅ 𝑁(𝑧1) − 𝐾𝐶 ⋅ exp[−𝑟 ⋅ (𝑇𝐶 − 𝑡1)] ⋅ 𝑁(𝑧1 − 𝜎√𝑇𝐶 − 𝑡1) +  

𝐼 ⋅ exp[(𝑏 − 𝑟)(𝑇𝑃 − 𝑡1)] ⋅ 𝑁(−𝑧2) − 𝐾𝑃 ⋅ exp[−𝑟(𝑇𝑃 − 𝑡1)] ⋅ 𝑁(−𝑧2 − 𝜎√𝑇𝑃 − 𝑡1) = 0  

𝐼 exp[(−0.05)(0.25)]𝑁(𝑧1) − 55 exp[−0.1 ⋅ (0.25)] ⋅ 𝑁(𝑧1 − 0.35√0.25) +  

𝐼 exp[(−0.05)(0.3333)]𝑁(−𝑧2) − 48 exp[−0.1(0.3333)]𝑁(−𝑧2 − 0.35√0.3333) = 0  
 

𝑧1 =
ln(

𝐼

𝐾𝐶
)+(𝑏+𝜎2/2)⋅(𝑇𝐶−𝑡1)

𝜎√𝑇𝐶−𝑡1
=

ln(
𝐼

55
)+(0.05+0.352/2)⋅(0.25)

0.35√0.25
  

 

 𝑧2 =
ln(

𝐼

𝐾𝑃
)+(𝑏+𝜎2/2)⋅(𝑇𝑃−𝑡1)

𝜎√𝑇𝑃−𝑡1
=

ln(
𝐼

48
)+(0.05+0.352/2)⋅(0.3333)

0.35⋅√0.3333
  

Implementing a root-finding algorithm we obtain  𝐼 = 51.1158. We proceed and calculate: 
 

𝑑1 =
ln(

𝑆

𝐼
)+(𝑏+𝜎2/2)⋅𝑡1

𝜎√𝑡1
=

ln(
50

50.1158
)+(0.05+0.352/2)⋅0.25

0.35⋅√0.25
= 0.032811  

𝑑2 = 0.032811 − 0.35 ⋅ √0.25 = −0.14219  
 

𝑦1 =
ln(

𝑆

𝐾𝐶
)+(𝑏+𝜎2/2)⋅𝑇𝐶

𝜎√𝑇𝐶
=

ln(
50

55
)+(0.05+0.352/2)⋅0.5

0.35⋅√0.5
= −0.16035  

 

𝑦2 =
ln(

𝑆

𝐾𝑃
)+(𝑏+𝜎2/2)⋅𝑇𝑃

𝜎√𝑇𝑃
=

ln(
50

48
)+(0.05+0.352/2)⋅0.5833

0.35⋅√0.5833
= 0.3955  

𝜌1 = √
𝑡1

𝑇𝐶
= √

0.25

0.5
= 0.7071,  𝜌2 = √

𝑡1

𝑇𝑃
= √

0.25

0.5833
= 0.6547,  𝑀(𝑑1, 𝑦1, 𝜌1)  = 0.3464,     

𝑀(𝑑2, 𝑦1 − 𝜎√𝑇𝐶 , 𝜌1) = 0.2660,  𝑀(−𝑑1, −𝑦2, 𝜌2)  = 0.2725,  𝑀(−𝑑2, −𝑦2 + 𝜎√𝑇𝑃 , 𝜌2) = 0.3601   
 

𝑉𝑎𝑙𝑢𝑒 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇𝐶] ⋅ 𝑀(𝑑1, 𝑦1, 𝜌1) − 𝐾𝐶 ⋅ exp(−𝑟𝑇𝐶)𝑀(𝑑2, 𝑦1 − 𝜎√𝑇𝐶 , 𝜌1) +  

−𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇𝑃] ⋅ 𝑀(−𝑑1, −𝑦2, 𝜌2) + 𝐾𝑃 ⋅ exp(−𝑟𝑇𝑃)𝑀(−𝑑2, −𝑦2 + 𝜎√𝑇𝑃 , 𝜌2) =  

𝑉𝑎𝑙𝑢𝑒 = 50 ⋅ exp[(0.05 − 0.1) ⋅ 0.5] ⋅ 0.3464 − 55 ⋅ exp(−0.1 ⋅ 0.5) ⋅ 0.2660 +  

−50exp[(0.05 − 0.1) ⋅ 0.5833] ⋅ 0.2725 + 48 exp(−0.05 ⋅ 0.5833) ⋅ 0.3601 = 6.0479  
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Yet another type of exotic options is constituted by Compound options which are options written on other 
options, i.e. the underlying asset is an option rather than a stock or an index. In other words, Compound 

Options give the holder the right to buy (Call) or sell (Put) at maturity at a price 𝐾𝐶𝑂 (compound strike) defined 

ex-ante, an option on a certain underlying financial asset, which starts at a deferred time 𝑡1 and expiring at a 

later time 𝑇, upon payment of a strike price equal to 𝐾 (plain vanilla strike price). There are four different types 
of possible compositions: 
 

- Call on call 𝑐𝐶𝐴𝐿𝐿,  

- Call on put 𝑐𝑃𝑈𝑇, 

- Put on call 𝑝𝐶𝐴𝐿𝐿  

- Put on put 𝑝𝑃𝑈𝑇. 
 

Indicating with 𝑡1 the expiration date of the compound option, with 𝑇 the maturity date of the underlying 

option, with 𝑡1 < 𝑇 and with 𝐾𝐶𝑂 and 𝐾 the strike price of the compound option and of the underlying option, 
then, respectively the pay-offs for the aforementioned four categories of compound options are defined as 
follows: 
 

 
 
From the analysis of the potential payoff values relating to the four categories of compound options, we can 
see that their value is a function of the value of the underlying options. Therefore, to value a compound option 

it is necessary to know the critical price 𝐼 = 𝑆∗(𝑡1) of the financial asset covered by the option underlying the 

compound option such as to make the latter at-the-money with respect to the strike price 𝐾𝐶𝑂. In formal terms, 

if the value of the underlying option is expressed as a function of the value of the underlying stock 𝐼 = 𝑆∗(𝑡1), 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

274 

the residual life 𝑇 − 𝑡1 and the strike price 𝐾, the above mentioned break-even condition can be written as: 
 

𝑈𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑂𝑝𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒(𝐼, 𝑇 − 𝑡1, 𝐾) = 𝐾𝐶𝑂 (Eq. III.120) 
 

Based on this condition it follows that, in the case of a call option on call (𝑐𝐶𝐴𝐿𝐿) and put on put (𝑝𝑃𝑈𝑇), if it 

occurs that 𝑆(𝑡1) > 𝑆
∗(𝑡1) then the two compound options will be exercised at expiry 𝑡1. On the other hand, 

in the case of a call option on put (𝑐𝑃𝑈𝑇) and a put option on call (𝑝𝐶𝐴𝐿𝐿), if it occurs that 𝑆(𝑡1) < 𝑆
∗(𝑡1) then 

the two compound options will be exercised at expiry 𝑡1. Therefore, the expiry value of a compound option 

can be written as a function of the value that 𝑆 will assume on expiry 𝑡1 of the compound option. The valuation 
formulas for this type of exotic derivative were initially published by Geske in 1977 and 1979. The solution was 
subsequently addressed and discussed by researchers Hodges and Selby in 1987 and further explored by 
Rubinstein in 1991. 
 

𝑐𝐶𝐴𝐿𝐿 = Sexp[(𝑏 − 𝑟)𝑇]𝑀(𝑧1, 𝑦1, 𝜌) − 𝐾 exp(−𝑟𝑇)𝑀(𝑧2, 𝑦2, 𝜌) − 𝐾𝐶𝑂 exp(−𝑟𝑡1)𝑁(𝑦2) (Eq. III.121) 
 

𝑝𝐶𝐴𝐿𝐿 = 𝐾 exp(−𝑟𝑇)𝑀(𝑧2, −𝑦2, −𝜌) − 𝑆exp[(𝑏 − 𝑟)𝑇]𝑀(𝑧1, −𝑦1, −𝜌) + 𝐾𝐶𝑂 exp(−𝑟𝑡1)𝑁(−𝑦2)  (Eq. III.122) 
 

𝑐𝑃𝑈𝑇 = 𝐾 exp(−𝑟𝑇)𝑀(−𝑧2, −𝑦2, 𝜌) − 𝑆exp[(𝑏 − 𝑟)𝑇]𝑀(−𝑧1, −𝑦1 , 𝜌) − 𝐾𝐶𝑂 exp(−𝑟𝑡1)𝑁(−𝑦2) (Eq. III.123) 
 

𝑝𝑃𝑈𝑇 = Sexp[(𝑏 − 𝑟)𝑇]𝑀(−𝑧1, 𝑦1, −𝜌) − 𝐾 exp(−𝑟𝑇)𝑀(−𝑧2, 𝑦2, −𝜌) + 𝐾𝐶𝑂 exp(−𝑟𝑡1) 𝑁(𝑦2) (Eq. III.124) 
 

Where: 
 

𝑧1 =
ln(

𝑆

𝐾
)+(𝑏+𝜎2/2)⋅𝑇

𝜎√𝑇
,   𝑧2 = 𝑧1 − 𝜎√𝑇,   𝜌 = √

𝑡1

𝑇
  and 𝑦1 =

ln(
𝑆

𝐼
)+(𝑏+𝜎2/2)⋅𝑡1

𝜎√𝑡1
,   𝑦2 = 𝑦1 − 𝜎√𝑡1  

 

The value of 𝐼 is computed through a root-finding algorithm, such as the Newton-Raphson method: 
 

- For 𝑐𝐶𝐴𝐿𝐿 or 𝑝𝐶𝐴𝐿𝐿: 𝑈𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝐶𝑎𝑙𝑙(𝐼, 𝐾, 𝑇 − 𝑡1) = 𝐾𝐶𝑂 (Eq. III.125) 
 

- For 𝑐𝑃𝑈𝑇 or 𝑝𝑃𝑈𝑇:   𝑈𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑃𝑢𝑡(𝐼, 𝐾, 𝑇 − 𝑡1) = 𝐾𝐶𝑂 (Eq. III.126) 
 
 

We now analyze an example using the Geske model, considering a call put that gives the investor the right to 

sell a call option at 50 (𝐾𝐶𝑂) three months from today (𝑡1). The strike price on the underlying call is 520 (𝐾) 

and its time to expiry is 6 months from today (𝑇). The price of the underlying stock index is 500 (𝑆), the risk-

free rate is 8% (𝑟), the dividend-yield of the index is 3% (𝑞) and the volatility is 35% (𝜎). In short, 𝑆 = 500, 

𝐾 = 520, 𝐾𝐶𝑂 = 50, 𝑡1 = 0.25, 𝑇 = 0.5, 𝑟 = 0.08, 𝑏 = 0.08 − 0.03 = 0.05, 𝜎 = 0.35. 
 

We start by computing the critical value 𝐼: 
 

𝑈𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝐶𝑎𝑙𝑙(𝐼, 𝐾, 𝑇 − 𝑡1) = 𝐾𝐶𝑂  
 

𝑈𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝐶𝑎𝑙𝑙(𝐼, 520,0.5 − 0.25) = 50  
 

𝐼 ⋅ exp[(𝑏 − 𝑟) ⋅ 𝑇] ⋅ 𝑁(𝑑1) − 𝐾 ⋅ exp(−𝑟𝑇) ⋅ 𝑁(𝑑2) = 50  
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𝑑1 =
ln(

𝐼

𝐾
)+(𝑏+𝜎2/2)⋅(𝑇−𝑡1)

𝜎√𝑇−𝑡1
=

ln(
𝐼

520
)+(0.05+0.352/2)⋅0.25

0.35⋅√0.25
  

 

𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡1 = 𝑑1 − 0.35 ⋅ √0.25  
 

The value of 𝐼 that solves the equation is 538.3165. 
 

Consequently, we compute: 
 

𝑦1 =
ln(

𝑆

𝐼
)+(𝑏+𝜎2/2)⋅𝑡1

𝜎√𝑡1
=

ln(
500

538.3165
)+(0.05+0.352/2)⋅0.25

0.35⋅√0.25
= −0.26301  

 

𝑦2 = 𝑦1 − 𝜎√𝑡1 = −0.26301 − 0.35 ⋅ √0.25 = −0.43801  

𝑧1 =
ln(

𝑆

𝐾
)+(𝑏+𝜎2/2)⋅𝑇

𝜎√𝑇
=

ln(
500

520
)+(0.05+0.352/2)⋅0.5

0.35⋅√0.5
= 0.06628  

 

𝑧2 = 𝑧1 − 𝜎√𝑇 = 0.06628 − 0.35 ⋅ √0.5 = −0.1812  
 

𝜌 = √
𝑡1

𝑇
= 0.7071,  𝑀(𝑧2, −𝑦2, −𝜌) = 0.1736,  𝑀(𝑧1, −𝑦1, −𝜌) = 0.1996,  𝑁(−𝑦2) = 0.6693  

 

𝑝𝐶𝐴𝐿𝐿 = 𝐾 exp(−𝑟𝑇)𝑀(𝑧2, −𝑦2, −𝜌) − 𝑆exp[(𝑏 − 𝑟)𝑇]𝑀(𝑧1, −𝑦1, −𝜌) + 𝐾𝐶𝑂 exp(−𝑟𝑡1)𝑁(−𝑦2)  
 

𝑝𝐶𝐴𝐿𝐿 = 520exp(−0.08 ⋅ 0.5) ⋅ 0.1736 − 500exp[−0.03 ⋅ 0.5] ⋅ 0.1996 + 50exp(−0.25) ⋅ 0.6693  
 

The value of the put on call considered is therefore equal to 𝑝𝐶𝐴𝐿𝐿 = 21.221. 
 
The options whose pay-off depends on a set of values assumed by the underlying during the life of the derivative 
are called path-dependent options. The most common categories belonging to this class are: 
 

- Asian options. 
 

- Barrier options. 
 

- Lookback options. 
 

We start by examining Asian options, which are options with a final value depending on the average price of 
the underlying asset observed during the life of the option. The final value (pay-off) of a call written on the 

average price call is max(𝑆𝐴𝑉𝐺 − 𝐾, 0) and the pay-off of a put written on the average price (average price 

put) is max(𝐾 − 𝑆𝐴𝑉𝐺 , 0), where 𝑆𝐴𝑉𝐺 is the average price of the underlying asset calculated over a 
predetermined period. Average price options are generally less expensive than ordinary options and are perhaps 
better suited than ordinary options to meet certain needs of treasurers. 
 

Let us now suppose the treasurer of a US company expects USD 100 million in cash flow from the Australian 
subsidiary, spread evenly over the next year. It is probable that the treasurer is interested in an option that 
guarantees him an annual average exchange rate above a certain level. An average price put can achieve this 
more effectively than ordinary puts.  
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Another type of Asian option is the option with an average strike price: the pay-off of an average strike call 

is: max(𝑆𝑇 − 𝑆𝐴𝑉𝐺 , 0) and that of an average strike put is max(𝑆𝐴𝑉𝐺 − 𝑆𝑇 , 0). Average strike price options 
can ensure that the average price paid for a frequently traded asset over a period of time is not greater than the 
final price. Alternatively, they can ensure that the average price received for a frequently traded asset over a 
period of time is not lower than the final price. 
 

While in practice most Asian options traded are based on arithmetic averages, it is also true that the application 
of the geometric mean in the valuation of Asian European options plays an important role. This is due to the 
fact that, unlike the arithmetic mean, for the geometric mean exact closed formulas can be obtained for their 
valuation. Starting from the hypothesis that the asset underlying the option is distributed according to a log-

normal distribution, the geometric mean: ∏ (𝑆𝑖)
1

𝑁𝑁
𝑖=1  will itself be distributed log-normally, thus the Asian 

option based on the geometric mean will have pay-off: max (∏ (𝑆𝑖)
1

𝑁𝑁
𝑖=1 − 𝐾, 0) if call, max(𝐾 −

∏ (𝑆𝑖)
1

𝑁𝑁
𝑖=1 , 0) if put. Considering this type of average, the financial instrument can correctly be priced starting 

from the generalized Black and Scholes formula (GBS formula), introducing a small adjustment on the volatility 

(𝜎) and on the cost-of-carry (𝑏). Therefore: 
 

𝑐 = 𝑆0 exp[(𝑏𝐴𝐷𝐽 − 𝑟)𝑇]𝑁(𝑑1) − 𝐾 exp(−𝑟𝑇)𝑁(𝑑2) (Eq. III.127) 
 

𝑝 = 𝐾 exp(−𝑟𝑇)𝑁(−𝑑2) − 𝑆0 exp[(𝑏𝐴𝐷𝐽 − 𝑟)𝑇]𝑁(−𝑑1)  (Eq. III.128) 
 

𝑑1 =
ln(

𝑆0
𝐾
)+(𝑏𝐴𝐷𝐽+𝜎𝐴𝐷𝐽

2 /2)𝑇

𝜎𝐴𝐷𝐽√𝑇
, 𝑑2 = 𝑑1 − 𝜎𝐴𝐷𝐽√𝑇  (Eq. III.129) 

 

With the adjusted volatility 𝜎𝐴𝐷𝐽 =
𝜎

√3
 and the adjusted cost-of-carry 𝑏𝐴𝐷𝐽 =

1

2
(𝑏 −

𝜎2

6
). 

 

Let us, for example, price a continuous geometric-average put option with a 9-month maturity considering a 
strike price of 85, an initial price of the underlying equal to 80, a risk-free rate of 2%, a cost-of-carry equal to 
5% and a volatility of 20%. In short, we have: 
 

𝑆0 = 80, 𝐾 = 85, 𝑇 = 0.25, 𝑟 = 0.02, 𝑏 = 0.05 and 𝜎 = 0.20. 
 

We thus calculate: 
 

𝜎𝐴𝐷𝐽 =
𝜎

√3
=

0.20

√3
= 0.11547, 𝑏𝐴𝐷𝐽 =

1

2
(0.05 −

0.22

6
) = 0.021667 

 

𝑑1 =
ln(

80

85
)+(0.021667+0.115472/2)⋅0.75

0.11547√0.75
= −0.39375 → 𝑁(−𝑑1) = 0.653116 

 

𝑑2 = −0.39375 − 0.11547√0.75 = −0.49375 → 𝑁(−𝑑2) = 0.689257 
 

𝑝 = 85exp(−0.02 ⋅ 0.75) ⋅ 0.689257 − 80exp[(0.021667 − 0.02) ⋅ 0.75] ⋅ 0.653116 = 5.400009  
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When Asian options are defined in terms of arithmetic averages, analytical valuation formulas are not available 
though. This depends on the fact that the distribution of the arithmetic mean of a set of variables distributed 
according to a lognormal does not have properties that make it analytically tractable. The way to valuate options 
written on arithmetic means is through an analytical approximation: it is a question of calculating exactly the 
first two moments of the probabilistic distribution of the arithmetic mean in a risk-neutral world and therefore 
assuming that this distribution is log-normal. Such approach was proposed by Turnbull and Wakeman in 1991. 
Let us examine this approach in mathematical terms, considering a newly issued Asian option whose final value 

at time 𝑇 is based on an arithmetic mean between time zero and time 𝑇. In a risk-neutral world, the first 

moment, 𝑀1, and the second moment, 𝑀2, of the mean are respectively: 
 

𝑀1 =
exp(𝑏𝑇)−1

𝑏𝑇
,      𝑀2 =

2exp{[2𝑏+𝜎2]𝑇}

(𝑏+𝜎2)(2𝑏+𝜎2)𝑇2
+

2

𝑏𝑇2
[

1

2𝑏+𝜎2
−
exp[𝑏𝑇]

𝑏+𝜎2
] (Eq. III.130) 

 

The calculation of the two moments is used as an adjustment factor within the expressions of volatility, 𝜎𝐴𝐷𝐽  

and Cost of Carry, 𝑏𝐴𝐷𝐽, of the generalized formula of Black and Scholes for call and put options: 
 

𝑏𝐴𝐷𝐽 =
ln(𝑀1)

𝑇
,  𝜎𝐴𝐷𝐽 = √

ln(𝑀2)

𝑇
− 2𝑏𝐴𝐷𝐽  (Eq. III.131) 

 

Therefore, the approximate value of an option is given by: 
 

𝑐 ≈ 𝑆0 exp[(𝑏𝐴𝐷𝐽 − 𝑟)𝑇]𝑁(𝑑1) − 𝐾 exp(−𝑟𝑇)𝑁(𝑑2)  (Eq. III.132) 
 

𝑝 ≈ 𝐾 exp(−𝑟𝑇)𝑁(−𝑑2) − 𝑆0 exp[(𝑏𝐴𝐷𝐽 − 𝑟)𝑇]𝑁(−𝑑1)  (Eq. III.133) 
 

𝑑1 =
ln(

𝑆0
𝐾
)+(𝑏𝐴𝐷𝐽+𝜎𝐴𝐷𝐽

2 /2)𝑇

𝜎𝐴𝐷𝐽√𝑇
 ,  𝑑2 = 𝑑1 − 𝜎𝐴𝐷𝐽√𝑇  (Eq. III.134) 

 

We now present an example using the Turnbull and Wakeman model for the valuation of the previous put 
option, assuming that the arithmetic rather than the geometric mean of the prices is used. The set of data is: 

𝑆0 = 80, 𝐾 = 85, 𝑇 = 0.75, 𝑟 = 0.02, 𝑏 = 0.05 and 𝜎 = 0.20, and we compute as follows: 
 

𝑀1 =
exp(𝑏𝑇)−1

𝑏𝑇
=

exp(0.05⋅0.75)−1

0.05⋅0.75
= 1.0189866  

 

𝑀2 =
2exp{[2⋅0.05+0.22]⋅0.75}

(0.05+0.22)(2⋅0.05+0.22)⋅0.752
+ 

2

0.05⋅0.752
[

1

2⋅0.05+0.22
−
exp[0.05⋅0.75]

0.05+0.22
] = 1.0488941  

 

𝑏𝐴𝐷𝐽 =
ln(1.0189866)

0.75
= 0.0250781,   𝜎𝐴𝐷𝐽 = √

ln(1.0488941)

0.75
− 2 ⋅ 0.0250781 = 0.1161562  

𝑑1 =
ln(

80

85
)+(0.0250781+0.11615622/2)⋅0.75

0.1161562⋅√0.75
= −0.365393 → 𝑁(−𝑑1) = 0.642591  

 

𝑑2 = −0.365393 − 0.1161562√0.75 = −0.465987 → 𝑁(−𝑑2) = 0.6793877   
 

𝑝 ≈ 85exp(−0.02 ⋅ 0.75) ⋅ 0.6793877 − 80 exp[(0.0250781 − 0.02)0.75] ⋅ 0.642591 = 5.2847579.  
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We now introduce Barrier options, i.e., options whose final value depends on whether the price of the 
underlying asset reaches a predetermined level in a certain period of time or not. Several barrier options are 
regularly traded in the OTC market: they generally are less expensive than ordinary options, as they cease to 
exist (or begin to be valid) if the limit imposed by the barrier is exceeded by the underlying asset. Barrier options 
can be divided into knock-out options and knock-in options. The first type ceases to exist when the price of 
the underlying asset reaches a certain barrier, while the second type only begins to exist when the price of the 
underlying asset reaches the predetermined barrier. 
 

Down-and-out call options are knock-out options: they are ordinary calls that cease to exist when the price of 

the underlying asset falls under a certain barrier level 𝐻, with 𝐻 < 𝑆0. The corresponding knock-in options are 
represented by down-and-in calls, i.e., ordinary call options that start to exist only when the price of the 

underlying asset falls to 𝐻, with 𝐻 < 𝑆0. Thus, if 𝐻 ≤ 𝐾, the current value 𝑐𝐷𝐼 for a down-and-in call option 
is: 
 

𝑐𝐷𝐼 = 𝑆0 ⋅ exp(−𝑞𝑡) ⋅ (
𝐻

𝑆0
)
2𝜆
𝑁(𝑦) − 𝐾 exp(−𝑟𝑡) ⋅ (

𝐻

𝑆0
)
2𝜆−2

𝑁(𝑦 − 𝜎√𝑇)  (Eq. III.135) 
 

𝜆 =
𝑟−𝑞+𝜎2/2

𝜎2
,  𝑦 =

ln(
𝐻2

𝑆0𝐾
)

𝜎√𝑇
+ 𝜆𝜎√𝑇  (Eq. III.136) 

 

Given that an ordinary call option (𝑐) equals the sum of the corresponding down-and-in and down-and-out 

calls, the current value, 𝑐𝐷𝑂, of a down-and-out call is: 𝑐𝐷𝑂 = 𝑐 − 𝑐𝐼𝑁. 
 

On the other hand, if 𝐻 > 𝐾, the value of a down-and-out call option is the following: 
 

𝑐𝐷𝑂 = 𝑆0 ⋅ exp(−𝑞𝑡) ⋅ 𝑁(𝑥1) − 𝐾 exp(−𝑟𝑡) ⋅ 𝑁(𝑥1 − 𝜎√𝑇) +  
 

−𝑆0 ⋅ exp(−𝑞𝑡) (
𝐻

𝑆0
)
2𝜆
𝑁(𝑦1) + 𝐾 ⋅ exp(−𝑟𝑡) (

𝐻

𝑆0
)
2𝜆−2

𝑁(𝑦1 − 𝜎√𝑇)  (Eq. III.137) 
 

𝑥1 =
ln(

𝑆0
𝐻
)

𝜎√𝑇
+ 𝜆𝜎√𝑇  ,  𝑦1 =

ln(
𝐻

𝑆0
)

𝜎√𝑇
+ 𝜆𝜎√𝑇  (Eq. III.138) 

 

Similarly to the previous case, the value of a down-and-in call is given by 𝑐𝐷𝐼 = 𝑐 − 𝑐𝐷𝑂. 
 
Up-and-out calls are also knock-out options. In this case, as the name suggests, they are ordinary call options 

that cease to exist when the price of the underlying asset rises to 𝐻, with 𝐻 > 𝑆0. 
The corresponding knock-in options are up-and-in calls. They are ordinary calls that begin to exist when the 

price of the underlying asset rises to 𝐻, with 𝐻 > 𝑆0. 

By definition, if 𝐻 ≤ 𝐾, then the current value of an up-and-out call option, 𝑐𝑈𝑂 is null and the current value 

of an up-and-in call, 𝑐𝑈𝐼, is equal to a vanilla call 𝑐. 
 

In case 𝐻 > 𝐾, the value for an up-and-in call is: 
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𝑐𝑈𝐼 = 𝑆0 ⋅ exp(−𝑞𝑡) ⋅ 𝑁(𝑥1) − 𝐾 exp(−𝑟𝑡) ⋅ 𝑁(𝑥1 − 𝜎√𝑇) + 

−𝑆0 ⋅ exp(−𝑞𝑡) (
𝐻

𝑆0
)
2𝜆

[𝑁(−𝑦) − 𝑁(−𝑦1)] + 

+𝐾 ⋅ exp(−𝑟𝑡) (
𝐻

𝑆0
)
2𝜆−2

[𝑁(−𝑦 + 𝜎√𝑇) − 𝑁(−𝑦1 + 𝜎√𝑇)]  (Eq. III.139) 
 

While the current value of an up-and-out call is 𝑐𝑈𝑂 = 𝑐 − 𝑐𝑈𝐼 . 
 

Barrier put options are defined similarly to their corresponding calls. Standard up-and-out put options cease to 

exist when the price of the underlying asset rises to 𝐻, with 𝐻 > 𝑆0. 
 

Standard up-and-in puts only start to exist when the price of the underlying asset rises to 𝐻, with 𝐻 > 𝑆0. If 

𝐻 > 𝐾, the current value of an up-and-in put, 𝑝𝑈𝐼 is: 
 

𝑝𝑈𝐼 = −𝑆0 ⋅ exp(−𝑞𝑇) (
𝐻

𝑆0
)
2𝜆
𝑁(−𝑦) + 𝐾 ⋅ exp(−𝑟𝑇) (

𝐻

𝑆0
)
2𝜆−2

𝑁(−𝑦 + 𝜎√𝑇) (Eq. III.140) 
 

While the current value of an up-and-out put is 𝑝𝑈𝑂 = 𝑝 − 𝑝𝑈𝐼 . In case 𝐻 ≤ 𝐾, the current value of an up-
and-out put option is equal to: 

𝑝𝑈𝑂 = −𝑆0 ⋅ exp(−𝑞𝑇)𝑁(−𝑥1) + 𝐾 ⋅ exp(−𝑟𝑇)𝑁(−𝑥1 + 𝜎√𝑇) + 
 

+𝑆0 ⋅ exp(−𝑞𝑇) (
𝐻

𝑆0
)
2𝜆
𝑁(−𝑦1) − 𝐾 ⋅ exp(−𝑟𝑇)𝑁(−𝑦1 + 𝜎√𝑇) (

𝐻

𝑆0
)
2𝜆

  (Eq. III.141) 
 

While the current value of an up-and-in put is 𝑝𝑈𝐼 = 𝑝 − 𝑝𝑈𝑂 . 
 

Down-and-out puts cease to exist when the price of the underlying asset falls to 𝐻, with 𝐻 < 𝑆0. Down-and-

in puts only start to exist when the price of the underlying asset falls to 𝐻, with 𝐻 < 𝑆0. Thus, if 𝐻 ≥ 𝐾, the 

current value,  𝑝𝐷𝑂, of a down-and-out put is zero and the current value, 𝑝𝐷𝐼, of a down-and-in put is equal to 

𝑝. Conversely, if 𝐻 < 𝐾, the current value of a down-and-in put option , 𝑝𝐷𝐼 is: 
 

𝑝𝐷𝐼 = −𝑆0 ⋅ exp(−𝑞𝑇)𝑁(−𝑥1) + 𝐾 ⋅ exp(−𝑟𝑇)𝑁(−𝑥1 + 𝜎√𝑇) + 

+𝑆0 ⋅ exp(−𝑞𝑇) (
𝐻

𝑆0
)
2𝜆

[𝑁(𝑦) − 𝑁(𝑦1)] + 

−𝐾 ⋅ exp(−𝑟𝑇) (
𝐻

𝑆0
)
2𝜆−2

[𝑁(𝑦 − 𝜎√𝑇) − 𝑁(𝑦1 − 𝜎√𝑇)] (Eq. III.142) 
 

And the current value of a down-and-out put is 𝑝𝐷𝑂 = 𝑝 − 𝑝𝐷𝐼. 
 

All the valuation formulas for the barrier options presented above are based on the assumption that the 
probabilistic distribution of the share price in a future instant of time is log-normal. 
 

An important aspect of barrier options is how often the underlying asset price 𝑆 is observed to see if the barrier 

is reached. The equations we presented assume that 𝑆 is continuously observed, but often the contractual 
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conditions state that the underlying is observed in a discrete way, typically once a day. Broadie, Glasserman and 
Kou have developed an approximation of the formula to take into account the discretization of the observation 
frequency. The correction factor proposed by these researchers is based on the modification to be made, for 

each observation, on the level of the barrier with: 𝐻𝐷 = 𝐻 ⋅ exp(𝛽𝜎√Δ𝑡) if the barrier is an upper-bound for 

the asset underlying the option. In a similar way, if the barrier represents a lower-bound, the adjustment is: 

𝐻𝐷 = 𝐻 ⋅ exp(−𝛽𝜎√Δ𝑡), where Δ𝑡 is the time that elapses between the instants of observation of the barrier. 

It has been shown that  

𝛽 =
Ϛ(0.5)

√2𝜋
≈ 0.5826, where Ϛ(∙) is the Riemann zeta-function. 

 

In order for them to be implemented in a programming environment, the previous formulas of Reiner and 
Rubinstein should be rearranged according to the classification proposed by Rich. This pricing procedure 

provides for the use of the cost-of-carry, 𝑏, and the possibility of receiving a predefined amount of money 

(rebate cash 𝑅) in the worst cases or when the knock-in option has not been activated or when the knock-out 
option has failed to reach its natural expiry. 
 

𝐴 = 𝜙𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(𝜙𝑥1) − 𝜙𝐾 ⋅ exp(−𝑟𝑇)𝑁(𝜙𝑥1 − 𝜙𝜎√𝑇)   (Eq. III.143) 
 

𝐵 = 𝜙𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(𝜙𝑥2) − 𝜙𝐾 ⋅ exp(−𝑟𝑇)𝑁(𝜙𝑥2 − 𝜙𝜎√𝑇)   (Eq. III.144) 
 

𝐶 = 𝜙𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇] (
𝐻

𝑆
)
2(𝜇+1)

𝑁(𝜂𝑦1) − 𝜙𝐾 ⋅ exp(−𝑟𝑇) (
𝐻

𝑆
)
2𝜇
𝑁(𝜂𝑦1 − 𝜂𝜎√𝑇)   (Eq. III.145) 

 

𝐷 = 𝜙𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇] (
𝐻

𝑆
)
2(𝜇+1)

𝑁(𝜂𝑦2) − 𝜙𝐾 ⋅ exp(−𝑟𝑇) (
𝐻

𝑆
)
2𝜇
𝑁(𝜂𝑦2 − 𝜂𝜎√𝑇)   (Eq. III.146) 

𝐸 = 𝑅 ⋅ exp(−𝑟𝑇) [𝑁(𝜂𝑥2 − 𝜂𝜎√𝑇) − (
𝐻

𝑆
)
2𝜇
𝑁(𝜂𝑦2 − 𝜂𝜎√𝑇)] (Eq. III.147) 

 

𝐹 = 𝑅 ⋅ [(
𝐻

𝑆
)
𝜇+𝜆

𝑁(𝜂𝑧) + (
𝐻

𝑆
)
𝜇−𝜆

𝑁(𝜂𝑧 − 2𝜂𝜆𝜎√𝑇)] (Eq. III.148) 

Where: 𝑥1 =
ln(

𝑆

𝐾
)

𝜎√𝑇 
+ (1 + 𝜇)𝜎√𝑇     𝑥2 =

ln(
𝑆

𝐻
)

𝜎√𝑇 
+ (1 + 𝜇)𝜎√𝑇    𝑦1 =

ln(
𝐻2

𝑆𝐾
)

𝜎√𝑇 
+ (1 + 𝜇)𝜎√𝑇  

𝑦2 =
ln(

𝐻

𝑆
)

𝜎√𝑇 
+ (1 + 𝜇)𝜎√𝑇     𝑧 =

ln(
𝐻

𝑆
)

𝜎√𝑇 
+ 𝜆𝜎√𝑇     𝜇 =

𝑏−𝜎2/2

𝜎2
      𝜆 = √𝜇2 +

2𝑟

𝜎2
  

 
Let us analyze the different cases: 
 

Down-and-in call 𝑆 > 𝐻 
 

Pay-off: max(𝑆 − 𝐾; 0) if 𝑆 ≤ 𝐻 before 𝑇, otherwise 𝑅 at maturity 
 

𝑐𝐾>𝐻
𝐷𝐼 = 𝐶 + 𝐸                         𝜂 = +1, 𝜙 = +1 

𝑐𝐾<𝐻
𝐷𝐼 = 𝐴 − 𝐵 + 𝐷 + 𝐸           𝜂 = +1,𝜙 = +1  
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Up-and-in call 𝑆 < 𝐻 
 

Pay-off: max(𝑆 − 𝐾; 0) if 𝑆 ≥ 𝐻 before 𝑇, otherwise 𝑅 at maturity 
 

𝑐𝐾>𝐻
𝑈𝐼 = 𝐴 + 𝐸                         𝜂 = −1, 𝜙 = +1 

𝑐𝐾<𝐻
𝑈𝐼 = 𝐵 − 𝐶 + 𝐷 + 𝐸            𝜂 = −1,𝜙 = +1  

 

Down-and-in put 𝑆 > 𝐻  

Pay-off: max(𝐾 − 𝑆; 0) if 𝑆 ≤ 𝐻 before 𝑇, otherwise 𝑅 at maturity 
 

𝑝𝐾>𝐻
𝐷𝐼 = 𝐵 − 𝐶 + 𝐷 + 𝐸                   𝜂 = +1,𝜙 = −1 

𝑝𝐾<𝐻
𝐷𝐼 = 𝐴 + 𝐸                                      𝜂 = +1,𝜙 = −1  

 

Up-and-in put 𝑆 < 𝐻  

Pay-off: max(𝐾 − 𝑆; 0) if 𝑆 ≥ 𝐻 before 𝑇, otherwise 𝑅 at maturity 
 

𝑝𝐾>𝐻
𝑈𝐼 = 𝐴 − 𝐵 +𝐷 + 𝐸                  𝜂 = −1, 𝜙 = −1 

𝑝𝐾<𝐻
𝑈𝐼 = 𝐶 + 𝐸                                     𝜂 = −1,𝜙 = −1  

 

Down-and-out call 𝑆 > 𝐻  

Pay-off: max(𝑆 − 𝐾; 0) if 𝑆 > 𝐻 before 𝑇, otherwise 𝑅 at the hit 
 

𝑐𝐾>𝐻
𝐷𝑂 = 𝐴 − 𝐶 + 𝐹                          𝜂 = +1, 𝜙 = +1 

𝑐𝐾<𝐻
𝐷𝑂 = 𝐵 − 𝐷 + 𝐹                            𝜂 = +1,𝜙 = +1  

 

Up-and-out call 𝑆 < 𝐻  

Pay-off: max(𝑆 − 𝐾; 0) if 𝑆 < 𝐻 before 𝑇, otherwise 𝑅 at the hit 
 

𝑐𝐾>𝐻
𝑈𝑂 = 𝐹                                           𝜂 = −1, 𝜙 = +1 

𝑐𝐾<𝐻
𝑈𝑂 = 𝐴 − 𝐵 + 𝐶 − 𝐷 + 𝐹               𝜂 = −1, 𝜙 = +1  

 

Down-and-out put 𝑆 > 𝐻  

Pay-off: max(𝐾 − 𝑆; 0) if 𝑆 > 𝐻 before 𝑇, otherwise 𝑅 at the hit 
 

𝑝𝐾>𝐻
𝐷𝑂 = 𝐴 − 𝐵 + 𝐶 − 𝐷 + 𝐹      𝜂 = +1,𝜙 = −1 

𝑝𝐾<𝐻
𝐷𝑂 = 𝐹                                         𝜂 = +1, 𝜙 = −1  

 

Up-and-out put 𝑆 < 𝐻  

Pay-off: max(𝐾 − 𝑆; 0) if 𝑆 < 𝐻 before 𝑇, otherwise 𝑅 at the hit 
 

𝑝𝐾>𝐻
𝑈𝑂 = 𝐵 − 𝐷 + 𝐹                𝜂 = −1,𝜙 = −1 

𝑝𝐾<𝐻
𝑈𝑂 = 𝐴 − 𝐶 + 𝐹                   𝜂 = −1, 𝜙 = −1  

 
Let us now illustrate a partial example, supposing that we want to determine the fair value of a standard barrier 
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option having the following financial parameters:  𝑆 = 100, 𝑅 = 4, 𝑇 = 0.75, 𝑟 = 0.06, 𝑏 = 0.03. 

Table III.54 shows the valuations corresponding to different strike prices 𝐾 ∈ {90,100,110}, different barrier 

levels 𝐻 ∈ {95,100,105} and different values for the annualized volatility of the underlying 𝜎 ∈
{0.25,0.30,0.35}. 

 

Type K H 𝜎 = 0.25 𝜎 = 0.30 𝜎 = 0.35 Type K H 𝜎 = 0.25 𝜎 = 0.30 𝜎 = 0.35 

𝑐𝐷𝑂 90 95 9.6825 9.5472 9.4483 𝑝𝐷𝑂 90 95 3.2296 3.3806 3.4872 

𝑐𝐷𝑂 100 95 7.9084 8.1239 8.2725 𝑝𝐷𝑂 100 95 3.2378 3.3855 3.4903 

𝑐𝐷𝑂 110 95 6.3130 6.8068 7.1645 𝑝𝐷𝑂 110 95 3.4248 3.4964 3.5611 

𝑐𝐷𝑂 90 100 4.0000 4.0000 4.0000 𝑝𝐷𝑂 90 100 4.0000 4.0000 4.0000 

𝑐𝐷𝑂 100 100 4.0000 4.0000 4.0000 𝑝𝐷𝑂 100 100 4.0000 4.0000 4.0000 

𝑐𝐷𝑂 110 100 4.0000 4.0000 4.0000 𝑝𝐷𝑂 110 100 4.0000 4.0000 4.0000 

𝑐𝑈𝑂 90 105 3.4499 3.4690 3.4986 𝑝𝑈𝑂 90 105 5.0546 5.4978 5.8407 

𝑐𝑈𝑂 100 105 3.2668 3.3595 3.4283 𝑝𝑈𝑂 100 105 6.5836 6.8793 7.0990 

𝑐𝑈𝑂 110 105 3.2598 3.3554 3.4258 𝑝𝑈𝑂 110 105 8.2888 8.3662 8.4250 

𝑐𝐷𝐼 90 95 9.3859 10.8911 12.4111 𝑝𝐷𝐼 90 95 4.1035 5.3223 6.6368 

𝑐𝐷𝐼 100 95 5.5016 6.9462 8.4529 𝑝𝐷𝐼 100 95 7.9968 9.5093 11.0597 

𝑐𝐷𝐼 110 95 3.1721 4.3468 5.6729 𝑝𝐷𝐼 110 95 13.4449 15.0418 16.6610 

𝑐𝐷𝐼 90 100 15.1259 16.4865 17.9006 𝑝𝐷𝐼 90 100 3.3905 4.7511 6.1653 

𝑐𝐷𝐼 100 100 9.4674 11.1183 12.7666 𝑝𝐷𝐼 100 100 7.2921 8.9429 10.5913 

𝑐𝐷𝐼 110 100 5.5425 7.2018 8.8787 𝑝𝐷𝐼 110 100 12.9271 14.5864 16.2633 

𝑐𝑈𝐼 90 105 15.6206 16.9692 18.3592 𝑝𝑈𝐼 90 105 2.2806 3.2051 4.2818 

𝑐𝑈𝐼 100 105 10.1453 11.7107 13.2955 𝑝𝑈𝐼 100 105 4.6532 6.0155 7.4495 

𝑐𝑈𝐼 110 105 6.2274 7.7982 9.4102 𝑝𝑈𝐼 110 105 8.5830 10.1720 11.7955 
 

Table III.54 Standard Barrier Option 
 
Still in the wide category of exotic options, we mention lookback options which value depends on the 
minimum or maximum price reached by the underlying during the life of the option. 
 

The final value of a floating-strike lookback call is equal to the difference between the final price of the stock 
and the minimum price reached by the stock during the life of the option: 
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𝑐(𝑆, 𝑆𝑚𝑖𝑛, 𝑇) = max(𝑆 − 𝑆𝑚𝑖𝑛; 0) = 𝑆𝑇 − 𝑆𝑚𝑖𝑛 (Eq. III.149) 
 

The final value of a floating-strike lookback put option, on the other hand, is equal to the difference between 
the maximum price reached by the underlying asset during its life and its final price: 
 

𝑝(𝑆, 𝑆𝑚𝑎𝑥, 𝑇) = max(𝑆𝑚𝑎𝑥 − 𝑆; 0) = 𝑆𝑚𝑎𝑥 − 𝑆𝑇 (Eq. III.150) 
 

For this type of financial instrument, the valuation formulas of Goldman-Sosin and Gatto (1979) and those of 

Garman (1989) are proposed. Thus, we indicate with 𝑁(∙) the standard cumulative normal distribution function 

and with 𝑛(∙) the standard normal distribution function.  
 

Let us examine the Floating-Strike Lookback Call from a mathematical perspective: 
 

If 𝑏 ≠ 0, then: 
 

𝑐 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(𝑎1) − 𝑆𝑚𝑖𝑛 ⋅ exp(−𝑟𝑇)𝑁(𝑎2) +  

+𝑆 ⋅ exp(−𝑟𝑇)  
𝜎2

2𝑏
[(

𝑆

𝑆𝑚𝑖𝑛
)
−
2𝑏

𝜎2𝑁 (−𝑎1 +
2𝑏

𝜎
√𝑇) − exp(𝑏𝑇)𝑁(−𝑎1)]  (Eq. III.151) 

 

If 𝑏 = 0, then: 
 

𝑐 = 𝑆 ⋅ exp(−𝑟𝑇)𝑁(𝑎1) − 𝑆𝑚𝑖𝑛 ⋅ exp(−𝑟𝑇)𝑁(𝑎2) +  

+𝑆 ⋅ exp(−𝑟𝑇)𝜎√𝑇{𝑛(𝑎1) + 𝑎1[𝑁(𝑎1) − 1]}  (Eq. III.152) 
 
Where: 
 

𝑎1 =
ln(

𝑆

𝑆𝑚𝑖𝑛
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
,   𝑎2 = 𝑎1 − 𝜎√𝑇  

 

For the Floating-Strike Lookback Put, we have: 
 

If 𝑏 ≠ 0, then: 
 

𝑝 = 𝑆𝑚𝑎𝑥 ⋅ exp(−𝑟𝑇)𝑁(−𝑏2) − 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(−𝑏1)   

+𝑆 ⋅ exp(−𝑟𝑇)  
𝜎2

2𝑏
[− (

𝑆

𝑆𝑚𝑎𝑥
)
−
2𝑏

𝜎2 𝑁(𝑏1 −
2𝑏

𝜎
√𝑇) + exp(𝑏𝑇)𝑁(𝑏1)] (Eq. III.153) 

 

If 𝑏 = 0, then: 
 

𝑝 = 𝑆𝑚𝑎𝑥 ⋅ exp(−𝑟𝑇)𝑁(−𝑏2) − 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(−𝑏1) +  
 

+𝑆 ⋅ exp(−𝑟𝑇)𝜎√𝑇{𝑛(𝑏1) + 𝑁(𝑏1)𝑏1}  (Eq. III.154) 
 

𝑏1 =
ln(

𝑆

𝑆𝑚𝑎𝑥
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
,   𝑏2 = 𝑏1 − 𝜎√𝑇  

 

The formulas just presented assume that the price of the underlying asset is observed continuously. 
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Let us present an example using the Goldman-Sosin-Gatto and Garman model to valuate a lookback call option 
that expires in 6 months. We assume that this option gives the right to buy the underlying stock index at the 
lowest price recorded during its lifetime, which is currently 50. The spot price level of the index is 52. The risk-

free rate is 2%, the dividend yield is 1%. The annualized implied volatility is 20%. In short, we have:  𝑆 = 52, 

𝑆𝑚𝑖𝑛 = 50, 𝑇 = 0.5, 𝑟 = 0.02, 𝑞 = 0.01 → 𝑏 = 0.01, 𝜎 = 0.2, and we implement the calculations: 
 

𝑎1 =
ln(

𝑆

𝑆𝑚𝑖𝑛
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
=

ln(
52

50
)+(0.01+0.22/2)⋅0.5

0.2⋅√0.5
= 0.383398  

 

𝑎2 = 𝑎1 − 𝜎√𝑇 = 0.383398 − 0.2 ⋅ √0.5 = 0.241977,  𝑁(𝑎1) = 0.649288  
 

𝑁(−𝑎1) = 0.350712,𝑁(𝑎2) = 0.595601,𝑁 (−𝑎1 +
2𝑏

𝜎
√𝑇) = 0.377259  

 

𝑐 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(𝑎1) − 𝑆𝑚𝑖𝑛 ⋅ exp(−𝑟𝑇)𝑁(𝑎2) +     

+𝑆 ⋅ exp(−𝑟𝑇)  
𝜎2

2𝑏
[(

𝑆

𝑆𝑚𝑖𝑛
)
−
2𝑏

𝜎2𝑁 (−𝑎1 +
2𝑏

𝜎
√𝑇) − exp(𝑏𝑇)𝑁(−𝑎1)] = 5.908888   

 

 
In a fixed-strike lookback call, the strike price is already set when the contract is entered into. At maturity, 
the option pays the maximum between the difference of the highest price observed during the life of the option, 

𝑆𝑚𝑎𝑥, and the strike 𝐾, and zero. In mathematical terms: 
 

𝑐(𝑆, 𝑆𝑚𝑎𝑥, 𝑇) = max(𝑆𝑚𝑎𝑥 − 𝐾; 0) (Eq. III.155) 
 

In a fixed-strike lookback put, the strike price is already set when the contract is entered into. At maturity, 

the option pays the maximum between the difference of the strike price 𝐾 and the lowest price observed during 

the life of the option, 𝑆𝑚𝑖𝑛, and zero. In mathematical terms: 
 

𝑝(𝑆, 𝑆𝑚𝑖𝑛, 𝑇) = max(𝐾 − 𝑆𝑚𝑖𝑛; 0)  (Eq. III.156) 
 

Fixed-strike lookback options can be valued using the formulas of Conze and Viswanathan (1991), as we show 
hereafter. For a Fixed-Strike Lookback Call, the calculations are: 
 

If 𝐾 > 𝑆𝑚𝑎𝑥, then: 
 

𝑐 = 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(𝑑1) − 𝐾 ⋅ exp(−𝑟𝑇)𝑁(𝑑2) +    

+𝑆 ⋅ exp(−𝑟𝑇)  
𝜎2

2𝑏
[− (

𝑆

𝐾
)
−
2𝑏

𝜎2 𝑁(𝑑1 −
2𝑏

𝜎
√𝑇) − exp(𝑏𝑇)𝑁(𝑑1)]  (Eq. III.157) 

Where: 𝑑1 =
ln(

𝑆

𝐾
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
, 𝑑2 = 𝑑1 − 𝜎√𝑇 

 

If 𝐾 ≤ 𝑆𝑚𝑎𝑥, then: 
 

𝑐 = exp(−𝑟𝑇) ⋅ (𝑆𝑚𝑎𝑥 − 𝐾) + 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(𝑒1) − 𝑆𝑚𝑎𝑥 ⋅ exp(−𝑟𝑇)𝑁(𝑒2) +    
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+𝑆 ⋅ exp(−𝑟𝑇)  
𝜎2

2𝑏
[− (

𝑆

𝑆𝑚𝑎𝑥
)
−
2𝑏

𝜎2 𝑁(𝑒1 −
2𝑏

𝜎
√𝑇) + exp(𝑏𝑇)𝑁(𝑒1)]  (Eq. III.158) 

Where: 𝑒1 =
ln(

𝑆

𝑆𝑚𝑎𝑥
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
 , 𝑒2 = 𝑒1 − 𝜎√𝑇 

 

 
While for a Fixed-Strike Lookback Put, we reach the following result: 
 

If 𝐾 < 𝑆𝑚𝑖𝑛, then: 

𝑝 = 𝐾 ⋅ exp(−𝑟𝑇)𝑁(−𝑑2) − 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(−𝑑1) +  

+𝑆 ⋅ exp(−𝑟𝑇)  
𝜎2

2𝑏
[(
𝑆

𝐾
)
−
2𝑏

𝜎2 𝑁(−𝑑1 +
2𝑏

𝜎
√𝑇) − exp(𝑏𝑇)𝑁(−𝑑1)] (Eq. III.159) 

 

If 𝐾 ≥ 𝑆𝑚𝑖𝑛, then: 
 

𝑝 = exp(−𝑟𝑇) ⋅ (𝐾 − 𝑆𝑚𝑖𝑛) − 𝑆 ⋅ exp[(𝑏 − 𝑟)𝑇]𝑁(−𝑓1) − 𝑆𝑚𝑖𝑛 ⋅ exp(−𝑟𝑇)𝑁(−𝑓2) +    

+𝑆 ⋅ exp(−𝑟𝑇)  
𝜎2

2𝑏
[(

𝑆

𝑆𝑚𝑖𝑛
)
−
2𝑏

𝜎2𝑁 (−𝑓1 +
2𝑏

𝜎
√𝑇) − exp(𝑏𝑇)𝑁(−𝑓1)]  (Eq. III.160) 

Where: 𝑓1 =
ln(

𝑆

𝑆𝑚𝑖𝑛
)+(𝑏+𝜎2/2)𝑇

𝜎√𝑇
 , 𝑓2 = 𝑓1 − 𝜎√𝑇. 

 
 

The following table shows fixed-strike lookback call/put prices for various maturities 𝑇, strike prices 𝐾 and 𝜎. 
 

 Call Put 

T K 𝜎 = 0.10 𝜎 = 0.20 𝜎 = 0.30 𝜎 = 0.10 𝜎 = 0.20 𝜎 = 0.30 

0.5 95 11.2666 17.1372 23.2797 1.3845 5.7022 10.3527 

0.5 100 6.4144 12.2850 18.4274 4.7033 9.8406 14.7608 

0.5 105 2.6686 8.0752 14.0397 9.5556 14.6928 19.6131 

1 95 14.1272 22.4378 31.3023 2.5273 8.7414 15.0143 

1 100 9.4183 17.7290 26.5935 6.0722 12.9488 19.4233 

1 105 5.4111 13.4551 22.2099 10.7810 17.6577 24.132 
 

Table III.55 Fixed-strike lookback call/put prices 
 
In the literature, closed formulas are also reported when the monitoring period of the observed extreme value 
is limited to a time interval shorter than the life of the option contract. These types of derivatives are called 
Partial-Time Fixed-Strike Lookback Option and Partial-Time Floating-Strike Lookback Option, whereas in the 
case of more complex pay-offs it is necessary to resort to numerical valuation methods. 
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III.5 BINOMIAL TREES 
 
 

Black-Scholes analytical formulas (BS closed formulas) are unable to provide a reasonable valuation for all types 
of options traded in the financial markets. In particular, they are unable to provide a fair value for options with 
non-standard characteristics such as the possibility of exercising them before expiry (Bermuda/American 
options) or with particularly complex pay-offs (exotic options). In such cases, a numerical methodology has to 
be implemented for the valuation of the derivative. The literature includes in fact numerous mathematical 
techniques that allow to obtain a price in line with the principles of the Black-Scholes framework. Among them, 
the most used by quantitative analysts are the following: 
 

- Stochastic trees. 
- Numerical integration schemes for partial differential equations. 
- Fourier transforms. 
- Monte Carlo methodology. 
 

With the exception of the Monte Carlo methodology, the other algorithms are deterministic, i.e., using the same 
inputs, we always obtain the same outputs. It is also worth noting that all these approaches are internally 
consistent with the Black-Scholes pricing framework: in fact, with the same financial inputs, if an analyst wants 
to price a vanilla European option with one of the numerical methodologies reported, he will obtain a value 
which, at the continuous limit, converges to the fair value obtained using the traditional set of closed formulas. 
Therefore, excluding a potential error introduced by numerical discretization, these algorithms can faithfully 
replicate the pricing obtained through closed formulas. Although the approaches lead to the same price, it is 
possible to list a preference of use, mostly linked  to the computational efficiency and the speed of convergence 
to the theoretical price. 
Thus, as a general statement, the use of a closed valuation formula is preferred when it exists, otherwise a 
deterministic calculation algorithm can be used and, as the last viable alternative, a stochastic technique (Monte 
Carlo method). We will now introduce and discuss the most popular stochastic binomial tree: the CRR (Cox-
Ross-Rubinstein) model. This technique has had a wide-spread diffusion because it is characterized by 
interesting aspects. First of all, its simplicity of construction, since it does not require highly specialized 
knowledge of advanced mathematical concepts. Secondly, its design flexibility, as the definition of non-standard 
pay-offs and the early exercise clause can be implemented quite flexibly. The third aspect consists of its 
numerical efficiency, programming in a development environment is actually not onerous, both in terms of 
lines of code and in terms of computational time. Then, the error attributable to the discretization can be 
monitored, so that the analyst is able to estimate the error with which he communicates the theoretical price of 
the derivative. Furthermore, this methodology is easily traceable since the process described is of the Markovian 
type. Lastly, the algorithm is deterministic. In fact, the binomial model can be seen as a time-discretized version 
of the Black-Scholes formula. 
 

The first formulation of this method dates back to 1979 by John C. Cox, Stephen A. Ross and Mark E. 
Rubinstein. The technique essentially involves dividing the time between the option’s valuation date (today) 
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and its expiration date into many sub-periods, assuming that in the time between each interval, there may be 
two possible changes in the value of the share on which the derivative is written. By operating in this way, it is 
possible to obtain the fair value of the option by building a portfolio composed of shares and risk-free zero-
coupons that replicate the dynamics of the option value over time. This way of proceeding turns out to be 
much more intuitive and far simpler than the mathematical operators present in the Black-Scholes equation. 
Furthermore, as already mentioned, it is to be considered a more powerful tool than the closed formula 
approach as it allows the valuation of Bermuda, American and a large number of exotic options. 
 

Let us proceed with the discussion examining a binomial model with a single interval (one-step binomial model) 
which can be considered as the founding block of the logic underlying a CRR Tree. Let us assume we have a 
single European call option written on a stock with a single time interval before its expiration and characterized 

by a strike price 𝐾. We initially assume that the underlying is not profitable, i.e. that it does not pay cash 

dividends during the life of the option. The binomial model assumes that the price level of the underlying 𝑆 

follows a simple binomial stationary process. In each time frame, the price can rise by 𝑢 ⋅ 𝑆 (with probability 

𝑞) or fall by 𝑑 ⋅ 𝑆 (with probability 1 − 𝑞). This tree interprets a geometric multiplicative binomial process 
because the price movements do not have a fixed amplitude, but they are proportional to the value of the share 

at the node from which the binomial step is generated.  Let 𝐶 be the current value of a call option on that stock,  

𝐶𝑢 be its value at the end of the period in which the stock price level rises to 𝑢 ⋅ 𝑆 and 𝐶𝑑 its value at the end 

of the period in which the stock price level falls to 𝑑 ⋅ 𝑆. Since only one time step has been assumed before the 
European option expires, we know that: 
 

𝐶𝑢 = max[𝑢 ∙ 𝑆 − 𝐾, 0] ; 𝐶𝑑 = max[𝑑 ∙ 𝑆 − 𝐾, 0]   (Eq. III.161) 
 

We can see from the tree in the figure below that the unknown variable is 𝐶, while 𝐶𝑢 and 𝐶𝑑 are known. The 

value of the European call option 𝐶 is equal to: 
 
 
 

𝐶 =
𝐶𝑢∙∏+𝐶𝑑∙( 1−∏  )

1+𝑅
  (Eq. III.162) 

 

With ∏ =
1+𝑅−𝑑

𝑢−𝑑
 and 𝑅 the risk-free rate in the considered time interval. 

 
Figure III.104 The single period binomial tree 
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The expression of the value of the European Call 𝐶 can be demonstrated in two ways that lead to the same 
result: by means of a delta-hedging strategy or through synthetic options. 
 
 

Let us first consider the portfolio strategy called “delta-hedging” which consists in writing a call option and 

buying Δ units of the underlying asset of the derivative. The value of the portfolio thus formed is equal to: 
 

 Portfolio value at t=0 Portfolio value at t=1 

Write one call −𝐶 
𝑆𝑡=1 =  𝑢 ⋅ 𝑆 𝑆𝑡=1 = 𝑑 ⋅ 𝑆 

−𝐶𝑢 −𝐶𝑑 

Buy shares of stock Δ ⋅ 𝑆 Δ ⋅ 𝑢 ⋅ 𝑆 Δ ⋅ 𝑑 ⋅ 𝑆 

Total −𝐶 + Δ ⋅ 𝑆 −𝐶𝑢 + Δ ⋅ 𝑢 ⋅ 𝑆 −𝐶𝑑 + Δ ⋅ 𝑑 ⋅ 𝑆 

 
Table III.56 CRR Tree: Delta hedging strategy 

 

We decide to choose the portion of shares to buy Δ, in such a way that the portfolio is completely risk-free. In 

this way, the same value of the portfolio would be obtained regardless of the price level assumed by 𝑆 at the 
end of the first period: 
 

−𝐶𝑢 + Δ ∙ 𝑢 ∙ 𝑆 = −𝐶𝑑 + Δ ∙ 𝑑 ∙ 𝑆 → Δ =
𝐶𝑢−𝐶𝑑

𝑆⋅𝑢−𝑆⋅𝑑
=

𝐶𝑢−𝐶𝑑

𝑆⋅(𝑢−𝑑)
 (Eq. III.163) 

 

The meaning of Δ can be understood from this ratio: in fact, it measures how much the value of the Call varies 
according to how much the price level of the underlying share varies. An investor holding this portfolio is not 
exposed to any type of risk since the final value at maturity is known with certainty. At the end of the period, 
therefore, he should expect an amount capitalized at the risk-free rate: 
 

(−𝐶 + Δ ⋅ 𝑆) ⋅ (1 + 𝑅) = −𝐶𝑑 + Δ ∙ 𝑑 ∙ 𝑆  (Eq. III.164) 
 

By rearranging the members of the equation, after a few algebraic passages we determine 𝐶 
 

(−𝐶 + Δ ⋅ 𝑆) ⋅ (1 + 𝑅) = −𝐶𝑑 + Δ ∙ 𝑑 ∙ 𝑆 → −𝐶 + Δ ⋅ 𝑆 =
−𝐶𝑑+Δ∙𝑑∙𝑆

1+𝑅
 (Eq. III.165) 

 

𝐶 = Δ ⋅ 𝑆 +
𝐶𝑑−Δ∙𝑑∙𝑆

1+𝑅
=

Δ⋅𝑆⋅(1+𝑅)+𝐶𝑑−Δ∙𝑑∙𝑆

1+𝑅
  (Eq. III.166) 

 

 

Remembering that Δ =
𝐶𝑢−𝐶𝑑

𝑆⋅(𝑢−𝑑)
, 
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𝐶 =

𝐶𝑢−𝐶𝑑
𝑆⋅(𝑢−𝑑)

⋅𝑆⋅(1+𝑅)+𝐶𝑑−
𝐶𝑢−𝐶𝑑
𝑆⋅(𝑢−𝑑)

∙𝑑∙𝑆

1+𝑅
 (Eq. III.167) 

 

𝐶 =
(𝐶𝑢−𝐶𝑑)⋅(1+𝑅)+𝐶𝑑⋅(𝑢−𝑑)−𝑑⋅(𝐶𝑢−𝐶𝑑)

𝑢−𝑑

1+𝑅
=

𝐶𝑢⋅(
1+𝑅−𝑑

𝑢−𝑑
)+𝐶𝑑⋅(

𝑢−𝑅−1

𝑢−𝑑
)

1+𝑅
 (Eq. III.168) 

 

Defining the quantity ∏ =
1+𝑅−𝑑

𝑢−𝑑
, the formula becomes equal to the previous one: 

 

𝐶 =
𝐶𝑢∙∏+𝐶𝑑∙( 1−∏  )

1+𝑅
 (Eq. III.169) 

 

 
 

As we have seen, the basic idea of delta-hedging is thus to create a risk-free portfolio using a specific 
combination of the stock and the option on which the security is written. Alternatively, the investor could also 
consider combining the risk-free asset with the underlying of the option, in such a way as to replicate the pay-
off of the option itself. This combination is called a “synthetic option”. In order to find the number of shares 

to buy (Δ) and the amount of money to initially invest in the risk-free asset (𝐵) to synthesize the option, it is 
necessary to simultaneously solve the equations: 
 

{
Δ ∙ 𝑆 ∙ 𝑢 + 𝐵 ⋅ (1 + 𝑅) = 𝐶𝑢
Δ ∙ 𝑆 ∙ 𝑑 + 𝐵 ⋅ (1 + 𝑅) = 𝐶𝑑

 (Eq. III.170) 

 

The solution for the 2x2 system is: 
 

Δ =
𝐶𝑢−𝐶𝑑

𝑆⋅𝑢−𝑆⋅𝑑
  (Eq. III.171) 

 

𝐵 =
1

1+𝑅
⋅ [
𝑢⋅𝐶𝑑−𝑑⋅𝐶𝑢

𝑢−𝑑
] (Eq. III.172) 

 

 

The cost for the option synthesis is therefore the cost of the portfolio made up of Δ units of shares and of 

investing an amount equal to 𝐵 in the risk-free bond: 𝐶 = 𝑆 ⋅ Δ + 𝐵. 
 

𝐶 = 𝑆 ⋅ Δ + 𝐵 =
𝐶𝑢−𝐶𝑑

𝑢−𝑑
+

𝑢⋅𝐶𝑑−𝑑⋅𝐶𝑢
(𝑢−𝑑)⋅(1+𝑅)

 (Eq. III.173) 
 

𝐶 =
1

1+𝑅
⋅ [
𝐶𝑢⋅(1+𝑅−𝑑)−𝐶𝑑⋅(𝑢−1−𝑅)

(𝑢−𝑑)
] (Eq. III.174) 

 

𝐶 =
1

1+𝑅
⋅ [
1+𝑅−𝑑

𝑢−𝑑
𝐶𝑢 +

𝑢−1−𝑅

𝑢−𝑑
𝐶𝑑] =

𝐶𝑢∙∏+𝐶𝑑∙( 1−∏  )

1+𝑅
 (Eq. III.175) 

 
We have just shown in two independent ways how much a European call option must be worth in a one-period 
binomial model. We now focus on analyzing the formula in more detail. 
 

𝐶 =
𝐶𝑢∙∏+𝐶𝑑∙( 1−∏  )

1+𝑅
  (Eq. III.176) 
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An intuitive way to read this relationship is to view the option price as the discounted value of a weighted 

average of the possible call states at expiration. From this point of view, ∏   and (1 − ∏  ) are interpreted as 
the probability of occurrence. We should also note the interesting aspect that the initial probabilities linked to 

the movement of the price of the underlying 𝑆, i.e. 𝑞 and (1 − 𝑞), are not used in the formula for determining 
the fair value of the call. Thus, the option price is independent from the expected future return of the stock on 
which it is written. This happens because the option can be replicated synthetically and therefore its price does 
not depend on the subjective preferences of an investor or on the personal view of the market. 

∏   can therefore be interpreted as a risk-neutral probability and this method of valuing derivatives is called 
risk-neutral valuation. This valuation approach can be extended to any derivative that can be synthetically 
replicated with elementary financial instruments. 
 

Let us now present an example, bearing in mind that the single period model envisages a single interval which 

starts from the initial instant 𝑡0 and ends at instant 𝑡1. Let us assume that a share 𝑆, having a value of 100 in 

𝑡0, can only have two values in 𝑡1: 

𝑆𝑢 = 110 and 𝑆𝑑 = 91, consequently 𝑢 =
110

100
= 1.1 and 𝑑 =

91

100
= 0.91. 

Let us now consider, for simplicity, that the achievement in 𝑡1 of either one of the two values has the same 

probability. The call option whose value in 𝑡0 is to be determined has maturity in 𝑡1 and strike price 𝐾 equal to 
100. 

Its value at maturity is equal to its pay-off max(𝑆 − 𝐾, 0): 
 

10 if the price of 𝑆 in 𝑡1 is equal to 110, that is 𝑆𝑢 = 110, 𝐶𝑢 = 10. 
 

0 if the price of 𝑆 in 𝑡1 is equal to 91, that is 𝑆𝑑 = 110, 𝐶𝑑 = 0. 
 
 
 
 
 
 
 

 

Figure III.105 The single period binomial tree. Example 
 

Assuming then that the interest rate for the period considered is equal to 5% (𝑅 = 0.05), it is possible to 

construct in 𝑡0 a financial portfolio consisting of shares and bonds, in the proportions Δ and 𝐵 respectively, 

which exactly replicates the value of the call option at time 𝑡1. Operating in a risk-free world, it is therefore 

possible to define the quantities Δ and 𝐵 for which the value of the financial portfolio assumes the same value 
as the option at maturity. To find these quantities, we need to solve the 2 x 2 system: 
 

{
110 ⋅ Δ + 1.05 ⋅ 𝐵 = 10
91 ⋅ Δ + 1.05 ⋅ 𝐵 = 0

→ {
Δ = +0.526315
𝐵 = −45.61403
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And the cost for building such a portfolio is: 𝑆 ⋅ Δ + B = 7.018. 
 

Since the financial portfolio thus constructed is worth exactly as much as the option at maturity, its cost in 𝑡0 
must be exactly equal to the option premium. By directly using the formulas obtained from the previous general 
discussion, the same price is obtained. 
 

∏=
1+ 𝑅 − 𝑑

𝑢 − 𝑑
=
1.05 − 0.91

1.1 − 0.91
= 0.736842 

 

𝐶 =
𝐶𝑢 ∙ ∏+𝐶𝑑 ∙ ( 1 −∏  )

1 + 𝑅
=
10 ∙ 0.736842 + 0 ∙ ( 1 − 0.736842)

1.05
= 7.018 

 

This approach must be extended to several periods: therefore, we begin to deal with the binomial pricing model 
with two time periods between the valuation date of the derivative and its maturity. Using the same procedure, 
at the end of the second period, we will have three possible states since the tree is recombining (recombining 

tree) and the factors 𝑢 and 𝑑 are constant. The figure shows the two trees with the possible price levels: on the 
left, those of the share and on the right those of the call option. We have: 
 

𝐶𝑢𝑢 = max[𝑢
2 ∙ 𝑆 − 𝐾, 0]; 𝐶𝑑𝑑 = max[𝑑

2 ∙ 𝑆 − 𝐾, 0] and 𝐶𝑑𝑢 = max[𝑑 ∙ 𝑢 ⋅ 𝑆 − 𝐾, 0]  (Eq. III.177) 
 

 
 
 
 
 
 
 
 
 
 

Figure III.106 The binomial pricing model with two time periods 
 

 
Using the results obtained in the single-period formulation of the model, the value of the option in period 1 
can be determined: 
 

𝐶𝑢 =
𝐶𝑢𝑢∙∏+𝐶𝑑𝑢∙( 1−∏  )

1+𝑅
; 𝐶𝑑 =

𝐶𝑢𝑑∙∏+𝐶𝑑𝑑∙( 1−∏  )

1+𝑅
 (Eq. III.178) 

 
Considering now period 0, knowing the value at time 1, we operate in a similar way by applying the same result. 
 

𝐶 =
𝐶𝑢∙∏+𝐶𝑑∙( 1−∏  )

1+𝑅
  (Eq. III.179) 

𝐶 =
(
𝐶𝑢𝑢∙∏+𝐶𝑑𝑢∙( 1−∏  )

1+𝑅
)∙∏+(

𝐶𝑢𝑑∙∏+𝐶𝑑𝑑∙( 1−∏  )

1+𝑅
)∙( 1−∏  )

1+𝑅
  (Eq. III.180) 
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𝐶 =
( ∏  )2𝐶𝑢𝑢+2⋅∏∙( 1−∏  )⋅𝐶𝑑𝑢+( 1−∏  )2⋅𝐶𝑑𝑑

(1+𝑅)2
  (Eq. III.181) 

 

Following the same logic, an analyst can derive the pricing formula for a three-period binomial tree. 
 

 

Let us examine a practical example considering a stock with an initial value of 𝑆 = 100. In each period, the 

price level can either rise to 1.1 ⋅ 𝑆 (with a probability 𝑞), or fall to 𝑆/1.1 (with a probability 1 − 𝑞). The flat 

risk-free rate is 5%. This requires the valuation of a European at-the-money call option (𝑆 = 𝐾 = 100) using 
a three-period binomial tree. 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure III.107 The multiperiod binomial tree. Example 
 
The first step consists of building the binomial tree over three periods which interprets the dynamics of the 

underlying 𝑆. The second step is to estimate the pay-off of the call option at the end nodes of the chain: 
 
 

𝐶𝑢𝑢𝑢 = max[𝑆 ⋅ 𝑢
3 −𝐾; 0] = 33.10     𝐶𝑑𝑢𝑢 = max[𝑆 ⋅ 𝑑 ⋅ 𝑢

2 − 𝐾; 0] = 10 

𝐶𝑑𝑑𝑢 = max[𝑆 ⋅ 𝑑
2 ⋅ 𝑢 − 𝐾; 0] = 0        𝐶𝑑𝑢𝑢 = max[𝑆 ⋅ 𝑑

3 − 𝐾; 0] = 0 
 
The third step consists in tracing the nodes of the tree backwards (backwardation), starting from the end, and 
estimating the option prices in previous periods. To do this, it is necessary to calculate the risk-neutral 

probability ∏ =
1+𝑅−𝑑

𝑢−𝑑
=

1.05−
1

1.1

1.1−
1

1.1

= 0.738095.  

We then proceed to calculate the fair value in the second time period: 
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𝐶𝑢𝑢 =
0.738095⋅33.10+0.261905⋅10

1.05
= 25.761905  

 

𝐶𝑑𝑢 =
0.738095⋅10+0.261905⋅0

1.05
= 7.029478  

 

𝐶𝑑𝑑 =
0.738095⋅0+0.261905⋅0

1.05
= 0  

 

The procedure is repeated backwards for interval 1, obtaining: 
 

𝐶𝑢 =
0.738095⋅25.761905+0.261905⋅7.029478

1.05
= 19.862660  

 

𝐶𝑑 =
0.738095⋅7.029478+0.261905⋅0

1.05
= 4.941357  

 

The price of the derivative is read at time 0 and is equal to: 
 

𝐶 =
0.738095⋅19.862660+0.261905⋅4.941356

1.05
= 15.194952.  

 

The pricing instrument of a European call option thus described can be generalized to a generic tree consisting 

of 𝑁 sub-periods. 
 

𝐶 =
∑

𝑁!

𝑗!⋅(𝑁−𝑗)!
⋅( ∏  )𝑗⋅( 1−∏  )𝑁−𝑗⋅max[0;𝑢𝑗⋅𝑑𝑁−𝑗⋅𝑆−𝐾 ]𝑁

𝑗=0

(1+𝑅)𝑁
 (Eq. III.182) 

 

We repeat the valuation of the previous example directly using the generalized pricing formula. Substituting 

into the expression: 𝑁 = 3, S = 𝐾 = 100, 𝑅 = 5%, 𝑢 = 1.1, 𝑑 =
1

1.1
 and ∏ = 0.738095. 

 

𝐶 =
∑

3!

𝑗!⋅(3−𝑗)!
⋅0.738095𝑗⋅( 1−0.738095)3−𝑗⋅max[0;1.1𝑗⋅(

1

1.1
)
3−𝑗

⋅𝑆−𝐾 ]3
𝑗

(1+0.05)3
  

 

=
1

1.053

{
 
 
 

 
 
 

3!

0!⋅3!
⋅ 0.7380950 ⋅ ( 1 − 0.738095)3−0 ⋅ max [0; 1.10 ⋅ (

1

1.1
)
3
⋅ 𝑆 − 𝐾 ]

+
3!

1!⋅2!
⋅ 0.7380951 ⋅ ( 1 − 0.738095)3−1 ⋅ max [0; 1.11 ⋅ (

1

1.1
)
2
⋅ 𝑆 − 𝐾 ]

+
3!

2!⋅1!
⋅ 0.7380952 ⋅ ( 1 − 0.738095)3−2 ⋅ max [0; 1.12 ⋅ (

1

1.1
)
1
⋅ 𝑆 − 𝐾 ]

+
3!

3!⋅0!
⋅ 0.7380953 ⋅ ( 1 − 0.738095)3−3 ⋅ max [0; 1.13 ⋅ (

1

1.1
)
0
⋅ 𝑆 − 𝐾 ]

}
 
 
 

 
 
 

   

𝐶 =
1

1.053
{

1 ⋅ 1 ⋅ 0.017965 ⋅ max[0; 1 ⋅ 0.751315 ⋅ 100 − 100 ]

+3 ⋅ 0.738095 ⋅ 0.068594 ⋅ max[0; 1.1 ⋅ 0.826446 ⋅ 100 − 100 ]

+3 ⋅ 0.544785 ⋅ 0.261905 ⋅ max[0; 1.21 ⋅ 0.909091 ⋅ 100 − 100 ]

+1 ⋅ 0.402103 ⋅ 1 ⋅ max[0; 1.331 ⋅ 1 ⋅ 100 − 100 ]

}  

 

𝐶 =
1

1.053
{0 + 0 + 4.280457 + 13.30961} = 15.1949  
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The generalized formula can be expressed computationally more efficiently. Let us denote with 𝑎 the minimum 

number of upward movements that the stock must make in the following 𝑁 periods in such a way that it ends 

in-the-money. Translated into mathematical terms, 𝑎 must be the smallest non-negative integer such that the 

following condition is satisfied: 𝑢𝑎 ⋅ 𝑑𝑁−𝑎 ⋅ 𝑆 ≥ 𝐾. Taking the natural logarithm from both sides, we obtain: 

ln(𝑢𝑎 ⋅ 𝑑𝑁−𝑎 ⋅ 𝑆) ≥ ln(𝐾) 
Recalling the properties of logarithms and implementing a few algebraic steps, we obtain the condition on the 

index 𝑎: 
 

ln(𝑢𝑎 ⋅ 𝑑𝑁−𝑎 ⋅ 𝑆) ≥ ln(𝐾)  
 

ln(𝑢𝑎) + ln(𝑑𝑁−𝑎) + ln(𝑆) ≥ ln(𝐾)  
 

𝑎 ⋅ ln(𝑢) + (𝑁 − 𝑎) ⋅ ln(𝑑) + ln(𝑆) ≥ ln(𝐾)  
 

𝑎 ⋅ ln(𝑢) +𝑁 ⋅ ln(𝑑) − 𝑎 ⋅ ln(𝑑) + ln(𝑆) ≥ ln(𝐾)  
 

𝑎 ⋅ [ln(𝑢) − ln(𝑑)] ≥ −𝑁 ⋅ ln(𝑑) − ln(𝑆) + ln(𝐾)  
 

𝑎 ≥
−𝑁⋅ln(𝑑)−ln(𝑆)+ln(𝐾)

[ln(𝑢)−ln(𝑑)]
→ 𝑎 ≥

ln(
𝐾

𝑆⋅𝑑𝑁
)

ln(
𝑢

𝑑
)

  

 

For any index 𝑗 smaller than 𝑎, the value of the European call is zero: max[0; 𝑢𝑗 ⋅ 𝑑𝑁−𝑗 ⋅ 𝑆 − 𝐾 ] = 0. 
 

For any index 𝑗 greater than 𝑎, the value of the European call is: 𝑢𝑗 ⋅ 𝑑𝑁−𝑗 ⋅ 𝑆 − 𝐾 . 
 
By setting the condition on the summation index, we can speed up the calculations, making the iterations more 
computationally efficient. 
 

𝐶 =
∑

𝑁!

𝑗!⋅(𝑁−𝑗)!
⋅( ∏  )𝑗⋅( 1−∏  )𝑁−𝑗⋅𝑁

𝑗=𝑎 (𝑢𝑗⋅𝑑𝑁−𝑗⋅𝑆−𝐾)

(1+𝑅)𝑁
 Such that 𝑎 ≥

ln(
𝐾

𝑆⋅𝑑𝑁
)

ln(
𝑢

𝑑
)

. 

 

Taking into consideration the previous example, we obtain 𝑎 ≥
ln(

100

100⋅0.9090913
)

ln(
1,1

0.909091
)

≥ 1.5 → 2. 

𝐶 =
∑

3!

𝑗!⋅(3−𝑗)!
⋅0.738095𝑗⋅( 1−0.738095)3−𝑗⋅(1.1𝑗⋅(

1

1.1
)
3−𝑗

⋅100−100)3
𝑗=2

(1+0.05)3
 =

1

1.053
{4.280457 + 13.30961} = 15.1949 .  

 
The same logic for the valuation of a European call option can be replicated for the pricing of a put, as follows: 
 

𝑃 =
∑

𝑁!

𝑗!⋅(𝑁−𝑗)!
⋅( ∏  )𝑗⋅( 1−∏  )𝑁−𝑗⋅max[0;𝐾−𝑢𝑗⋅𝑑𝑁−𝑗⋅𝑆 ]𝑁

𝑗=0

(1+𝑅)𝑁
  (Eq. III.183) 

 

The routine can be optimized in this case as well. 
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𝑃 =
∑

𝑁!

𝑗!⋅(𝑁−𝑗)!
⋅( ∏  )𝑗⋅( 1−∏  )𝑁−𝑗⋅𝑎−1

𝑗=0 (𝐾−𝑢𝑗⋅𝑑𝑁−𝑗⋅𝑆)

(1+𝑅)𝑁
 Such that: 𝑎 ≥

ln(
𝐾

𝑆⋅𝑑𝑁
)

ln(
𝑢

𝑑
)

 

 

The advantage of implementing this numerical pricing method consists in the possibility of determining the fair 
value of options that provide for early exercise (Bermuda and American). This feature adds further complexity 
to the binomial model: in fact, instead of valuing the exercise value at maturity and going backwards by applying 
the standard backwardation algorithm, a further convenience check must be performed at each time period in 
order to test whether the option is worth more while alive or exercised. The price of the derivative will be the 
higher of these two values. Thus, at each node in the chain, the value of the option can be expressed as: 
 

𝐶𝑡 = max[𝐶𝑑𝑒𝑎𝑑; 𝐶𝑎𝑙𝑖𝑣𝑒] = max [𝑆𝑡 − 𝐾;
𝐶𝑢∙∏+𝐶𝑑∙( 1−∏  )

1+𝑅
] (Eq. III.184) 

 

𝑃𝑡 = max[𝑃𝑑𝑒𝑎𝑑; 𝑃𝑎𝑙𝑖𝑣𝑒] = max [𝐾 − 𝑆𝑡;
𝑃𝑢∙∏+𝑃𝑑∙( 1−∏  )

1+𝑅
] (Eq. III.185) 

 

We now consider, as an example, a put option with a strike price 𝐾 = 100, written on an underlying stock, 

whose spot price is 𝑆 = 100. In the following period, the value of the underlying can be 𝑆𝑢 = 1.1 ⋅ 𝑆 = 110 

or 𝑆𝑑 = 0.95 ⋅ 𝑆 = 95. In the second time interval, the share price may assume the following three states: 
 

𝑆𝑢𝑢 = 1.1 ⋅ 1.1 ⋅ 𝑆 = 121,  𝑆𝑢𝑑 = 𝑆𝑑𝑢 = 0.95 ⋅ 1.1 ⋅ 𝑆 = 104.5 and 𝑆𝑑𝑑 = 0.95 ⋅ 0.95 ⋅ 𝑆 = 90.25 
 

The risk-free rate is assumed to be 5% per period. 
 

If this option is considered as a European put option, at maturity the final value will be null if the underlying 
stock rises to 121 or 104.5 and will be worth 9.75 if the stock falls to 90.25 in the last period. Using the principles 
of evaluation of the binomial tree, the following values are obtained: 
 

𝑃𝑢 =
𝑃𝑢𝑢∙∏+𝑃𝑢𝑑∙( 1−∏  )

1+𝑅
= 0  

   

𝑃𝑑 =
𝑃𝑢𝑑∙∏+𝑃𝑑𝑑∙( 1−∏  )

1+𝑅
=

𝑃𝑢𝑑∙
1+𝑅−𝑑

𝑢−𝑑
+𝑃𝑑𝑑∙( 1−

1+𝑅−𝑑

𝑢−𝑑
)

1+𝑅
=

0∙
1+0.05−0.95

1.1−0.95
+9.75∙( 1−

1+0.05−0.95

1.1−0,95
)

1+0.05
= 3.095238    

 

𝑃 = 
𝑃𝑢∙∏+𝑃𝑑∙( 1−∏  )

1+𝑅
=

0∙
1+0.05−0.95

1.1−0.95
+3.095238∙( 1−

1+0.05−0.95

1.1−0.95
)

1.05
= 0.982615. 

  
 
 
 
 
 
 

 

 
Figure III.108 The multiperiod binomial tree. European Put Option 
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If on the other hand the option is considered as an American put option, at maturity the final value will be 
equal to that of the European option, but in time interval 1, the value differs: 
 
 

𝑃1,𝑢 = max [𝐾 − 𝑆𝑢;
𝑃𝑢𝑢∙∏+𝑃𝑢𝑑∙( 1−∏  )

1+𝑅
] = max[100 − 110; 0] = 0  

 

𝑃1,𝑑 = max [𝐾 − 𝑆𝑑;
𝑃𝑢𝑑∙∏+𝑃𝑑𝑑∙( 1−∏  )

1+𝑅
]= max [100 − 95;

0∙
1+0.05−0.95

1.1−0.95
+9.75∙( 1−

1+0.05−0.95

1.1−0,95
)

1+0.05
] =

         = max[5; 3.095238] = 5   
 

𝑃0 = max [𝐾 − 𝑆𝑡=0;
𝑃1,𝑢∙∏+𝑃1,𝑑∙( 1−∏  )

1+𝑅
]= max [100 − 100;

0∙
1+0.05−0.95

1.1−0.95
+5∙( 1−

1+0.05−0.95

1.1−0.95
)

1.05
] = 1.587302.  

 

The binomial method was able to quantify the benefit derived from early exercise. 
 
 

 
 
 
 
 
 
 
 
 

Figure III.109 The multiperiod binomial tree. American Put Option 
 

 
To generalize the procedure in a multi-period context, it is necessary to use a double indexing in order to 

identify both the reference time interval (index 𝑗), and also the possible value assumed by the financial 

instrument for the same period (index 𝑖). 
 

The generalized expression to consider the possible early exercise of an option in a generic node (𝑗, 𝑖) of the 
binomial tree is given by: 
 

𝑃𝑗,𝑖 = max {𝐾 − 𝑆 ⋅ 𝑢
𝑖 ⋅ 𝑑𝑗−1,

𝑃𝑗+1,𝑖+1∙∏+𝑃𝑗+1,𝑖∙( 1−∏  )

1+𝑅
}  (Eq. III.186) 

 

𝐶𝑗,𝑖 = max {𝑆 ⋅ 𝑢
𝑖 ⋅ 𝑑𝑗−1 −𝐾,

𝐶𝑗+1,𝑖+1∙∏+𝐶𝑗+1,𝑖∙( 1−∏  )

1+𝑅
}  (Eq. III.187) 
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Figure III.110 Binomial tree indexing 
 

As the arborescence of the stochastic tree increases, the estimate of the price of the derivative improves. 

Common practice when the discretization time interval Δ𝑡 is reasonably small is to perform a continuous 
compounding of the interest rate. Under this working hypothesis, the formulas discussed above become: 
 

For the European Option: 

 

𝐶 = exp(−𝑟𝑇) ⋅ ∑
𝑁!

𝑗!⋅(𝑁−𝑗)!
⋅ ( ∏  )𝑗 ⋅ ( 1 − ∏  )𝑁−𝑗 ⋅𝑁

𝑗=𝑎 (𝑢𝑗 ⋅ 𝑑𝑁−𝑗 ⋅ 𝑆 − 𝐾)  (Eq. III.188) 
 

𝑃 = exp(−𝑟𝑇) ⋅ ∑
𝑁!

𝑗!⋅(𝑁−𝑗)!
⋅ ( ∏  )𝑗 ⋅ ( 1 − ∏  )𝑁−𝑗 ⋅𝑎−1

𝑗=0 (𝐾 − 𝑢𝑗 ⋅ 𝑑𝑁−𝑗 ⋅ 𝑆)  (Eq. III.189) 
 
 

For the American Option:  
 

𝑃𝑗,𝑖 = max{𝐾 − 𝑆 ⋅ 𝑢
𝑖 ⋅ 𝑑𝑗−1, exp(−𝑟 ⋅ 𝑇) ⋅ [𝑃𝑗+1,𝑖+1 ∙ ∏+𝑃𝑗+1,𝑖 ∙ ( 1 − ∏  )]}  (Eq. III.190) 

 

𝐶𝑗,𝑖 = max{𝑆 ⋅ 𝑢
𝑖 ⋅ 𝑑𝑗−1 − 𝐾, exp(−𝑟 ⋅ 𝑇) ⋅ [𝐶𝑗+1,𝑖+1 ∙ ∏+𝐶𝑗+1,𝑖 ∙ ( 1 − ∏  )]}  (Eq. III.191) 

 

With ∏ =
exp(𝑟⋅Δ𝑡)−𝑑

𝑢−𝑑
 

 
 

Arbitrary values for the growth and decrease factors of the share were used in our discussion so far. In order 
to have a matching with the stochastic dynamic hypothesized by the Black Scholes framework, Cox – Ross – 

Rubinstein proposed to choose the parameters 𝑢 and 𝑑 so that, for each discretization time interval Δ𝑡, the 
hypothesized future values of the asset were consistent with the theoretical mean and variance of the continuous 
model. Given the assumption that traders are risk neutral, the expected rate of return on the stock is equal to 

the risk-free interest rate 𝑟. Thus, the expected value of the stock price at the end of interval Δ𝑡 is equal to 𝑆 ⋅
exp(𝑟Δ𝑡), where 𝑆 is the stock price at the beginning of the interval. It follows that: 
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𝑆 ⋅ exp(𝑟 ⋅ Δ𝑡) = ∏  ⋅ 𝑆 ⋅  𝑢 + ( 1 − ∏  ) ⋅ 𝑆 ⋅ 𝑑 → exp(𝑟 ⋅ Δ𝑡) = ∏  ⋅  𝑢 + ( 1 − ∏  ) ⋅ 𝑑  (Eq. III.192) 
 

The stochastic process assumed for the stock price implies that the variance of its rate of change in a short 

interval of length Δ𝑡 is 𝜎2Δ𝑡. 
 

Since the variance of a random variable 𝑄 is defined as 𝐸(𝑄2) − 𝐸(𝑄)2, where 𝐸(∙) denotes the expected 
value, we can obtain the second equation which relates the second moment of the stochastic process to the 
evolution followed by the binomial tree: 
 

∏  ⋅  𝑢2 + ( 1 −∏  ) ⋅ 𝑑2 − [ ∏  ⋅ 𝑢 + ( 1 − ∏  ) ⋅ 𝑑 ]2 = 𝜎2Δ𝑡 (Eq. III.193) 
 

Obtaining ∏  from the equation of the first moment and substituting the value of ∏  within the relation of the 
second moment, we obtain: 
 

exp(𝑟 ⋅ Δ𝑡) = ∏  ⋅  𝑢 + ( 1 − ∏  ) ⋅ 𝑑 → exp(𝑟 ⋅ Δ𝑡) − 𝑑 = ∏⋅ (𝑢 − 𝑑) → ∏ =
exp(𝑟⋅Δ𝑡)−𝑑

𝑢−𝑑
  (Eq. III.194) 

 

exp(𝑟 ⋅ Δ𝑡) ⋅ (𝑢 + 𝑑) − 𝑢 ⋅ 𝑑 − exp(2 ⋅ 𝑟 ⋅ Δ𝑡) = 𝜎2Δ𝑡  (Eq. III.195) 
 

Recalling that Cox, Ross and Rubinstein had assumed for their model that 𝑢 = 1/𝑑, we obtain a 3 x 3 system 

which allows us to express the parameters ∏  , 𝑢 and 𝑑 in terms of 𝑟, 𝜎 and Δ𝑡: 

 
exp(𝑟Δ𝑡) = ∏  ⋅ 𝑢 + (1 − ∏  ) ⋅ 𝑑  
 

exp(𝑟Δ𝑡) ⋅ (𝑢 + 𝑑) − 𝑢 ⋅ 𝑑 − exp(2 ⋅ 𝑟 ⋅ Δ𝑡) = 𝜎2Δ𝑡      →  
 

𝑢 =
1

𝑑
 

 
The set of parameters allows to construct a binomial stochastic tree in complete agreement with the Black-
Scholes pricing framework. 
 

Therefore, if a certain number of time discretization intervals tending to infinity 𝑁 → ∞ were considered, a 
theoretical convergence to the closed valuation formula for European vanilla options would be obtained. 
 

Let us prove this statement experimentally by considering pricing a European option having the following 
financial characteristics: S=50, K=55, T=0.5, r=5%, σ=30%. 
 

The closed formulas would give a value equal to 𝐶𝐸 = 2.7935 and 𝑃𝐸 = 6.4356. 
 

Using 20 time-intervals, the call option price converges to 2.7377. The graphical representation of the binomial 
tree shown in the figure below was programmed in Matlab. 
 

Two possible chain paths have been traced on the chain: for each of them the value assumed by the share at 
each step and the relative call price are shown in the following figures. 

{
 
 

 
 Π =

exp(𝑟 ⋅ Δ𝑡) − 𝑑

𝑢 − 𝑑

𝑢 = exp(𝜎√Δ𝑡)       

𝑑 = exp(−𝜎√Δ𝑡)    
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Figure III.111 Binomial tree generated using Matlab 
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Figure III.112 Underlying and Option Trees generated by Matlab (Call option) 
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By increasing the number of discretization steps, we experience the convergence to the theoretical value of the 
Black-Scholes analytic formula. 

 

 

 
Figure III.113 Convergence to the exact BS Call price close formula 

 
 

The same procedure has been conducted for the valuation of the European put. In this case, the pricing with 
the CRR tree having 20 discretization steps leads to a fair value of the derivative equal to 6.3797. 
 
The following figures show the values of the European put assumed in the various nodes of the binomial tree 
and the verification of the convergence to the Black-Scholes analytic formula. 
 

For 𝑁 = 1000 we obtain a price of 6.4352. 
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Figure III.114 Option Tree generated by Matlab (Put option) 
 
 

 
 

Figure III.115 Convergence to the exact BS Put price close formula 
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Figure III.116 Option Tree generated by Matlab (American Put option) 
 

The price of the American put option is equal to 𝑃𝐴 = 6.6942. 
 

 
 

Figure III.117 Convergence plot for an American Put option 
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The price diagram generated for 𝑁 = 20 time steps to determine the value of an American call option is 
identical to that used to value the European call option with the same financial characteristics. This means that 
at each node of the binomial tree it has never been convenient to exercise the option in advance: the derivative 
is therefore always worth more while it is alive. This result is absolutely in line with the theory, since it satisfies 
the property of the options which affirms the parity of value between the American call option and the 
European call option, if they are written on an underlying share that does not pay a dividend and in normal 

market conditions (risk-free rate positive, in this case 𝑟 = 5%). 
 

For 𝑁 = 1000, it is possible to determine a price of the derivative equal to 𝐶𝐸 = 𝐶𝐴 = 2.7932 with an 
estimation error lower than the third decimal place. Similarly to the logical steps discussed for the analytical 
formulas of Black-Scholes, the numerical formulas of the binomial approach can be extended to further 

underlyings by introducing the parameter 𝑏 called cost-of-carry. Depending on the value assumed by the 

parameter 𝑏, we reach a pricing framework that can be used for a large number of underlyings on which the 

call/put option can be written. The adjustment to be made is on the definition of the risk-neutral probability Π  
 

∏ =
exp(𝑏⋅Δ𝑡)−𝑑

𝑢−𝑑
 (Eq. III.196) 

 

Let us analyze the different cases: 

- If 𝑏 = 𝑟, the definition is suitable for the pricing of options written on shares that pay no dividend. 

- If 𝑏 = 𝑟 − 𝑞, the definition is suitable for the pricing of options written on shares/indexes with a continuous 

dividend yield 𝑞. 

- If 𝑏 = 0, the definition is suitable for the pricing of options on futures. 

- If 𝑏 = 𝑟 − 𝑟𝐹𝑂𝑅, the definition is suitable for the pricing of currency options. 
 

The total number of nodes making up the binomial tree is: 
(𝑁+1)⋅(𝑁+2)

2
. 

It should be highlighted that a low volatility and a relatively high cost-of-carry can lead to negative risk-neutral 

probabilities. In particular, this phenomenon occurs when the condition that 𝜎 < |𝑏√𝑇| is satisfied. The 

drawback in obtaining negative probabilities of occurrence is in and of itself inconsistent with the basic axioms 
of statistics, but for pricing purposes it does not lead to obtaining a model output divergent from that expected 
from the theory. 
The real problem arises though when, faced with the occurrence of this condition, it is not possible to generate 
a set of probability states large enough to cover all relevant events. To deal with this problem, it is worth 

highlighting that the parameters characterizing the binomial chain CRR Π, 𝑢 and 𝑑, chosen in such a way as to 
agree with the first and second moment of the distribution of the underlying, are not the only triad that satisfies 
this condition. 

There are several formulations in the literature, and the most popular setting is Π = 0.5, which is the so-called 
Equal-Probability trees (EQP Tree). Rendleman-Bartter actually formulated the first approach in the same 
year of discussion of the CRR Tree, proposing the following triad of parameters: 
 

∏  = 0.5, 𝑢 = exp[(𝑏 − 𝜎2/2)Δ𝑡 + 𝜎 ⋅ √Δ𝑡],  𝑑 = exp[(𝑏 − 𝜎2/2)Δ𝑡 − 𝜎 ⋅ √Δ𝑡] (Eq. III.197) 
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Similarly to the Cox-Ross-Rubinstein method, the Rendleman-Bartter model also allows convergence to the 
theoretical values of the closed formulas of the Black-Scholes framework. 
 

As a practical implementation of this model, the derivatives proposed in the previous example are recalculated 
with the EQP Tree: S=50, K=55, T=0.5, r=5%, σ=30%. 
 

- With 𝑁 = 20, we calculate: 𝑃𝐴 = 6.6686 , 𝑃𝐸 = 6.3876 and 𝐶𝐸 = 𝐶𝐴 = 2.7456. 
 

- With 𝑁 = 1000, we calculate: 𝑃𝐴 = 6.6940 , 𝑃𝐸 = 6.4351 and 𝐶𝐸 = 𝐶𝐴 = 2.7930. 
 

The numerical examples proposed so far have assumed the possibility of exercising the option at any moment 
while it is alive. This right that can be exercised continuously makes it an American-style option. For the 
valuation of Bermuda-type options, i.e. those types of derivatives that can be exercised only in specific periods, 
the binomial models presented here can however be usefully employed. In fact, in this case the formulas for 
the test of convenience to exercise the option in advance no longer occurs for all the nodes, but only for those 
involved. An analyst typically has the foresight to adopt a time discretization designed in such a way as to match 
with the dates on which the option holder can exercise his right, and the above formulas can be used only for 
the nodes of the chain present in that stage. For all the others, the standard backwardation process is adopted. 
 

In short: 
 

If 𝑗 belongs to an interval in which the Bermuda option can be exercised, for all indices 𝑖 the following is 
adopted: 
 

𝑃𝑗,𝑖 = max {𝐾 − 𝑆 ⋅ 𝑢
𝑖 ⋅ 𝑑𝑗−1,

𝑃𝑗+1,𝑖+1∙∏+𝑃𝑗+1,𝑖∙( 1−∏  )

1+𝑅
} (Eq. III.198) 

𝐶𝑗,𝑖 = max {𝑆 ⋅ 𝑢
𝑖 ⋅ 𝑑𝑗−1 −𝐾,

𝐶𝑗+1,𝑖+1∙∏+𝐶𝑗+1,𝑖∙( 1−∏  )

1+𝑅
} (Eq. III.199) 

 

Otherwise: 
 

𝑃𝑗,𝑖 =
𝑃𝑗+1,𝑖+1∙∏+𝑃𝑗+1,𝑖∙( 1−∏  )

1+𝑅
 (Eq. III.200) 

 

𝐶𝑗,𝑖 =
𝐶𝑗+1,𝑖+1∙∏+𝐶𝑗+1,𝑖∙( 1−∏  )

1+𝑅
 (Eq. III.201) 

 

As an example, let us consider the valuation of the put option discussed above, assuming that it can be exercised 
every month, at the end of the month. The financial characteristics of the Bermuda put option thus are: S=50, 
K=55, T=0.5, r=5%, σ=30%, exercisable monthly. Considering months with 30 days and adopting a daily 

discretization of the binomial tree (𝑁 = 180), the condition of early exercise will be tested in correspondence 

of all the nodes generated for each 𝑗 multiple of 30. 
 

The price of the Bermuda put, calculated in this way is equal to: 
 

- 𝑃𝐵𝐸𝑅𝑀𝑈𝐷𝐴 = 6.6531 using the EQP Tree. 
 

- 𝑃𝐵𝐸𝑅𝑀𝑈𝐷𝐴 = 6.6519 using the CRR Tree. 
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Months Year fraction Days j exercise 

1 0.083333 30 30 

2 0.166667 60 60 

3 0.25 90 90 

4 0.333333 120 120 

5 0.416667 150 150 

6 0.5 180 180 

 
Table III.57 CRR Tree: Bermuda Option pricing 

 

If it is impossible to make the time index coincide exactly with the date on which the option can be exercised, 

the check is implemented in the 𝑗-closest to this event. 
 

The binomial tree can easily be generalized for the pricing of exotic options, whose pay-off is not path-
dependent, i.e. dependent on the values of the underlying assumed during the life of the derivative. The most 
general expression of the European binomial model is: 
 

𝐶 = exp(−𝑟𝑇) ⋅ ∑
𝑁!

𝑗!⋅(𝑁−𝑗)!
⋅ ( ∏  )𝑗 ⋅ ( 1 − ∏  )𝑁−𝑗 ⋅𝑁

𝑗=𝑎 𝑔[𝑆(𝑇), 𝐾] (Eq. III.202) 
 

𝑃 = exp(−𝑟𝑇) ⋅ ∑
𝑁!

𝑗!⋅(𝑁−𝑗)!
⋅ ( ∏  )𝑗 ⋅ ( 1 − ∏  )𝑁−𝑗 ⋅ 𝑔[𝑆(𝑇),𝐾]𝑎−1

𝑗=0   (Eq. III.203) 
 

Where 𝑆(𝑇) = 𝑆 ⋅ 𝑢𝑖 ⋅ 𝑑𝑛−1 and 𝑔[𝑆(𝑇), 𝐾] indicates a generic function that expresses the payoff of the exotic 
option at maturity. This formulation makes it clear that the numerical model can be extremely powerful: it is 
able to valorize any European option written on a single asset, whose pay-off is not path-dependent. For 
example, if we wanted to obtain the price of a power option, whose pay-off at expiry is equal to: 

max[𝑆2 − 𝐾, 0], the pricing formula would be: 𝑔[𝑆(𝑇), 𝐾] = max[(𝑆 ⋅ 𝑢𝑗 ⋅ 𝑑𝑛−𝑗)
2
− 𝐾, 0]. 

 

Further examples of exotic options that can be treated with the generalized European binomial tree are: 
 

Power Contract (type A): 𝑆𝑚 
 

Capped power contract: min[𝑆𝑚, 𝐶𝑎𝑝] 

Power Contract (type B): (
𝑆

𝐾
)
𝑚

 
 

Power Contract (type C): (𝑆 − 𝐾)𝑚 
 

Standard Power Option: max[z ⋅ (𝑆𝑚 − 𝐾), 0] 
 

Capped Standard Power Option: min{max[z ⋅ (𝑆𝑚 − 𝐾), 0], 𝐶𝑎𝑝} 
 

Powered Option: max[z ⋅ (𝑆 − 𝐾), 0]𝑚 
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Capped Powered Option: min {max[z ⋅ (𝑆 − 𝐾), 0]𝑚, 𝐶𝑎𝑝} 
 

Log Contract: ln (
𝑆

𝐾
) 

 

Log Option: max [ln (
𝑆

𝐾
) , 0] 

 

Square root contract: max√[z ⋅ (𝑆 − 𝐾), 0] 
 
 

With 𝑧 = +1 if call and 𝑧 = −1 if put. 𝑚 ∈ ℝ  
 

For completeness, it should be noted that the simplest path-dependent options can be valuated using stochastic 
trees, but certain non-trivial adjustments to the basic formula are necessary. For derivatives that cannot be 
managed through trees (or through any other deterministic valuation algorithm), the Monte Carlo methodology 
is used, since it can be used with any financial instrument, despite having the drawback of being a stochastic 
technique. 
 
We now focus on how to estimate sensitivity measures (Greeks) using the binomial tree. As we know, the Delta 

of an option Δ, is the first derivative of the price of the derivative with respect to the price of the underlying: 

Δ =
Δ𝑓

Δ𝑆
 , where Δ𝑆 is a small change in the share price and Δ𝑓 is the corresponding small change in the fair-

value of the option. 

At time Δ𝑡, we have an estimate 𝑓11 of the option price when the underlying price is 𝑆0 ⋅ 𝑢 and an estimate 𝑓10, 

of the option price when the value of the underlying is 𝑆0 ⋅ 𝑑. In other words, when Δ𝑆 = 𝑆0 ⋅ 𝑢 − 𝑆0 ⋅ 𝑑, the 

value of Δ𝑓 is equal to 𝑓11 − 𝑓10. 
 

Therefore, an estimation of Δ at time Δ𝑡 is given by: 
 

Δ =
𝑓11−𝑓10

𝑆0⋅𝑢−𝑆0⋅𝑑
 (Eq. III.204) 

 

To determine Γ, i.e. the second derivative of the price of the derivative with respect to the price of the 

underlying, we note that two estimates of the Greek Δ are available at time 2Δ𝑡. 

When S =
𝑆0⋅𝑢⋅𝑑+𝑆0⋅𝑑

2

2
 (halfway between the first and second node), the delta is equal to Δ𝐷 =

𝑓21−𝑓20

𝑆0−𝑆0⋅𝑑
2. 

The difference between the two values of 𝑆 is ℎ, where ℎ =
𝑆0⋅𝑢

2−𝑆0⋅𝑑
2

2
. 

By definition, Gamma represents the first derivative of Delta with respect to S, so the incremental ratio that 

provides an estimate of Γ is: 
 

Γ =
Δ𝑈−Δ𝐷

ℎ
=

𝑓22−𝑓21
𝑆0⋅𝑢

2−𝑆0⋅𝑢⋅𝑑
−

𝑓21−𝑓20
𝑆0⋅𝑢⋅𝑑−𝑆0⋅𝑑

2

ℎ
, Δ =

𝑓11−𝑓10

𝑆0⋅𝑢−𝑆0⋅𝑑
 (Eq. III.205) 

 

Another widely used measure of sensitivity that can be obtained directly from the tree is Theta, Θ, which is the 
derivative of the option price with respect to time. It can be estimated by calculating the ratio: 
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Θ =
𝑓21−𝑓00

2⋅Δ𝑡
 (Eq. III.206) 

 

The remaining sensitivity measures cannot be calculated starting from the values read on the nodes of the tree, 
and it is necessary to calculate the value of the option twice according to the general formulas: 
 

𝜗 =
𝑓(𝜎+Δ𝜎)−𝑓(𝜎−Δ𝜎)

2⋅Δ𝜎 
  (Eq. III.207); 𝜌 =

𝑓(𝑟+Δ𝑟)−𝑓(𝑟−Δ𝑟)

2⋅Δ𝑟 
 (Eq. III.208) 

 
 
 
 
 
 
 
 
 
 
 

Figure III.118 Binomial trees indexing for Greek computation 
 

Below is the estimate of the sensitivities in the case of the example provided above for the European call 𝐶𝐸. 
In short, inputs are: S=50, K=55, T=0.5, r=5%, σ=30%. The Greeks were computed using a 20-interval CRR 
Tree: 
 
 
 
 
 
 
 
 
 
 

Figure III.119 Binomial trees for Greek computation 
 

Δ =
𝑓11−𝑓10

𝑆11−𝑆10
=

3.7016−1.7755

52.4289−47.6837
= 0.405905  

 

Γ =

𝑓22−𝑓21
𝑆22−𝑆21

−
𝑓21−𝑓20
𝑆21−𝑆20

𝑆22−𝑆20
2

=
4.9258−2.4802

54.9757−50
−
2.4802−1.0716

50−47.6837
54.9757−45.4746

2

= 0.037942  
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Θ =
𝑓21−𝑓00

2⋅Δ𝑡
=

𝑓21−𝑓00

2⋅
𝑇

𝑁

=
2.4802−2.7377

2⋅
0.5

20

= −5.15 → Θ = −
5.15

360
= −0.01431.  

 

 

The Vega (𝜗) and the Rho (𝜌) cannot be estimated by reading the values directly on the nodes of the tree: it is 
necessary to use the definition: 
 

𝜌 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒𝑠
=

𝑓(𝑟+Δ𝑟)−𝑓(𝑟−Δ𝑟)

2⋅Δ𝑟 
  (Eq. III.209) 

 

𝜗 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
=

𝑓(𝜎+Δ𝜎)−𝑓(𝜎−Δ𝜎)

2⋅Δ𝜎 
 (Eq. III.210) 

 
It is also necessary to implement a double valuation of the fair value in correspondence with the deviations of 
the monitored parameter, obviously without modifying the other input parameters of the algorithm. 
 

For Δ𝑟 = 1 𝑏𝑝 : 
 

𝜌 =
𝑓(0.05+0.0001)−𝑓(0.05−0.0001)

2⋅0.0001 
=

2.7386−2.7368

2⋅0.0001 
= 9  

 

For Δ𝜎 = 1% : 
 

𝜗 =
𝑓(0.3+0.01)−𝑓(0.3−0.01)

2⋅0.01 
=

2.8838−2.6146

2⋅0.01 
= 13.46  

 
Using a CRR Tree of 1,000 time intervals, the following values are obtained: 
 

𝑆00 = 50, 𝑆10 = 49.6657 𝑆11 = 50.3365, 𝑆20 = 49.3337 𝑆21 = 50  𝑆22 = 50.6753 
 

𝑓00 = 2.7932 𝑓10 = 2.6554 𝑓11 = 2.9310 𝑓20 = 2.5227 𝑓21 = 2.7881 𝑓22 = 3.0738 
 

 
Greeks estimated with such a dense arborescence are very close to those calculated with the closed analytical 
formulas of Black-Scholes, as shown below: 
 

ΔCRR =
𝑓11−𝑓10

𝑆11−𝑆10
=

2.9310−2.6554

50.3365−49.6657
= 0.410853  

 

𝛥𝐹𝑂𝑅𝑀 = 𝑁(𝑑1) = 𝑁 (
ln(

50

55
)+(0.05+0.32 2⁄ )⋅0.5

0.3⋅√0.5
) = 𝑁(−0.22538) = 0.410842  

 

ΓCRR =

𝑓22−𝑓21
𝑆22−𝑆21

−
𝑓21−𝑓20
𝑆21−𝑆20

𝑆22−𝑆20
2

=
3.0738−2.7881

50.6753−50
−
2.7881−2.5227

50−49.3337
50.6753−49.3337

2

= 0.036899  

 

ΓFORMULA =
𝑛(𝑑1)

𝑆𝜎√𝑇
=

𝑛(−0.22538)

50⋅0.3⋅√0.5
= 0.036669  
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ΘCRR =
𝑓21−𝑓00

2⋅
𝑇

𝑁

=
2.7881−2.7932

2⋅
0.5

1000

= −5.1 → ΘCRR = −
5.1

360
= −0.014167  

 

ΘFORMULA = −

𝑆∙𝜎

2∙√𝑇
∙𝑛(𝑑1)−𝐾𝑒

−𝑟𝑇∙𝑟∙𝑁(𝑑1−𝜎√𝑇)

360
= −0.0139  

 

𝜌𝐶𝑅𝑅 =
𝑓(𝑟+Δ𝑟)−𝑓(𝑟−Δ𝑟)

2⋅Δ𝑟 
=

𝑓(0.05+0.0001)−𝑓(0.05−0.0001)

2⋅0.0001 
=

2.7940435−2.7922689

0.0002 
= 8.8730  

 

𝜌FORMULA = 𝑇 ∙ 𝐾 ∙ 𝑒
−𝑟𝑇 ∙ 𝑁(𝑑1 − 𝜎√𝑇) = 8.8743  

 

𝜗𝐶𝑅𝑅 =
𝑓(𝜎+Δ𝜎)−𝑓(𝜎−Δ𝜎)

2⋅Δ𝜎 
=

𝑓(0.3+0.01)−𝑓(0.3−0.01)

2⋅0.01 
= 𝜗𝐶𝑅𝑅 =

2.931026−2.656952

0.02 
= 13.704  

 

𝜗𝐹𝑂𝑅𝑀𝑈𝐿𝐴 = 𝑆 ∙ √𝑇 ∙ 𝑛(𝑑1) = 13.7510.  

 
FURTHER READINGS 

Bottasso A., Bruno L., Giribone P. G. – “The impact of negative interest rates on the pricing of options written 
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Fabbri M., Giribone P. G. – “Progettazione di un sistema di pricing e di gestione del rischio per il prodotto 
strutturato EAKO - European American Knock-Out option” – Risk Management Magazine Vol. 15, N. 2 
(2020). 
Giribone P. G., Ventura S. – “Studio della convergenza dei modelli di pricing discreti multinomiali azionari: 
teoria e applicazioni con tecniche di controllo dell’errore” – AIFIRM Magazine Vol. 6, N. 1 (2011). 
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III.6 MONTE CARLO 
 
 

The value of a derivative is closely linked to the price changes of the underlying financial asset 𝑆(𝑡) in the 

period of time between the signing of the contract and the maturity date 𝑡 ∈ [0, 𝑇]. For this purpose, it is 
necessary to mathematically describe a dynamic that represents the possible future trajectories that can be 
assumed by the asset on which the option is written. The stochastic process commonly adopted and consistent 
with the Black-Scholes-Merton pricing framework is called Geometric Brownian motion and it is represented 
by the following Stochastic Differential Equation (SDE): 
 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊𝑡 (Eq. III.211) 
 

𝜇 is the annualized expected return earned by an investor over time period 𝑑𝑡. In a risk-neutral context it is set 

equal to the risk-free rate 𝑟. 

𝜎 is the annualized volatility of the asset. 

𝑑𝑊𝑡  is a Wiener process. 
 

The SDE can be integrated using Euler’s numerical scheme and implemented in a numerical processing 
software: 
 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊𝑡 → Δ𝑆 = 𝜇𝑆Δ𝑡 + 𝜎𝑆ΔW → 
 

𝑆𝑡 = 𝑆𝑡−1 + 𝜇𝑆𝑡−1Δ𝑡 + 𝜎𝑆𝑡−1𝜖√Δ𝑡 (Eq. III.212) 
 

Where 𝜖 is a draw from a standard normal distribution. 
 

The figure below depicts a simulated daily path of an asset having the following characteristics: 𝑆 = 50, 𝑟 =
5% and 𝜎 = 30%. The period of time over which the simulation was conducted is 180 days (continuous 

trading), thus 𝑇 = 0.5 → Δ𝑡 =
0.5

180
. 

 
 

Figure III.120 A Monte Carlo path 
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By repeating the routine several times, numerous possible paths of the asset can be simulated. Figure III.121 
actually shows 100 simulated paths with the previous inputs. As we have seen previously, to value a European 

call option, the max(𝑆𝑇 − 𝐾, 0) pay-off is directly applied with 𝐾 being the strike price at maturity. 
 

Therefore, for each path, the final value 𝑆𝑇 is considered and the discounted pay-off is computed: 

exp(−𝑟𝑇)max(𝑆𝑇 − 𝐾, 0). In the end there will be as many possible prices for the derivative as the 
simulations conducted. The fair value of the option will be given by the average of these prices. 

 

 
 

Figure III.121 100 simulated Monte Carlo paths 
 

Assuming that the call option has an exercise price equal to 𝐾 = 55, the valuation of the European call option 
is implemented (S=50, K=55, T=0.5, r=5%, σ=30%). 

 

Simulations 100 1,000 10,000 100,000 1,000,000 10,000,000 

Fair Value 2.1816 2.9605 2.7258 2.7621 2.7864 2.7953 

 
Table III.58 Option prices varying the number of simulations 

 
The table above shows the fair values obtained using the Monte Carlo method. Given that this approach, by 
definition, is stochastic (for the same input, different outputs are obtained), it is essential to be able to quantify 
the level of error that can be committed using a thousand simulations rather than a million. 
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Figure III.122 100 simulated Monte Carlo paths with Option Exercise Price 
 

It is therefore necessary to accompany the information with a measure of the divergence of the output.  
Typically, for this purpose, the standard deviation calculated on the outputs produced by the simulator after 
various launches is used. Expressing the concept in more formal terms, it is customary to estimate the speed of 

output convergence by calculating the standard deviation over a campaign of 𝐾 replications of 𝑁 runs each. In 

our case, a campaign of 15 replications of 𝑁 runs has been conducted, as shown in the table below. 
 
 

Runs Repl.1 Repl.2 Repl.3 Repl.4 Repl.5 Repl.6 Repl.7 Repl.8 Repl.9 Repl.10 Repl.11 Repl.12 

102 3.125 2.322 2.834 2.120 2.224 4.782 2.875 2.088 2.797 3.079 2.192 2.532 

103 2.707 2.662 2.579 3.190 2.626 2.667 2.855 2.902 2.628 3.057 2.606 2.685 

104 2.770 2.790 2.797 2.848 2.632 2.778 2.705 2.812 2.901 2.730 2.782 2.835 

105 2.794 2.796 2.768 2.797 2.762 2.807 2.768 2.781 2.809 2.780 2.764 2.819 

106 2.793 2.805 2.801 2.791 2.788 2.795 2.803 2.798 2.790 2.797 2.792 2.790 

107 2.793 2.793 2.789 2.794 2.792 2.797 2.796 2.794 2.796 2.793 2.796 2.793 
 

Runs Repl.13 Repl.14 Repl.15 Great Mean Std. Dev 

102 4.409 2.944 3.393 2.914 0.795 

103 2.859 2.597 2.899 2.768 0.185 

104 2.814 2.860 2.814 2.791 0.066 

105 2.790 2.779 2.810 2.788 0.018 

106 2.786 2.799 2.795 2.795 0.006 

107 2.792 2.791 2.796 2.794 0.002 
 

Table III.59 A simulation campaign for option pricing 
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The great mean (i.e. the average over the 𝐾 outputs) expresses the statistically most reliable measure of the fair 
value of the derivative. It should also be noted that the value converges to the theoretical value calculated using 

the traditional closed formula of the Black-Scholes framework (𝐶𝐸 = 2.7935). 
 

Stochastic calculus allows to formulate an analytic expression for the simulation of 𝑆(𝑡 = 𝑇). This result is 
considered of extreme practical importance since it allows to implement direct simulations of the asset at a 

generic future time 𝑡 = 𝑇 without the need to know the values assumed in previous times 𝑆(𝑡 < 𝑇). Starting 

from the hypothesis that the variable follows a stochastic process of the type: 𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊𝑡. 
 

It follows from Ito's lemma that there must exist a function 𝐺(𝑆(𝑡)) which follows the following dynamics: 
 

𝑑𝐺(𝑆,  𝑡) = (
𝜕𝐺(𝑆,𝑡)

𝜕𝑆
𝜇𝑆 +

𝜕𝐺(𝑆,𝑡)

𝜕𝑡
+
1

2

𝜕2𝐺(𝑆,𝑡)

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 +

𝜕𝐺(𝑆,𝑡)

𝜕𝑆
𝜎𝑆(𝑡)𝑑𝑊𝑡  (Eq. III.213)  

 

Setting 𝐺 = ln(𝑆), we obtain: 
 

𝑑𝐺 = (𝜇 −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑𝑊𝑡  

 

𝑑 ln(𝑆(𝑡)) = (𝜇 −
𝜎2

2
)𝑑𝑡 + 𝜎𝑑𝑊𝑡  

 
Integrating the expression over time, we reach: 
 

∫ 𝑑 ln(𝑆(𝑡))
𝑇

0
= ∫ (𝜇 −

𝜎2

2
)𝑑𝑡

𝑇

0
+ ∫ 𝜎𝑑𝑊𝑡

𝑇

0
  

 

ln (
𝑆(𝑇)

𝑆(0)
) = (𝜇 −

𝜎2

2
)𝑇 + 𝜎𝑑𝑊𝑇  

 

𝑆(𝑇) = 𝑆(0) exp [(𝜇 −
𝜎2

2
)𝑇 + 𝜎𝑑𝑊𝑇]  

 

The latter expression can be implemented in a numerical processing software: 
 

𝑆(𝑇) = 𝑆(0) exp [(𝜇 −
𝜎2

2
)𝑇 + 𝜎𝑑𝑊𝑇] → 𝑆(𝑇) = 𝑆(0) exp [(𝜇 −

𝜎2

2
) 𝑇 + 𝜎𝜖√𝑇]  (Eq. III.214) 

 

Where 𝜖 represents an extraction from a normal distribution with zero mean and unit variance. The formula 
therefore allows to simulate the value of the asset underlying an option at any point in time, in a manner 
consistent with the BS framework. In the case of the previous valuation, the computational advantage is evident 
in the implementation of the analytical formula for solving the SDE rather than the numerical one. In fact, the 

latter simulates the final price of the asset 𝑆(𝑇) (i.e. the price level assumed on the 180th day) only after 
calculating the previous 179 time-steps; while the analytical formula can estimate it directly: 

𝑆(𝑇) = 𝑆(0) exp [(𝜇 −
𝜎2

2
)𝑇 + 𝜎𝜖√𝑇]  

𝑆(𝑇) = 50 exp [(0.05 −
0.32

2
)0.5 + 0.3𝜖√0.5] = 50 exp[0.0025 + 0.212132 ⋅ 𝜖]  
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The estimation of the call fair value is significantly more efficient: 
 

𝑐 =
exp(−𝑟𝑇)

𝑁
∑ max{𝑆 exp[(𝑟 − 𝜎2/2)𝑇 + 𝜎𝜖𝑖√𝑇] − 𝐾, 0}
𝑁
𝑖=1   (Eq. III.215) 

 
The formulas can be extended to different categories of underlyings by introducing the cost-of-carry parameter, 

𝑏. Depending on its value, we reach a pricing framework that can be used for a large number of underlyings on 
which the call/put option can be written: 
 

𝑐 =
exp(−𝑟𝑇)

𝑁
∑ max{𝑆 exp[(𝑏 − 𝜎2/2)𝑇 + 𝜎𝜖𝑖√𝑇] − 𝐾, 0}
𝑁
𝑖=1   (Eq. III.216) 

 

𝑝 =
exp(−𝑟𝑇)

𝑁
∑ max{𝐾 − 𝑆 exp[(𝑏 − 𝜎2/2)𝑇 + 𝜎𝜖𝑖√𝑇], 0}
𝑁
𝑖=1   (Eq. III.217) 

 

 
Let us analyze the different cases depending on the cost-of-carry parameter: 

- If 𝑏 = 𝑟, the definition is suitable for pricing options written on shares that pay no dividend. 

- If 𝑏 = 𝑟 − 𝑞, the definition is suitable for pricing options written on shares/indexes with a continuous 

dividend yield 𝑞. 

- If 𝑏 = 0, the definition is suitable for pricing options on futures. 

- If 𝑏 = 𝑟 − 𝑟𝐹𝑂𝑅, the definition is suitable for pricing currency options. 
 

The price graph displayed in the figure below was obtained through a campaign of one thousand replications 
of one million paths each. The theoretical fair value for this financial instrument, equal to the average of the 
prices obtained from the Monte Carlo, is 6.435588 with a standard deviation of 0.006725. The convergence 

value (for 𝑁𝑆𝑖𝑚 → ∞) can be calculated using the BS closed formula and it is: 𝑃𝐸 = 6.4355920. 
 

 
 

Figure III.123 Prices obtained through a campaign of one thousand replications of one million paths each 
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Thanks to its flexibility, the Monte Carlo methodology allows for the pricing of highly exotic derivatives 
characterized by non-standard and highly non linear pay-offs. 
 

In fact, using the formula 𝑆(𝑇) = 𝑆 exp [(𝑏 −
𝜎2

2
) 𝑇 + 𝜎𝜖√𝑇], it is possible to simulate the potential price 

levels of a single underlying in a generic time 𝑡 and therefore evaluate the pay-off that characterizes the exotic 
derivative at the dates of interest. 
 

One of the strengths of the Monte Carlo method is the possibility to evaluate path-dependent options. 
 

As we wish to monitor the trend of the underlying over the entire life of the option, it is useful to express the 

closed formula as a function of Δ𝑡: 
 

𝑆(𝑇) = ∑ 𝑆𝑗−1 exp[(𝑏 − 𝜎
2/2)Δ𝑡 + 𝜎𝜖𝑗√Δ𝑡]

𝑚
𝑗=1   (Eq. III.218) 

 

Where 𝑚 is the number of temporal intervals, Δ𝑡 =
𝑇

𝑚
 and 𝑆(0) is the initial value for the asset at 𝑗 = 1. 

 
Let us now consider a derivative that does not have a closed valuation formula: callable options. As we know, 
callable options are call options that the owner is forced to exercise if the price level of the underlying asset on 

which they are written exceeds a pre-set level, called the barrier (𝐻) for a number of consecutive days 

(𝑀𝑜𝑣𝑖𝑛𝑔𝐷𝑎𝑦𝑠𝑁). 
 
Similarly, a callable put option requires that the holder exercises, if the price level of the asset on which the 
option is written falls below the barrier for a specified number of consecutive days. 
 

Let us examine an example on the pricing of a callable call option with the following characteristics: 
 

𝑆 = 50 is the spot price. 
 

𝐾 = 55 is the strike price. 
 

𝐻 = 60  is the barrier level. 
 

𝑀𝑜𝑣𝑖𝑛𝑔𝐷𝑎𝑦𝑠𝑁 = 10 is the number of days in which the underlying price must be beyond the barrier. 
 

𝑇 = 0.5 is the time to maturity. 
 

𝑟 = 5% is the risk-free rate. 
 

q = 2% is the continuous dividend yield, thus 𝑏 = 𝑟 − 𝑞 = 3% represents the cost-of-carry. 
 

𝜎 = 30% is the underlying volatility. 
 
The figure below shows a price histogram obtained through a campaign of one thousand replications of one 
million paths each. 
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Figure III.124 Callable Option price 
 

The theoretical fair value for this financial instrument is equal to the average of the prices obtained by the 
Monte Carlo method. The price of the callable call option considered is 2.3837 with a standard deviation of 
0.003937. 
 

This method is also capable of valuing options written on several underlyings, taking into account the 

correlation (𝜌) existing between the assets. In the case of two underlyings 𝑆1 and 𝑆2, the formulas are 
 

𝑆1 + Δ𝑆1 = 𝑆1 exp [(𝜇1 −
1

2
𝜎1
2)Δ𝑡 + 𝜎1𝛼1,𝑡√Δ𝑡]  (Eq. III.219) 

 

𝑆2 + Δ𝑆2 = 𝑆2 exp [(𝜇2 −
1

2
𝜎2
2)Δ𝑡 + 𝜎2𝛼2,𝑡√Δ𝑡]  (Eq. III.220) 

 

The correlation between the two underlyings is considered by setting: 
 

𝛼1,𝑡 = 𝜖1,𝑡; 𝛼2,𝑡 = 𝜌𝜖1,𝑡 + 𝜖2,𝑡√1 − 𝜌
2 (Eq. III.221) 

 

 
We now illustrate a practical example considering the exotic path-dependent option called European arithmetic 

average spread option. The pay-off at maturity is defined as: max[𝑧 ⋅ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒1 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒2 − 𝐾), 0]. 
 

If 𝑧 = 1 call, if 𝑧 = −1 put. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 is the mean of the values of the asset during the life of the option. 
 

The financial characteristics on which the valuation has been conducted using the Monte Carlo technique are: 
 

𝐶𝑎𝑙𝑙𝑃𝑢𝑡𝐹𝑙𝑎𝑔 = "𝑐𝑎𝑙𝑙" →  𝑧 = +1 → payoff: max[(𝐴𝑣𝑒𝑟𝑎𝑔𝑒1 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒2 − 𝐾), 0] 
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𝑆1 = 100 is the spot price for asset 1.  
 

𝑆2 = 50 is the spot price for asset 2. 
 

𝐾 = 45 is the strike price for the exotic path-dependent option. 
 

𝑇 = 0.5 is the time to maturity in years.  
 

𝑟 = 5% is the risk-free rate. 
 

𝑏1 = 2% is the cost-of-carry for asset 1. 
 

𝑏2 = 3% is the cost-of-carry for asset 2. 
 

𝜎1 = 30% is the volatility of asset 1. 
 

𝜎2 = 25% is the volatility of asset 2. 
 

𝜌 = 0.25 is the correlation between asset 1 and asset 2. 
 

𝑛𝑆𝑡𝑒𝑝𝑠 = 180  is the number of time step intervals, thus Δ𝑡 =
𝑇

𝑛𝑆𝑡𝑒𝑝𝑠
= 0.002778. 

 

𝑛𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = 106 is the number of simulations (or paths) for computing a price. 
 

The price histogram shown in the figure below was obtained through a campaign of one thousand replications 
of one million simulations each. 
 

 
 

Figure III.125 European arithmetic average spread option 
 

The theoretical fair value for this financial instrument is equal to the average of the prices obtained by the 
Monte Carlo method. 
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The price of the European arithmetic average spread option considered is 7.531744, with a standard deviation 
of 0.008887. 
 

In the case of three underlyings 𝑆1, 𝑆2 and 𝑆3, the formulas become: 
 

𝑆1 + Δ𝑆1 = 𝑆1 exp [(𝜇1 −
1

2
𝜎1
2)Δ𝑡 + 𝜎1𝛼1,𝑡√Δ𝑡]  (Eq. III.222) 

𝑆2 + Δ𝑆2 = 𝑆2 exp [(𝜇2 −
1

2
𝜎2
2)Δ𝑡 + 𝜎2𝛼2,𝑡√Δ𝑡] (Eq. III.223) 

𝑆3 + Δ𝑆3 = 𝑆3 exp [(𝜇3 −
1

2
𝜎3
2)Δ𝑡 + 𝜎3𝛼3,𝑡√Δ𝑡] (Eq. III.224) 

 

The correlation between the three assets is considered by setting: 
 

𝛼1,𝑡 = 𝜖1,𝑡  (Eq. III.225) 
 

𝛼2,𝑡 = 𝜌1,2𝜖1,𝑡 + 𝜖2,𝑡√1− 𝜌1,2
2   (Eq. III.226) 

 

𝛼3,𝑡 =
𝜖3,𝑡

𝑔
+ (𝜌2,3 − 𝜌1,3𝜌1,2)𝜖2,𝑡 + 𝜌1,3𝜖1,𝑡√

1

1−𝜌1,2
2    (Eq. III.227) 

 

𝑔 = √
1−𝜌1,3

2

1−𝜌1,2
2 −𝜌2,3

2 −𝜌1,3
2 +2𝜌1,2𝜌1,3𝜌2,3

  (Eq. III.228) 

 
Let us now present an example with three underlyings, considering an exotic option written on three assets, 

called Option on Maximum of two spread options. Its pay-off at maturity is defined as max[𝑧 ⋅
(𝑆1 − 𝑆2 − 𝐾),  𝑧 ⋅ (𝑆3 − 𝑆2 − 𝐾), 0]  where 𝑧 = +1 if call and 𝑧 = −1 if put. The financial characteristics on 
which the valuation has been made using the Monte Carlo technique are the following: 
 

𝑧 = −1  
 

S1 = 100,   S2 = 55,  S3 = 107 are the spot prices for the underlyings. 
 

𝐾 = 50 is the strike price. 
 

𝑇 = 0.5 is the time to maturity expressed in year fractions.  
 

𝑟 = 5% is the risk-free rate. 
 

𝑏1 = 1%,   𝑏2 = 3%,  𝑏3 = 2.5% are the cost-of-carry of the underlyings. 
 

𝜎1 = 30%,   𝜎2 = 20%,  𝜎3 = 15% are the volatilities of the underlyings. 
 

𝜌1,2 = 0.25, 𝜌1,3 = −0.1, 𝜌2,3 = 0.2 are the correlations between the three underlyings. 
 

𝑛𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = 106  is the number of simulations (or paths) for computing one price. 
 

The price histogram shown below was obtained through a campaign of one thousand replications of one million 
simulations each. The theoretical fair value for this financial instrument is equal to the average of the prices 
obtained by the Monte Carlo method. 
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The price of the Put Option on Maximum of two spread options is 13.18749 with a standard deviation of 
0.011635. 
 

 
 

Figure III.126 Option on Maximum of two spread options 
 

In order to build a correlation matrix to deal with N generic assets in the Monte Carlo simulation, the Cholesky 

decomposition is employed. If we have 𝜖1, 𝜖2, 𝜖3, …, 𝜖𝑁 multiple uncorrelated random numbers, the 

Cholesky decomposition is used to transform them into the correlated variables 𝛼1, 𝛼2, 𝛼3, …, 𝛼𝑁. If we then 

define 𝜖 and 𝛼 as column vectors having the values 𝜖𝑖 and 𝛼𝑖 respectively in the rows, we can use the 

transformation: 𝛼 = 𝑀𝜖 with 𝑀 satisfying the condition: 𝑀𝑀𝑇 = 𝑅, where 𝑅 is a positive definite symmetric 
correlation matrix. The objective therefore is to decompose the correlation matrix into a product of two 

matrices: 𝑀 multiplied by transposed 𝑀 must return 𝑅. The Cholesky decomposition is the most popular 
methodology for accomplishing this task. For example, in the case of two assets, the matrices assume the values: 
 

𝑅 = [
1 𝜌
𝜌 1

] ,  𝑀 = [
1 0

𝜌 √1 − 𝜌2
] (Eq. III.229) 

 

The most common method for calculating Greeks with the Monte Carlo method is to use the approximation 
of finite differences. 
 

To this aim, the first-order partial derivatives Δ and 𝜗 can be estimated using the two-sided finite difference 
method: 
 

Δ =
𝑓(𝑆+Δ𝑆)−𝑓(𝑆−Δ𝑆)

2⋅Δ𝑆 
 (Eq. III.230)    𝜗 =

𝑓(𝜎+Δ𝜎)−𝑓(𝜎−Δ𝜎)

2⋅Δ𝜎 
 (Eq. III.231) 
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The first-order partial derivative 𝜃 can be approximated through the one-sided finite difference method: 
 

𝜃 =
𝑓(𝜃)−𝑓(𝑇−Δ𝑇)

Δ𝑇 
 (Eq. III.232) 

 

 

Lastly, the second-order partial derivative Γ  can be approximated with the central finite difference method: 
 

Γ =
𝑓(𝑆+Δ𝑆)−2⋅𝑓(𝑆)+𝑓(𝑆−Δ𝑆)

Δ𝑆2
  (Eq. III.233) 

 

Where 𝑓 is the pricing function coded for the derivative.  
 

This way of proceeding is generally valid and can be considered efficient for all numerical methodologies. In 
the case of a stochastic technique, such as the Monte Carlo technique, if there is no optimal management of 
the error on the output, it may not be satisfactory. The reduction and control of the uncertainty that 
characterizes the Monte Carlo pricing method becomes a crucial point. In this context, among the different 
variance reduction methodologies present in the literature we mention: Antithetic Variates, Control Variates, 
Stratified Sampling, Latin Hypercube Sampling, Moment Matching and Importance Sampling. 
Among the variance control methods present in the literature we mention the Mean Square Error (MSE) and 
the Mean Square Pure Error (MSPE). 
The choice of the correct number of simulations to be conducted for estimating the fair value with a pre-fixed 
level of error on the output becomes an essential problem in order to correctly determine the price of the 
financial instrument and, consequently, its sensitivity measures. In order to consider the possible early exercise 
using the Monte Carlo methodology, the Longstaff-Schwartz 2001 method based on least squares regression is 
often implemented. When dealing with American options, it is not always easy to decide on the convenience 
of exercising the acquired right immediately or waiting till the expiry date. This difficulty, which in fact exists 
in the real world, is reflected in the integration engine. In other words, it is necessary to implement the correct 
logic for early exercise convenience in the algorithm. A good strategy could be represented by the following 
rule: if the immediate payment is greater than the expected future one, the holder will exercise the right, 

otherwise not. Assuming that the price of the underlying is 𝑆(𝑡) and the pay-off can be expressed in function 

of �̃�(S(𝑡), 𝑡), the most convenient exercise strategy at time 𝑡 = 𝑡1 can be expressed in mathematical terms in 
the form: 
 

𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 ← 𝑌𝑒𝑠, �̃�(S(𝑡1), 𝑡1) > 𝐸𝑡1[�̃�(S(𝑡2), 𝑡2)|𝜑𝑡1] (Eq. III.234) 
 

𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 ← 𝑁𝑜, �̃�(S(𝑡1), 𝑡1) < 𝐸𝑡1[�̃�(S(𝑡2), 𝑡2)|𝜑𝑡1] (Eq. III.235) 
 

𝐸𝑡1[�̃�(S(𝑡2), 𝑡2)|𝜑𝑡1] is the expected value of future payments from time 𝑡2 > 𝑡1 to current time 𝑡1 and 𝜑𝑡1 

represents the information available to the holder for 𝑡 = 𝑡1. 
It is therefore necessary to “know” the expected value of future payments, to determine the correct fair value 
of the American option. For this purpose, the scientific literature proposes the usage of least squares regression. 

The starting point is a procedure generating 𝑀 paths from the standard integration engine to simulate the future 

dynamics of asset 𝑆. Thus, for each path it is necessary to regress the future pay-offs on a normally polynomial 
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basis function 𝐹𝑖, which depends on the price assumed by 𝑆. Let us define 𝑌 as the pay-off vector for the 𝑀 

paths and 𝟏, 𝐹1(𝑆), 𝐹2(𝑆) as the basis functions. By regressing 𝑌 on these basis functions we obtain the 
expression: 
 

𝐸[𝑌|𝑆] = 𝛼 + 𝛽𝐹1(𝑆) + 𝛾𝐹2(𝑆) (Eq. III.236) 
 

This represents an estimation for the expected future value of the pay-offs as a function of the underlying 𝑆. 
Starting from this relationship, we can decide whether it is preferable to exercise the option immediately or  to 
hold it until the following period. Such procedure must be recalled iteratively starting from the expiry date of 

the derivative 𝑇, up to the valuation time, 𝑡 = 0 (which constitutes the so called Longstaff-Schwartz 
backwardation). 
To better illustrate the method, let us consider the valuation of a Bermuda put option. Let us assume that 

𝑆(0) = 1, the strike price is equal to 𝐾 = 1.1, and the maturity of the derivative is 3 years. The option can be 

exercised every year, i.e. for 𝑇 = 1,  2,  3 years. If 𝑆(0) ≠ 1, it is advisable to normalize it to 𝑆(0) = 1 and 

adjust the strike price 𝐾/𝑆(0), to have a smaller error in the regression. 

Let us now assume a risk-free rate of 𝑟 = 6% and 8 simulated paths, for simplicity. The below table shows, on 

the left, the simulations obtained with the Monte Carlo method for asset 𝑆. 
 

Path t = 0 t = 1 t = 2 t = 3 

1 1 1.07 1.53 1.95 

2 1 0.76 0.78 0.71 

3 1 0.85 0.69 0.76 

4 1 0.96 1.01 0.97 

5 1 0.95 1.06 1.28 

6 1 1.59 1.26 1.07 

7 1 1.28 1.23 0.97 

8 1 1.11 1.57 1.89 

 
Table III.60 Simulated paths and Pay-off at time t=3 

 
To use the Longstaff-Schwartz least squares method, the procedure is initialized at the end, and the 

discretization time steps are retraced back up to 𝑡 = 0. For 𝑡 = 3, the holder of the option exercises it only if 
it is convenient to do so: the pay-off matrix is shown on the right on Table III.60. 

Now we want to determine for which paths it is preferable to exercise the option at time 𝑡 = 2. 

For 𝑡 = 2, only the 4 in-the-money paths need to be taken into consideration since the other 4 have zero as 

pay-off. Among the paths 𝑡 = 2,3,4,5, we determine the expected discounted payoffs 𝑌, as shown below: 
 

Path t = 0 t = 1 t = 2 t = 3 

1 1 0 0 0.00 

2 1 0 0 0.39 

3 1 0 0 0.34 

4 1 0 0 0.13 

5 1 0 0 0.00 

6 1 0 0 0.03 

7 1 0 0 0.13 

8 1 0 0 0.00 
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Path S(t=2) pay off(t=2) In the money pay off(t=3) DF Y 

1 1.53 0 NO 0.00 0.941765 0 

2 0.78 0.32 YES 0.39 0.941765 0.36738168 

3 0.69 0.41 YES 0.34 0.941765 0.320199941 

4 1.01 0.09 YES 0.13 0.941765 0.122429389 

5 1.06 0.04 YES 0.00 0.941765 0 

6 1.26 0 NO 0.00 0.941765 0 

7 1.23 0 NO 0.00 0.941765 0 

8 1.57 0 NO 0.00 0.941765 0 
 [A] [B]  [C] [D] [E] 

 
[A] see Table III.60, [B] max[K-S(t=2),0], [C]  max[K-S(t=3),0] , [D] exp(-rΔt)=exp(-0.06*1) , [E]=[C]x[D] 
 

Table III.61 Determination of the variables for the first regression 
 

 

We use the following as basis functions: 𝟏, 𝐹1(𝑆) = 𝑆, 𝐹2(𝑆) = 𝑆
2. 

 

We now need to run a regression of 𝑌 on these functions: 
 

𝐸[𝑌|𝑆] = 𝛼 + 𝛽𝐹1(𝑆) + 𝛾𝐹2(𝑆) = 𝛼 + 𝛽𝑆 + 𝛾𝑆
2  (Eq. III.237) 

 

The regression coefficients are obtained by calculating the following matrix product: 
 

(

𝛼
𝛽
𝛾
) = (𝑿𝑇𝑿)−1𝑿𝑇𝑌 = (

−2.7077
+7.8084
−4.9566

)  (Eq. III.238) 

 

Where: 
 

𝑿 = (1 𝐹1(𝑆) = 𝑆 𝐹2(𝑆) = 𝑆
2) = (

1 0.78 0.782

1 0.69 0.692

1 1.01 1.012

1 1.06 1.062

) = (

1 0.78 0.6084
1 0.69 0.4761
1 1.01 1.0201
1 1.06 1.1236

) , 𝑌 = (

0.3672882
0.3201999
0.1224294

0

) 

 

From the equation of the regression, we evaluate the function 𝐸[𝑌|𝑆] for significant values of 𝑆 at 𝑡 = 2: 
 

𝐸[𝑌|𝑆] = −2.7077 + 7.8084 ⋅ 𝑆 − 4.9566 ⋅ 𝑆2  

𝐸[𝑌|𝑆 = 0.78] = +0.367257            𝐸[𝑌|𝑆 = 0.69] = +0.320259  

𝐸[𝑌|𝑆 = 1.01] = +0.122556            𝐸[𝑌|𝑆 = 1.06] = −0.000032  
 

We then compare these values with the payoffs resulting from an immediate exercise of the option: 
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Path Exercise Continuation Early exercise convenience 

1 0 0 - 

2 0.32 0.367257 0.32 > 0.367257 → NO 

3 0.41 0.320259 0.41 > 0.320259 → YES 

4 0.09 0.122556 0.09 > 0.122556 → NO 

5 0.04 0 0.04 > 0 → YES 

6 0 0 - 

7 0 0 - 

8 0 0 - 
 

Table III.62 Decision of exercise at time 𝑡 = 2 
 

It should be noted that it is preferable to exercise the option at time 𝑡 = 2 for paths = 𝑗 = 3,   5. 
 

For the simulations 𝑗 = 2,  4, the expected pay-off values are higher when the option is not exercised. 
 

Considering the payoffs of paths 3 and 5 at time 2, Table III.63 of the payoffs is updated, obtaining: 

 
Path t = 1 t = 2 t = 3 

1 0 0 0.00 

2 0 0 0.39 

3 0 0.41 0.00 

4 0 0 0.13 

5 0 0.04 0.00 

6 0 0 0.03 

7 0 0 0.13 

8 0 0 0.00 

 

Table III.63 Payoff at time 𝑡 = 2 
 

It is necessary to implement the same logical steps to obtain the payoffs at time 𝑡 = 1. 
 

For 𝑡 = 1, only three paths provide a value of 𝑆 greater than the strike price (𝑗 = 6,7,8). 
 

Then, we implement the regression for the remaining 5 paths. 
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Path S(t=1) pay off(t=1) In the money last pay off DF Y 

1 1.07 0.03 YES 0.00 0.88692 0 

2 0.76 0.34 YES 0.39 0.88692 0.345899 

3 0.85 0.25 YES 0.41 0.941765 0.386123 

4 0.96 0.14 YES 0.13 0.88692 0.1153 

5 0.95 0.15 YES 0.04 0.941765 0.037671 

6 1.59 0 NO 0 0.88692 0 

7 1.28 0 NO 0 0.88692 0 

8 1.11 0 NO 0 0.88692 0 

 [A] [B]  [C] [D] [E] 
 

[A] see Table III.60, [B] max[K-S(t=1),0], [C]  max[K-S(t=last),0] , [D] Disc. Factors, [E]=[C]x[D] 
 

Table III.64 Determination of the variables for the second regression 
 

We now perform the second regression: 
 

𝐸[𝑌|𝑆] = 𝛼 + 𝛽𝐹1(𝑆) + 𝛾𝐹2(𝑆) = 𝛼 + 𝛽𝑆 + 𝛾𝑆
2 

 

The regression coefficients are obtained by calculating the following matrix product: 
 

(

𝛼
𝛽
𝛾
) = (𝑿𝑇𝑿)−1𝑿𝑇𝑌 =  

 

[
 
 
 
 

(

 
 

1 1.07 1.072

1 0.76 0.762

1 0.85 0.852

1 0.96 0.962

1 0.95 0.952)

 
 

𝑇

(

 
 

1 1.07 1.072

1 0.76 0.762

1 0.85 0.852

1 0.96 0.962

1 0.95 0.952)

 
 

]
 
 
 
 
−1

(

 
 

1 1.07 1.072

1 0.76 0.762

1 0.85 0.852

1 0.96 0.962

1 0.95 0.952)

 
 

𝑇

(

 
 

0
0.345899
0.386123
0.1153
0.037671)

 
 
=   

 
 

(

𝛼
𝛽
𝛾
) = (

+1.3847
−1.2804
−0.0378

)  

 

𝐸[𝑌|𝑆] = 1.3847 − 1.2804 ⋅ 𝑆 − 0.0378 ⋅ 𝑆2  
 

From the equation of the regression, we evaluate the function 𝐸[𝑌|𝑆] for significant values of 𝑆 at 𝑡 = 1: 
 

𝐸[𝑌|𝑆] = 1.3847 − 1.2804 ⋅ 𝑆 − 0.0378 ⋅ 𝑆2  
 

𝐸[𝑌|𝑆 = 1.07] = −0.028605           𝐸[𝑌|𝑆 = 0.76] = +0.3897627  
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𝐸[𝑌|𝑆 = 0.85] = 0.2690495,  𝐸[𝑌|𝑆 = 0.96] = 0.1206795,  𝐸[𝑌|𝑆 = 0.95] = 0.134205  
 

 
We then compare these values with the payoffs resulting from an immediate exercise of the option: 
 

Path Exercise Continuation Early exercise convenience 

1 0.03 -0.02860522 0.03 > -0.02860522 → YES 

2 0.34 0.38976272 0.34 > 0.38976272→ NO 

3 0.25 0.2690495 0.25 > 0.2690495 → NO 

4 0.14 0.12067952 0.14 >0.12067952 → YES 

5 0.15 0.1342055 0.15 > 0.1342055 → YES 

6 0 0 - 

7 0 0 - 

8 0 0 - 
 

Table III.65 Decision of exercise at time 𝑡 = 1 
 

We conlude that it is preferable to exercise the option at time 𝑡 = 1 for paths 𝑗 = 1,4,5. 
 

We thus proceed to update Table III.63 of the payoffs, obtaining: 
 

Path t = 1 t = 2 t = 3 

1 0.03 0 0 

2 0 0 0.39 

3 0 0.41 0 

4 0.14 0 0 

5 0.15 0 0 

6 0 0 0.03 

7 0 0 0.13 

8 0 0 0 

 
 

Table III.66 Payoff at time 𝑡 = 2 and Discounted Pay-off matrix 
 

The price of the Bermuda put option is obtained by calculating the average value of all the discounted pay-offs 
and it is equal to 0.14055. If the option had been a European type, its price would have been 0.1065. The early-
exercise feature is therefore worth 0.14055-0.1065=0.034053. 

DF(0,t) 0.941765 0.886920437 0.83527 

Path t=1 t=2 t=3 

1 0.028253 0 0 

2 0 0 0.325755 

3 0 0.363637379 0 

4 0.131847 0 0 

5 0.141265 0 0 

6 0 0 0.025058 

7 0 0 0.108585 

8 0 0 0 
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We have illustrated above the operation of the Longstaff-Schwartz method for considering the possibility of 
exercising the option right before expiry, let us now consider the valuation of an American put option having 
the following financial characteristics: S=50, K=55, T=0.5, r=5%, σ=30%. 
 

The price frequency distribution was obtained for a million launches, replicated 1,000 times. The fair value we 
obtain is equal to 6.678385±0.02003. 
 

 
 

Figure III.127 American Put Option price using the Longstaff-Schwartz technique 
 

For pricing purposes, simulating the behavior of a financial asset in the future means solving a stochastic 
differential equation (SDE). Not all financial underlyings follow a Geometric Brownian motion though. For 
example, it is experimentally verified that interest rates are characterized by a mean-reversion, or return to the 
mean. The SDE that regulates the stochastic process assumes the following form: 
 

𝑑𝑆𝑡 = 𝜅[𝜃 − 𝑆𝑡]𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 (Eq. III.239) 
 

Where: 
 

𝜃 is the mean reversion level. 

𝜅 is the mean reversion speed. 

𝜎 is the volatility. 
 

The parameters are generally calibrated on the financial market typically starting from the zero-coupon bonds 
constituting the term structure of the forward rates or from the options linked to the actively negotiated rates 
(cap, floor, swaption). These SDEs are generally integrated using numerical schemes. 
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III.7 OPTION PARAMETERS 
 
 

According to the Black-Scholes-Merton framework, volatility is a fundamental input parameter for calculating 
the fair value of an option. There are different ways of estimating volatility starting from the rates of change in 

prices of a historical series. It is worth to note that the reference sample is 𝑁 + 1 prices, thus 𝑁 returns 

observations and that price sampling must be conducted through fixed and regular time intervals 𝑖. 
Furthermore, the historical volatility estimated by the methodologies presented here measures the dispersion 
of the data for the time interval with which the data were sampled. 
 

We now introduce the following notations: 
 

𝐶𝑙𝑜𝑠𝑒𝑖 is the closing price of the asset at the end of interval 𝑖. 
𝐻𝑖𝑔ℎ𝑖 is the highest price level recorded by the asset in interval 𝑖. 
𝐿𝑜𝑤𝑖 is the lowest price level recorded by the asset in interval 𝑖. 
 
The most used method to calculate volatility is the so-called close-to-close Volatility, which in mathematical 
terms means: 
 

𝜎 = √
1

𝑁−1
∑ ln (

𝐶𝑙𝑜𝑠𝑒𝑖

𝐶𝑙𝑜𝑠𝑒𝑖−1
)
2
−

1

𝑁(𝑁−1)
[∑ ln (

𝐶𝑙𝑜𝑠𝑒𝑖

𝐶𝑙𝑜𝑠𝑒𝑖−1
)𝑁

𝑖=1 ]
2

𝑁
𝑖=1   (Eq. III.240) 

 

Parkinson in 1980 suggested to estimate the standard deviation using the High-Low Volatility method: 
 

𝜎 =
1

2𝑁√ln(2)
∑ ln (

𝐻𝑖𝑔ℎ𝑖

𝐿𝑜𝑤𝑖
)𝑁+1

𝑖=1   (Eq. III.241) 
 

Finally, in the same year, Garman and Klass proposed to use the following estimator: 
 

𝜎 = √
1

𝑁
∑

1

2
[ln (

𝐻𝑖𝑔ℎ𝑖

𝐿𝑜𝑤𝑖
)]
2
−

1

𝑁
∑ [2 ln(2) − 1] ⋅ [ln (

𝐶𝑙𝑜𝑠𝑒𝑖

𝐶𝑙𝑜𝑠𝑒𝑖−1
)]
2

𝑁
𝑖=1

𝑁
𝑖=1   (Eq. III.242) 

 

This last approach is called High-Low-Close Volatility  
 

 
 

Let us illustrate a practical example and estimate historical volatility with the close-to-close method on the 
time series shown in the table below. The contributions to derive the standard deviation on the rates of change 
are: 
 

𝑢𝑖 = ln (
𝐶𝑙𝑜𝑠𝑒(𝑖)

𝐶𝑙𝑜𝑠𝑒(𝑖−1)
); ∑ 𝑢𝑖

2 = 0.006929𝑁=20
𝑖=1 ; (∑ 𝑢𝑖

𝑁=20
𝑖=1 )

2
= 0.016542  

 

𝜎 = √
1

𝑁−1
∑ 𝑢𝑖

2𝑁
𝑖=1 −

1

𝑁(𝑁−1)
(∑ 𝑢𝑖

𝑁
𝑖=1 )

2
 = √

1

19
⋅ 0.006929 −

1

19⋅20
⋅ 0.016542 = 0.017921  
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Trading Day Close u(i) u(i)2 

1 127.5 - - 

2 128.5 0.00781254 6.10358E-05 

3 130 0.011605546 0.000134689 

4 128 -0.015504187 0.00024038 

5 128 0 0 

6 132 0.030771659 0.000946895 

7 130 -0.015267472 0.000233096 

8 130 0 0 

9 137.5 0.056089467 0.003146028 

10 138 0.003629768 1.31752E-05 

11 139.5 0.010810916 0.000116876 

12 140 0.003577821 1.28008E-05 

13 141 0.007117468 5.06583E-05 

14 144 0.021053409 0.000443246 

15 143 -0.006968669 4.85624E-05 

16 142 -0.007017573 4.92463E-05 

17 142 0 0 

18 142 0 0 

19 140 -0.014184635 0.000201204 

20 140 0 0 

21 145 0.03509132 0.001231401 
 

Table III.67 Close to close volatility 
 

The formula that allows the conversion of a volatility expressed on a daily basis to a volatility expressed on an 
annual basis is: 
 

𝜎𝑎𝑛𝑛𝑢𝑎𝑙 = 𝜎𝑑𝑎𝑖𝑙𝑦 ⋅ √𝑁𝑑𝑎𝑦𝑠 (Eq. III.243) 
 

Where 𝑁𝑑𝑎𝑦𝑠 denotes the number of trading days in a year. 
 

This conversion is necessary because in all pricing models this measure of dispersion is expressed on an annual 

basis: 𝜎𝑎𝑛𝑛𝑢𝑎𝑙 = 1.7921% ⋅ √252 = 28.4489%. 
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We now present an example using the high-low Volatility: 
 

Trading Day High(i) Low(i) ln(High/Low) 

1 127.5 126 0.011834458 

2 129 126 0.023530497 

3 131 129 0.015384919 

4 132 128 0.030771659 

5 131 128 0.023167059 

6 132 128 0.030771659 

7 131.5 130 0.011472401 

8 131 130 0.007662873 

9 138.5 132 0.048068403 

10 140 137 0.021661497 

11 142 137 0.035846132 

12 142.5 140 0.017699577 

13 142 138 0.028573372 

14 145 143 0.013889112 

15 144 141.5 0.017513582 

16 144.5 142 0.01745245 

17 142.5 141 0.010582109 

18 144 141.5 0.017513582 

19 142.5 139.5 0.021277398 

20 140 139 0.007168489 

21 145 138.5 0.045863417 

 
Table III.68 High-Low volatility 

 
The dataset is the same, as shown in the table, but we reach a different result: 

∑ ln (
𝐻𝑖𝑔ℎ𝑖

𝐿𝑜𝑤𝑖
)𝑁+1

𝑖=1 = 0.4577  

𝜎 =
1

2(𝑁+1)√ln2
0.4577 = 0.0130895  

𝜎𝑎𝑛𝑛𝑢𝑎𝑙 = 1.30895% ⋅ √252 = 20.7789%  
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Lastly, an example using the high-low-close Volatility still on the same dataset: 
 

Day Close High Low hl(i) hl(i)2 u(i) u(i)2 

1 127.5 127.5 126         

2 128.5 129 126 0.023530 0.000554 0.007813 0.000061 

3 130 131 129 0.015385 0.000237 0.011606 0.000135 

4 128 132 128 0.030772 0.000947 -0.015504 0.000240 

5 128 131 128 0.023167 0.000537 0.000000 0.000000 

6 132 132 128 0.030772 0.000947 0.030772 0.000947 

7 130 131.5 130 0.011472 0.000132 -0.015267 0.000233 

8 130 131 130 0.007663 0.000059 0.000000 0.000000 

9 137.5 138.5 132 0.048068 0.002311 0.056089 0.003146 

10 138 140 137 0.021661 0.000469 0.003630 0.000013 

11 139.5 142 137 0.035846 0.001285 0.010811 0.000117 

12 140 142.5 140 0.017700 0.000313 0.003578 0.000013 

13 141 142 138 0.028573 0.000816 0.007117 0.000051 

14 144 145 143 0.013889 0.000193 0.021053 0.000443 

15 143 144 141.5 0.017514 0.000307 -0.006969 0.000049 

16 142 144.5 142 0.017452 0.000305 -0.007018 0.000049 

17 142 142.5 141 0.010582 0.000112 0.000000 0.000000 

18 142 144 141.5 0.017514 0.000307 0.000000 0.000000 

19 140 142.5 139.5 0.021277 0.000453 -0.014185 0.000201 

20 140 140 139 0.007168 0.000051 0.000000 0.000000 

21 145 145 138,5 0.045863 0.002103 0.035091 0.001231 

 
Table III.69 High-Low-Close volatility 

 

𝑢𝑖 = ln (
𝐶𝑙𝑜𝑠𝑒(𝑖)

𝐶𝑙𝑜𝑠𝑒(𝑖−1)
) ; ℎ𝑙𝑖 = ln (

𝐻𝑖𝑔ℎ(𝑖)

𝐿𝑜𝑤(𝑖)
); [2 ln 2 − 1]∑ 𝑢𝑖

2𝑁
𝑖=1 = 0.002677; 

1

2
∑ ℎ𝑙𝑖

2𝑁=20
𝑖=1 = 0.006218 

 

𝜎 = √
0.006218

20
−
0.0026771

20
= 0.013307; 𝜎𝑎𝑛𝑛𝑢𝑎𝑙 = 1.3307% ⋅ √252 = 21.124% 
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Choosing an appropriate number of statistical observations to determine historical volatility is not an easy task. 

It is in fact true that the more data we use, the greater the accuracy, but it is also true that 𝜎 changes over time 
and too old data can be irrelevant in its impact on the future. A good trade-off suggested by the literature is to 
use the daily closing prices of the last 90-180 days, and a rule of thumb, which is often adopted by practictioners, 
is to match the time period in which volatility is measured, with the time period to which it is applied. Therefore, 

for pricing a two-year option, two years of historical data of the underlying 𝑆𝑖 are required. 
 
In the previous analyzes, we generally assumed that the stock does not pay any dividend, but the adaptation to 

the case in which this phenomenon occurs is not complicated. The rate of return 𝑢𝑖 = ln (
𝑆𝑖

𝑆𝑖−1
)  has to be 

adjusted to consider the paid dividend 𝐷: 𝑢𝑖 = ln (
𝑆𝑖+𝐷

𝑆𝑖−1
). 

 

 
Another type of volatility is constituted by the Exponential Weighted Historical Volatility, also called 
Exponentially Weighted Moving Average (EWMA) Volatility, which gives more importance to more recent 
observations. An EWMA Volatility can be calculated using the recursive formula: 
 

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆) [ln (
𝑆𝑡

𝑆𝑡−1
)]
2
 (Eq. III.244) 

 

Where 𝜎𝑡 is the current volatility and 𝜎𝑡−1 is the measure estimated in the previous observation. If daily data is 
used, volatility is annualized by multiplying it by the square root of the number of trading days in a year: 
 

𝜎𝑎𝑛𝑛𝑢𝑎𝑙(𝑡) = √𝜎𝑡
2 ⋅ 𝑁𝑑𝑎𝑦𝑠 (Eq. III.245) 

 

𝜆 is defined as the “smoothing factor” and empirical research has shown that a reasonable value for this 

parameter is 0.75 ≤ 𝜆 ≤ 0.98. In fact, the popular software developed by J.P. Morgan, RiskMetrics, sets it at 
0.94. 
 

 

Here is a practical example using the EWMA Volatility, calculated from the closing prices time series: 𝜆 =
0.94  
 

For the first variance, we have 𝑡 = 3, then 𝜎3
2 = 𝜆𝑢(𝑡 − 1)2 + (1 − 𝜆)𝑢(𝑡)2.  

 

For 𝑡 > 3 , the recursive formula is used and we obtain 𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑢(𝑡)2. 
 

From the last calculated variance value, we find the volatility expressed on a daily basis and therefore on an 

annualized basis (𝑁𝑑𝑎𝑦𝑠 = 252): 
 
 

𝜎 = √0.000257147 = 0.0160358; 𝜎𝑎𝑛𝑛𝑢𝑎𝑙 = 25.45613% 
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Trading Day Close u(t) u(t)2 σ(t)2 

1 127.5    

2 128.5 0.00781254 6.10358E-05  

3 130 0.011605546 0.000134689 6.5455E-05 

4 128 -0.015504187 0.00024038 7.59504E-05 

5 128 0 0 7.13934E-05 

6 132 0.030771659 0.000946895 0.000123924 

7 130 -0.015267472 0.000233096 0.000130474 

8 130 0 0 0.000122645 

9 137.5 0.056089467 0.003146028 0.000304048 

10 138 0.003629768 1.31752E-05 0.000286596 

11 139.5 0.010810916 0.000116876 0.000276413 

12 140 0.003577821 1.28008E-05 0.000260596 

13 141 0.007117468 5.06583E-05 0.000248 

14 144 0.021053409 0.000443246 0.000259715 

15 143 -0.006968669 4.85624E-05 0.000247045 

16 142 -0.007017573 4.92463E-05 0.000235177 

17 142 0 0 0.000221067 

18 142 0 0 0.000207803 

19 140 -0.014184635 0.000201204 0.000207407 

20 140 0 0 0.000194962 

21 145 0.03509132 0.001231401 0.000257149 

 
Table III.70 EWMA volatility 

 
Under the assumption that the percentage change in asset prices is normally distributed, the following formula 
calculates confidence intervals for estimated historical volatility: 
 

𝑃 [�̂�√
𝑛−1

𝜒
(𝑛−1,

𝛼
2
)

2 ≤ 𝜎 ≤ �̂�√
𝑛−1

𝜒
(𝑛−1,1−

𝛼
2
)

2   ] = 1 − 𝛼  (Eq. III.246) 
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Where: 
 

𝑛 is the number of observations. 

�̂� is the estimated historical volatility. 

𝜒
(𝑛−1,

𝛼

2
)

2  is the value of the chi square distribution with (𝑛 − 1) degrees of freedom for a confidence level equal 

to 1 − 𝛼. 
 

 
We now present an example, considering the annualized historical volatility estimation calculated with the close-

to-close method of the previous example: �̂� = 28.45%. This estimation is based on 21 closing prices and, 

therefore, 20 price changes (𝑛 = 20). The 95% confidence interval (𝛼 = 0.05) of this statistical inference is: 
 

𝑃 [�̂�√
𝑛−1

𝜒
(𝑛−1,

𝛼
2
)

2 ≤ 𝜎 ≤ �̂�√
𝑛−1

𝜒
(𝑛−1,1−

𝛼
2
)

2   ] = 1 − 𝛼  

 

𝑃 [0.2845 ⋅ √
20−1

𝜒
(20−1,

0.05
2
)

2 ≤ 𝜎 ≤ 0.2845 ⋅ √
20−1

𝜒
(20−1,1−

0.05
2
)

2   ] = 1 − 0.05  

 

𝑃 [0.2845 ⋅ √
19

8.9065
≤ 𝜎 ≤ 0.2845 ⋅ √

19

32.8523
  ] = 0.95  

 

𝑃[0.2164 ≤ 𝜎 ≤ 0.4155  ] = 0.95  
 

With 20 observations and an estimated volatility of 28.45%, there is a 95% probability that the true volatility 

lies between 21.64% and 41.55%. Now let 𝜎𝑛 be the volatility of a market variable at day 𝑛, as estimated at the 

end of day 𝑛 − 1. The square of the volatility 𝜎𝑛
2 is called the rate of variance. Let 𝑆𝑖 be the value of the market 

variable at the end of day 𝑖. The variable 𝑢𝑖, which represents the continuously compounded rate of return 

during day 𝑖 (more precisely between the end of day 𝑖 − 1 and the end of day 𝑖) is defined as follows: 
 

𝑢𝑖 = ln (
𝑆𝑖

𝑆𝑖−1
)  (Eq. III.247) 

 

A correct estimate of the daily rate of variance, 𝜎𝑛
2, obtained based on the most recent 𝑚 observations of 𝑢𝑖, 

is: 
 

𝜎𝑛
2 =

1

𝑚−1
∑ (𝑢𝑛−𝑖 − �̅�)

2 𝑚
𝑖=1   (Eq. III.248) 

 

Where �̅� is the average of the 𝑢𝑖: 
 

�̅� =
1

𝑚
∑ 𝑢𝑛−𝑖
𝑚
𝑖=1  (Eq. III.249) 
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In financial forecasting mathematical models, it is often customary to make a few changes to this formula, in 
particular: 
 

- 𝑢𝑖 is defined as the proportional rate of change of the market variable between the end of day 𝑖 − 1 and the 

end of day 𝑖, so that: 𝑢𝑖 = ln (
𝑆𝑖

𝑆𝑖−1
). Such definition is consistent with the way in which volatility is estimated 

for the purposes of the Var (Value-at-Risk). 
 

- It is assumed that �̅� is zero. This assumption generally has little effect on the estimate of the variance, since 
the expected value of the daily change of a variable is very small compared to the standard deviation. 
 

- it is also common to substitute 𝑚 − 1 for 𝑚. Through this substitution, the analyst passes from an unbiased 
estimate of the variance to a maximum likelihood one. 
 

These three changes result in minimal changes in the variance estimates and the formula for the rate of variance 
simplifies to: 
 

𝜎𝑛
2 =

1

𝑚−1
∑ (𝑢𝑛−𝑖 − �̅�)

2 𝑚
𝑖=1 → 𝜎𝑛

2 =
1

𝑚
∑ 𝑢𝑛−𝑖

2  𝑚
𝑖=1   (Eq. III.250)   

 
where: 
 

𝑢𝑖 = ln (
𝑆𝑖

𝑆𝑖−1
) → 𝑢𝑖 =

𝑆𝑖−𝑆𝑖−1

𝑆𝑖−1
. (Eq. III.251) 

 

 
Let us present an example, considering the time series of closing prices in the example shown above, thus we 
have: 
 

𝑆𝑖 are the Closing prices. 
 

𝑛 is the rate of variance referring to the nth day and it is equal to 21. 
 

𝑚 is the number of observations or number of price changes, which are 20. 
 

The mean of 𝑢𝑖
2 is equal to the rate of variance expressed on a daily basis: 

 

𝜎𝑛
2 =

1

𝑚
∑ 𝑢𝑛−𝑖

2  𝑚
𝑖=1 = 0.000359397  

 

We now express the rate of variance on an annualized basis, assuming that there are 252 trading days in a year: 
 

𝜎𝑛
𝑎𝑛𝑛𝑢𝑎𝑙 = √𝜎𝑛

2 ⋅ 𝑁𝑑𝑎𝑦𝑠 = 30.095%  
 

This estimation method associates a weight equal to 𝑢𝑛−1
2 , 𝑢𝑛−2

2 ,.., 𝑢𝑛−𝑚
2 . 

 

Since the goal is to estimate the current volatility level 𝜎𝑛, it makes sense to give more weight to the most recent 
data. 
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Trading Day S(i) u(i)=[S(i)-S(i-1)]/S(i-1) u(i)2 

1 127.5   

2 128.5 0.007843137 6.15148E-05 

3 130 0.011673152 0.000136262 

4 128 -0.015384615 0.000236686 

5 128 0 0 

6 132 0.03125 0.000976563 

7 130 -0.015151515 0.000229568 

8 130 0 0 

9 137.5 0.057692308 0.003328402 

10 138 0.003636364 1.32231E-05 

11 139.5 0.010869565 0.000118147 

12 140 0.003584229 1.28467E-05 

13 141 0.007142857 5.10204E-05 

14 144 0.021276596 0.000452694 

15 143 -0.006944444 4.82253E-05 

16 142 -0.006993007 4.89021E-05 

17 142 0 0 

18 142 0 0 

19 140 -0.014084507 0.000198373 

20 140 0 0 

21 145 0.035714286 0.00127551 

 
Table III.71 Traditional model 

 

The model is thus extended by adding the weight 𝛼𝑖: 
 

𝜎𝑛
2 = ∑ 𝛼𝑖 ⋅ 𝑢𝑛−𝑖

2  𝑚
𝑖=1  (Eq. III.252) 

 

Variable 𝛼𝑖 represents the weight assigned to the observation of 𝑖 past days and, since we want to give greater 

prominence to the most recent observations, the following condition must be respected: 𝛼𝑖 < 𝛼𝑗, 𝑖 > 𝑗. The 

sum of the weights must obviously be equal to unity: ∑ 𝛼𝑖 = 1
𝑚
𝑖=1 . For a sufficiently large 𝑚, the EWMA is a 

particular case of the model just presented, in which the weights 𝛼𝑖 decrease exponentially as we go further 
back in time. 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

339 

To prove this statement, let us reconsider the formula for the EWMA: 𝜎𝑛
2 = 𝜆𝜎𝑛−1

2 + (1 − 𝜆)𝑢𝑛−1
2 . 

 

The volatility estimate 𝜎𝑛 for day 𝑛 (obtained at the end of day 𝑛 − 1) is computed based on 𝜎𝑛−1 (the volatility 

estimate for day 𝑛 − 1 obtained at the end of day 𝑛 − 2) and on 𝑢𝑛−1 (the observed rate of change of the asset 

between day 𝑛 − 2 and 𝑛 − 1). 
 

To understand the reason why the formula 𝜎𝑛
2 = 𝜆𝜎𝑛−1

2 + (1 − 𝜆)𝑢𝑛−1
2  involves exponentially decreasing 

weights, we need to replace, recursively, the expression of 𝜎𝑛−1
2  inside it, so as to obtain: 

 

𝜎𝑛
2 = 𝜆{𝜆𝜎𝑛−2

2 + (1 − 𝜆)𝑢𝑛−2
2 } + (1 − 𝜆)𝑢𝑛−1

2  (Eq. III.253) 
 

𝜎𝑛
2 = (1 − 𝜆){𝑢𝑛−1

2 + 𝜆𝑢𝑛−2
2 } + 𝜆2𝜎𝑛−2

2   (Eq. III.254) 
 

Analogously, substituting 𝜎𝑛−2
2 , we obtain: 

 

𝜎𝑛
2 = (1 − 𝜆){𝑢𝑛−1

2 + 𝜆𝑢𝑛−2
2 + 𝜆2𝑢𝑛−3

2 } + 𝜆3𝜎𝑛−3
2  (Eq. III.255) 

 

Continuing with progressive steps, the sequence becomes: 
 

𝜎𝑛
2 = (1 − 𝜆)∑ 𝜆𝑖−1𝑚

𝑖=1 𝑢𝑛−𝑖
2  + 𝜆𝑚𝜎𝑛−𝑚

2   (Eq. III.256) 
 

For 𝑚 sufficiently large - and so they must be for the volatility estimates to be significant - the term 𝜆𝑚𝜎𝑛−𝑚
2  

is negligible. 
 

𝜎𝑛
2 = (1 − 𝜆)∑ 𝜆𝑖−1𝑚

𝑖=1 𝑢𝑛−𝑖
2  + 𝜆𝑚𝜎0

2 → 𝜎𝑛
2 = (1 − 𝜆)∑ 𝜆𝑖−1𝑚

𝑖=1 𝑢𝑛−𝑖
2   (Eq. III.257) 

 

The latter expression thus obtained is equivalent to the formulation: 
 

𝜎𝑛
2 = ∑ 𝛼𝑖 ⋅ 𝑢𝑛−𝑖

2  𝑚
𝑖=1   (Eq. III.258) 

 

With 𝛼𝑖 = (1 − 𝜆) ⋅ 𝜆
𝑖−1. 

 

The weights assigned to the 𝑢𝑖 decrease at the rate 𝜆 as we go further back in time, in particular, it is observed 

that each weight is equal to 𝜆 times the previous weight. 
 
Another interesting feature of the EWMA approach is that there is relatively little data to store in the memory. 
On any given day, only the current estimate of the rate of variance and the most recent value of the market 
variable need be used. 

Furthermore, this type of approach considers changes in volatility: let us suppose, for example, that on day 𝑛 −

1, the market variable undergoes a sharp increase, so that 𝑢𝑛−1
2  assumes a high value. 

This results in an increase of 𝜎𝑛, i.e., the daily volatility estimates for day 𝑛. In fact, the value of 𝜆 determines 

the extent to which the estimate of daily volatility reacts to recent observations of 𝑢𝑖
2. 

In particular, a low value of 𝜆 causes a consistent weight to be assigned to 𝑢𝑛−1
2 , so the estimates of volatility 

in the following days will be very high. On the other hand, at a high value of this parameter, then the daily 

volatility estimates will react little in relation to the new information provided by 𝑢𝑖
2. 
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A very popular model for variance estimation is the approach proposed by Engle in 1982 and called the 
Autoregressive Conditional Heteroskedasticity – ARCH. The basic idea is to assume the existence of a long-
term average volatility, to which a certain weight must be assigned, and consequently a model is obtained in the 
following form: 
 

𝜎𝑛
2 = 𝛾𝑉𝐿 + ∑ 𝛼𝑖 ⋅ 𝑢𝑛−𝑖

2  𝑚
𝑖=1  (Eq. III.259) 

 

Where 𝑉𝐿 is the long-term variance, and 𝛾 is the weight associated to 𝑉𝐿. Furthermore, given that the sum of 
the weights must be equal to one, the following constraint must be respected: 
 

𝛾 + ∑ 𝛼𝑖 = 1 𝑚
𝑖=1  (Eq. III.260) 

 

The model just described is known as 𝐴𝑅𝐶𝐻(𝑚), where 𝑚 represents the number of observations: the further 

the observation is, the lower the weight assigned to it. If we set 𝜔 = 𝑉𝐿𝛾, the model can be rewritten as follows: 
 

𝜎𝑛
2 = 𝜔 + ∑ 𝛼𝑖 ⋅ 𝑢𝑛−𝑖

2  𝑚
𝑖=1  (Eq. III.261) 

 

 
Consequently, in 1986 Bollerslev presented the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model. The actual difference between 𝐺𝐴𝑅𝐶𝐻(1,1) and 𝐸𝑊𝑀𝐴 is analogous 

to the difference between 𝐴𝑅𝐶𝐻 and the variance estimation on weighting schemes. 

Indeed in 𝐺𝐴𝑅𝐶𝐻(1,1), 𝜎𝑛
2 is calculated based on the average long-term variance rate 𝑉𝐿, 𝜎𝑛−1

2  and 𝑢𝑛−1
2 . 

The equation representing 𝐺𝐴𝑅𝐶𝐻(1,1) is: 𝜎𝑛
2 = 𝛾𝑉𝐿 + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2 , and the sum of the weights must 

be equal to one: 𝛼 + 𝛽 + 𝛾 = 1. 

We notice that 𝐸𝑊𝑀𝐴 turns out to be a particular case of 𝐺𝐴𝑅𝐶𝐻(1,1) with 𝛾 = 0, 𝛼 = 1 − 𝜆 and 𝛽 = 𝜆. 

The parameters (1,1) of the 𝐺𝐴𝑅𝐶𝐻 indicate that the calculation of 𝜎𝑛
2 is based on the most recent observation 

of 𝑢2 and on the most recent estimate of the rate of variance. Since the more general expression of the model 

𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) computes 𝜎𝑛
2 from the most recent 𝑝 observations on 𝑢2 and the most recent 𝑞 estimates of 

the variance rate, then the recursive formula of the model generalizes as follows: 
 

𝜎𝑛
2 = 𝑉𝐿𝛾 + ∑ 𝛼𝑖 ⋅ 𝑢𝑛−𝑖

2  
𝑞
𝑖=1 + ∑ 𝛽𝑖 ⋅ 𝜎𝑛−𝑖

2  
𝑝
𝑖=1  (Eq. III.262) 

 

We note that setting 𝑝 = 0, we obtain the 𝐴𝑅𝐶𝐻 model. However, it should also be noted that the most 

popular model of 𝐺𝐴𝑅𝐶𝐻 is the model with 𝑝 = 1 and 𝑞 = 1, i.e., the 𝐺𝐴𝑅𝐶𝐻(1,1). Setting then 𝜔 = 𝛾𝑉𝐿, 
we can rewrite the estimation model: 
 

𝜎𝑛
2 = 𝜔 + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2  (Eq. III.263) 

 

This form of the model is generally used to estimate parameters, and once 𝜔, 𝛼 and 𝛽 have been calibrated, 𝛾 

can be computed as 1 − 𝛼 − 𝛽. Besides, the long-term variance 𝑉𝐿 is equal to the ratio: 𝜔/𝛾. 
 

For the 𝐺𝐴𝑅𝐶𝐻(1,1) to be stable, it is required that 𝛼 + 𝛽 < 1, otherwise the weight assigned to the long-
term variance becomes negative. As we have seen above, the structure of the weights is very similar to that 
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given in the 𝐸𝑊𝑀𝐴 model, except that, in addition to assigning exponentially decreasing weights to the 

previous term 𝑢2, it also assigns a weight to the long-run average volatility. 

To justify this statement, similarly to what was done previously, we iteratively replace the expression of 𝜎𝑛−1
2  

in 𝜎𝑛
2 = 𝜔 + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2 . 

 

𝜎𝑛
2 = 𝜔 + 𝛼𝑢𝑛−1

2 + 𝛽[𝜔 + 𝛼𝑢𝑛−2
2 + 𝛽𝜎𝑛−2

2 ] →  𝜎𝑛
2 = 𝜔 + 𝛽𝜔 + 𝛼𝑢𝑛−1

2 + 𝛼𝛽𝑢𝑛−2
2 + 𝛽𝜎𝑛−2

2   
 

Substituting 𝜎𝑛−2
2 , we have: 

 

𝜎𝑛
2 = 𝜔 + 𝛽𝜔 + 𝛽2𝜔+ 𝛼𝑢𝑛−1

2 + 𝛼𝛽𝑢𝑛−2
2 + 𝛼𝛽2𝑢𝑛−3

2 + 𝛽3𝜎𝑛−3
2   (Eq. III.264) 

 

Continuing like this, we observe that the weight applied to 𝑢𝑛−𝑖
2  is 𝛼𝛽𝑖−1. Thus, the weights decline 

exponentially at the rate 𝛽, which can be interpreted as a decay rate. This is similar to the factor 𝜆 in the 

𝐸𝑊𝑀𝐴 model, it defines the relative importance of observations on 𝑢 in determining the current state of 

variance. For example, if we set 𝛽 = 0.9, then 𝑢𝑛−2
2  is as important as 90% of 𝑢𝑛−1

2 ; 𝑢𝑛−3
2  is as important as 

81% (0.92) of 𝑢𝑛−1
2  and so on… 

 

The 𝐺𝐴𝑅𝐶𝐻(1,1) model recognizes that the variance, although moving randomly, tends to converge towards 

a long-term average level, 𝑉𝐿 over time, with an associated weight equal to 𝛾 = 1 − 𝛼 − 𝛽. This estimation 

method is equivalent to a model in which the variance 𝑉 follows a stochastic process of the type: 𝑑𝑉 =
𝑎(𝑉𝐿 − 𝑉)𝑑𝑡 + 𝜉𝑉𝑑𝑊𝑡. 
Where: 

𝑎 = 1 − 𝛼 − 𝛽. 

𝜉 = 𝛼√2. 

𝑑𝑊𝑡 is a stochastic Wiener process, and time is measured in days. 
 
The model in fact incorporates the “mean-reverting” effect, in which the variance has a drift (trend) which 

brings it back towards 𝑉𝐿 at the speed of 𝑎. In particular, when 𝑉 > 𝑉𝐿, the variance has a negative drift, 

otherwise, when 𝑉 < 𝑉𝐿 the slope becomes positive. 
 

In practical terms, a tendency of the rate of variance to be mean-reverting is observed in the markets: the 

𝐺𝐴𝑅𝐶𝐻(1,1) favors this behavior observed experimentally on the markets, which makes the 𝐺𝐴𝑅𝐶𝐻(1,1) 
theoretically more attractive than 𝐸𝑊𝑀𝐴. However, if the estimation of the parameters of 𝐺𝐴𝑅𝐶𝐻(1,1) leads 

to a negative 𝜔, it can no longer be considered stable and it is therefore more reasonable to use the 

𝐸𝑊𝑀𝐴 approach. 
 
Forecasting models for volatility envisage free parameters which must be estimated to obtain volatility values 
that are consistent with observed historical data. The most common method to find the parameters of 

𝐺𝐴𝑅𝐶𝐻(1,1) is to implement the maximum likelihood method. 

Let us define the estimated variance for day 𝑖 as 𝑣𝑖 = 𝜎𝑖
2 and assume that the conditional probability 

distribution on the variance of 𝑢𝑖 is normal. 
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In this context, the maximum likelihood function, 𝐿, to be maximized with respect to the model parameters is 
given by:  
 

𝑳 = ∏
1

√2𝜋𝑣𝑖
exp (−

𝑢𝑖
2

2𝑣𝑖
)𝑚

𝑖=1   (Eq. III.265) 

 

By applying the logarithm, the maximum points of the previous function do not vary, so it is equivalent to 
maximizing the following expression: 
 

𝑳 = ∑ [− ln(𝑣𝑖) −
𝑢𝑖
2

𝑣𝑖
]𝑚

𝑖=1 = ∑ 𝐿𝑖
𝑚
𝑖=1  (Eq. III.266) 

 

We implement a practical example and take as a reference the time series of the S&P 500 index from 18th  July 

2005 to 13th August 2010. We now want to estimate 𝜔, 𝛼 and 𝛽 of 𝐺𝐴𝑅𝐶𝐻(1,1). 
 

 
 

Figure III.128 Standard and Poor’s 500 index – last prices 
 

The iterative optimization procedure shows that the parameters which maximize 𝑳 are: 𝜔 = 0.0000013439, 

𝛼 = 0.083246 and  𝛽 = 0.91025. 
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Date PX_LAST i S(i) u(i) [A] v(i) [B] L(i) [C] 

07/18/2005 1221.13 1 1221.13    

07/19/2005 1229.35 2 1229.35 0.00673147 [Binit]  

07/20/2005 1235.2 3 1235.2 0.004758612 4.53127E-05 9.502187262 

07/21/2005 1227.04 4 1227.04 -0.006606218 4.44744E-05 9.039310703 

07/22/2005 1233.68 5 1233.68 0.005411397 4.54625E-05 9.354505097 

07/25/2005 1229.03 6 1229.03 -0.003769211 4.51643E-05 9.6906419 

… … … … … … … 

08/06/2010 1121.64 1274 1121.64 -0.003704 0.000143829 8.751497048 

08/09/2010 1127.79 1275 1127.79 0.005483043 0.00013339 8.696851826 

08/10/2010 1121.06 1276 1121.06 -0.005967423 0.000125252 8.700874195 

08/11/2010 1089.47 1277 1089.47 -0.028178688 0.000118308 2.330621776 

08/12/2010 1083.61 1278 1083.61 -0.005378762 0.000175234 8.484286609 

08/13/2010 1079.25 1279 1079.25 -0.004023588 0.00016324 8.621112193 
 

omega alpha beta 

1.3439E-06 0.083246 0.91025 
∑ 𝐿(𝑖)𝑚
𝑖=0 =10236.637987 

 

[A] 𝑢𝑖 =
𝑆𝑖−𝑆𝑖−1

𝑆𝑖−1
; [Binit] 𝑣2 = 𝑢2

2; [B] 𝑣(𝑖) = 𝜔 + 𝛼𝑢𝑖−1
2 + 𝛽𝑣𝑖−1 and  [C] 𝐿(𝑖) = − ln(𝑣𝑖) −

𝑢𝑖
2

𝑣𝑖
 

 

Table III.72 GARCH volatility 
 

In the example, the long-term rate of variance, 𝑉𝐿 is 𝑉𝐿 =
𝜔

1−𝛼−𝛽
= 0.000206. The long-term volatility is 

therefore equal to √0.0002066 = 1.437% calculated daily. 
 

An alternative and sometimes more robust approach to the above presented parameter estimation in 

𝐺𝐴𝑅𝐶𝐻(1,1) is the variance targeting method. This method sets the long-term mean rate of variance, 𝑉𝐿 , 

equal to the sample variance estimated from historical data. The value of 𝜔 is therefore equal to: 𝜔 =
𝑉𝐿(1 − 𝛼 − 𝛽) and only two parameters of 𝐺𝐴𝑅𝐶𝐻(1,1) have to be estimated (𝛼 and 𝛽). 
 

In the case of the previous example, we obtain a daily volatility of 1.55249% which corresponds to a variance 

rate equal to 0.000241023. If we then set 𝑉𝐿 = 0.000241023, we can express 𝜔 as a function of 𝛼 and 𝛽 allowing 

a simplification of the optimization problem: in fact, the maximum likelihood function 𝑳 must only be a 
function of two independent variables, rather than three. Through a numerical optimization routine, the 

calibrated parameters are obtained: 𝛼 =  0.08435278,  𝛽=0.9101804986 and 𝜔=0.0000013176034891. 
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The value of the objective function 𝑳 obtained in correspondence with the maximum point thus found is equal 
to 10236.59467801490. 
 

 
 

Figure III.129 Standard and Poor’s 500 index – daily volatility 
 

Similarly, the same maximum likelihood function can be used to estimate the other discussed forecast volatility 

models. In particular, in the 𝐴𝑅𝐶𝐻 model, we set 𝛽 = 0 and we maximize 𝑳 with respect to the independent 

variables 𝛼 and 𝜔. 
 

Using the data of the previous example, the following parameters are obtained: 𝜔 = 0.00015649237 and 

𝛼 =  0.4389432682. 
 

In the 𝐸𝑊𝑀𝐴 model, on the other hand, we set the parameters 𝜔 = 0, 𝛼 = 1 − 𝜆 and 𝛽 = 𝜆, and the 

optimization becomes one-dimensional and 𝑳 must be maximized with respect to the independent variable 𝜆.  
 

Using the data of the previous example, we obtain an optimal value of 𝜆 equal to 0.9375629785, corresponding 
to a value of the objective function equal to 10200.92827125. 
 

Since the presence of a single maximum for the maximum likelihood function 𝑳 cannot be demonstrated a 
priori, it is advisable to use different starting points of the solver to be confident of converging to the optimal 
solution for the calibration problem. 
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Let us develop the concept in mathematical terms. The estimated rate of variance at the end of day 𝑛 − 1 for 

day 𝑛, using the generalized model 𝐺𝐴𝑅𝐶𝐻(1,1) is: 
 

𝜎𝑛
2 = 𝑉𝐿(1 − 𝛼 − 𝛽) + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2 → 𝜎𝑛

2 − 𝑉𝐿 = 𝛼(𝑢𝑛−1
2 − 𝑉𝐿) + 𝛽(𝜎𝑛−1

2 − 𝑉𝐿) (Eq. III.267) 
 

At a generic future time 𝑛 + 𝑡, we have: 
 

𝜎𝑛+𝑡
2 − 𝑉𝐿 = 𝛼(𝑢𝑛+𝑡−1

2 − 𝑉𝐿) + 𝛽(𝜎𝑛+𝑡−1
2 − 𝑉𝐿)  (Eq. III.268) 

 

The expected value of 𝑢𝑛+𝑡−1
2  is 𝜎𝑛+𝑡−1

2 . So: 
 

𝐸[𝜎𝑛+𝑡
2 − 𝑉𝐿] = (𝛼 + 𝛽) ⋅ 𝐸[𝜎𝑛+𝑡−1

2 − 𝑉𝐿]  (Eq. III.269) 
 

Where 𝐸[∙] denotes the expected value. Using this equation repeatedly leads to: 
 

𝐸[𝜎𝑛+𝑡
2 − 𝑉𝐿] = (𝛼 + 𝛽)

𝑡 ⋅ 𝐸[𝜎𝑛
2 − 𝑉𝐿] → 𝐸[𝜎𝑛+𝑡

2 ] = 𝑉𝐿 + (𝛼 + 𝛽)
𝑡 ⋅ 𝐸[𝜎𝑛

2 − 𝑉𝐿]  (Eq. III.270) 
 

This equation is able to predict the volatility at day 𝑛 + 𝑡, using the information available at the end of day 𝑛 +
1. 
 

In the 𝐸𝑊𝑀𝐴 model, 𝛼 + 𝛽 = 1 and therefore we obtain that the expected future value of the variance rate 
is equal to the current variance rate. 
 

In the case of 𝛼 + 𝛽 < 1, then the final term in the equation becomes progressively smaller as 𝑡 increases. As 

discussed above, the rate of variance shows a mean reversion 𝑉𝐿 at a speed rate of 1 − 𝛼 − 𝛽. 

On the other hand, when 𝛼 + 𝛽 > 1, then the weight assigned to the long-term average variance is negative, 

and 𝐺𝐴𝑅𝐶𝐻(1,1) is no longer a stable process: in these critical cases we say that we have a mean fleeing 
process. 
 

Considering the data from the S&P example above, 𝐺𝐴𝑅𝐶𝐻(1,1), and using the recursive equation above, we 
can simulate the rate of variance in the future.  

The dataset is: 𝛼 + 𝛽 =0.083246+0.91025=0.993496 and 𝑉𝐿 =0.0002066, the current level of the daily rate of 
variance is 0.00016324. 
 

We compute: 
 

𝐸[𝜎𝑛+𝑡
2 ] = 𝑉𝐿 + (𝛼 + 𝛽)

𝑡 ⋅ 𝐸[𝜎𝑛
2 − 𝑉𝐿]  

 

𝐸[𝜎𝑛+𝑡
2 ] = 0.0002066 + 0.993496𝑡 ⋅ (0.00016324 − 0.0002066)  

 

For 𝑡 = 10 days, 𝐸[𝜎𝑛+10
2 ] = 0.000165979, and for 𝑡 = 1000 days, 𝐸[𝜎𝑛+1000

2 ] = 0.00020654. 
 

Lastly, for 𝑡 → +∞, 𝐸[𝜎t→+∞
2 ] = 𝑉𝐿. 

 

The graph in the Figure III.130 shows the asymptotic limit of the model 𝐺𝐴𝑅𝐶𝐻(1,1) at the value 𝑉𝐿. 
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Figure III.130 Asymptotic limit of the model 𝐺𝐴𝑅𝐶𝐻(1,1) at the value 𝑉𝐿 
 

 

Let us further analyze and suppose it is day 𝑛. We define the quantities: 𝑉(𝑡) = 𝐸(𝜎𝑛+𝑡
2  ) and 𝑎 = ln (

1

𝛼+𝛽
) , 

such that: 
 

𝐸[𝜎𝑛+𝑡
2 ] = 𝑉𝐿 + (𝛼 + 𝛽)

𝑡 ⋅ 𝐸[𝜎𝑛
2 − 𝑉𝐿] → 𝑉(𝑡) = 𝑉𝐿 + exp(−𝑎 𝑡) [𝑉(0) − 𝑉𝐿] (Eq. III.271) 

 

Where 𝑉(𝑡) is an estimation of the instantaneous rate of variance on day 𝑡.  
 

The mean rate of variance expressed daily between today and time to maturity 𝑇 is given by: 
 

�̅�(𝑡) =
1

𝑇
∫ 𝑉(𝑡)𝑑𝑡
𝑇

0
= 𝑉𝐿 +

1−exp(−𝑎 𝑇)

𝑎 𝑇
[𝑉(0) − 𝑉𝐿] (Eq. III.272) 

 

The bigger 𝑇, the more �̅�(𝑡) tends to 𝑉𝐿. 
 

We then define 𝜎(𝑇) as the annualized volatility which should be used, for example, to value an option with a 

𝑇 day expiration with the model 𝐺𝐴𝑅𝐶𝐻(1,1). 
 

Assuming a year consisting of 252 working days, the following relationship is valid: 
 

𝜎(𝑇)2 = 252 (𝑉𝐿 +
1−exp(−𝑎 𝑇)

𝑎 𝑇
[𝑉(0) − 𝑉𝐿]) (Eq. III.273) 
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The last equation allows to derive a term structure of volatility. 
 
In the case of the S&P 500 index example we illustrated above, the volatility term-structure is given by: 
 

𝑎 = ln
1

𝛼+𝛽
= ln

1

0.993496
= 0.006525243; 𝑉(0) = 0.00016324 and 𝑉𝐿 = 0.0002066. 

 

𝜎(𝑇)2 = 252 (0.0002066 +
1−exp(−0.006525243⋅𝑇)

0.006525243⋅𝑇
[0.0001632 − 0.0002066])   

 

Where 𝑇 is measured in days. 
 

The following figure shows the chart of the historical volatility term structure of the S&P500. 
 

 
 

Figure III.131 S&P 500 Historical Volatility term structure 
 
The volatility estimation techniques have the disadvantage to be based on the assumption that the future is 
strongly correlated to the past realizations. For this reason, it is appropriate to introduce another possible 

approach, based on the so-called implied volatility, 𝜎𝐼𝑀𝑃𝐿. The implied volatility is defined as that value of 𝜎, 
which inserted in the Black-Scholes pricing formula, allows to obtain a theoretical value of the option equal to 
the market value. Unfortunately, this pricing formula is not analytically invertible, so it is not possible to derive 

a closed analytic expression for 𝜎 = 𝑓(𝑆0, 𝐾, 𝑟, 𝑇). However, there are numerical tools that allow the value of 
volatility to be obtained, starting from a goal seeking algorithm. The following figure shows the surface of the 
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implied volatilities obtained from the options on the S&P 500 index on the reference date of 29th September 

2017 as a function of the time to maturity 𝑇 and the strike price 𝐾. 
 

 
 

Figure III.132 Implied volatility surface. Source: Bloomberg® 
 

The implied volatilities in option prices are used to ascertain current market opinions about the expected 
volatility associated with a particular security. In their work, Quantitative Analysts often calculate the implied 
volatilities in the prices of options written on a certain security that are more actively traded and then calculate 
the prices of other exotic options written on the same security but less actively traded. 
 

It is important to underline though that the valuations of the options whose exercise price is much below the 
market price of the security, or much above (deep out of the money), are relatively insensitive to volatility. 
 

Therefore, the implied volatilities calculated based on these options tend to be unreliable and it is preferable to 
resort to a methodology based on historical series. 
 

Another important aspect to consider when analyzing this type of volatility is the different value it can assume 
in the presence of different strike prices. When we use in financial jargon the term “volatility smiles”, we 

mean the graphs that represent the 𝜎𝐼𝑀𝑃𝐿 as a function of the strike price (𝐾). 
 

Figure III.133 represents a section of the surface of implied volatilities, maintaining  𝑇 constant. 
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Figure III.133 Implied volatility section. Source: Bloomberg® 
 

An empirical phenomenon observed on the markets is that the implied volatility associated with in/out of the 
money options tends to be higher than that calculated at-the-money, i.e., the strike price is equal to or close to 
the current price of the security. The previous figure highlights the described effect on volatility: the abscissa 
axis expresses the option’s moneyness as a percentage. We notice that both for very low strike levels (for 

example for a strike level equal to 60% of the spot level of the underlying: 𝐾 = 60% ⋅  𝑆0), and for very high 
strike levels, the volatility value is higher than those recorded for values around the at-the-money strike. 
Consequently, to correctly estimate the fair value of an OTC derivative, in order to infer a correct volatility 
value it is necessary that the starting listed contracts have similar characteristics (with particular reference to the 
duration and the strike price). Trading must also be characterized by significant liquidity. 
 

We now introduce the concept of correlation between two variables 𝑋 and 𝑌, which can be defined as: 
 

corr(𝑋, 𝑌) =
cov(𝑋,𝑌)

𝜎𝑋𝜎𝑌
  (Eq. III.274) 

 

Where: 
 

𝜎𝑋 and 𝜎𝑌 are the standard deviations of 𝑋 and 𝑌 . 
 

cov(𝑋, 𝑌) is the covariance between 𝑋 and 𝑌 . 
 

The covariance between the two variables 𝑋 and 𝑌 is defined as: 
 

cov(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋) ⋅ (𝑌 − 𝜇𝑌)] (Eq. III.275) 
  

Where: 𝜇𝑋 and 𝜇𝑌 are the means of 𝑋 and 𝑌 and 𝐸[∙] denotes the expected value. 
 

Now let 𝑥𝑖 and 𝑦𝑖 be the percentage changes of 𝑋 and 𝑌 between the end of day 𝑖 − 1 and 𝑖: 
 

𝑥𝑖 =
𝑋𝑖−𝑋𝑖−1

𝑋𝑖−1
, 𝑦𝑖 =

𝑌𝑖−𝑌𝑖−1

𝑌𝑖−1
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Where: 𝑋𝑖 and 𝑌𝑖 are the values of 𝑋 and 𝑌 at the end of the 𝑖-th day. 
 

We further define: 
 

𝜎𝑥,𝑛 as the daily volatility of variable 𝑋 estimated for the 𝑛-th day. 
 

𝜎𝑦,𝑛 as the daily volatility of variable 𝑌 estimated for the 𝑛-th day. 

cov𝑛 as an estimation of the covariance between the daily variation in 𝑋 and 𝑌, calculated for the 𝑛-th day. 
 

The estimated correlation between 𝑋 and 𝑌 on day 𝑛 is: 
 

corr𝑛 =
cov𝑛

𝜎𝑥,𝑛𝜎𝑦,𝑛
  (Eq. III.276) 

 

Similarly to what was done for the volatility estimation, using equal weights and assuming that the mean of 𝑥𝑖 
and 𝑦𝑖 is zero, the rate of variance of 𝑋 and 𝑌 can be estimated from the most recent 𝑚 observations: 
 

𝜎𝑥,𝑛
2 =

1

𝑚
∑ 𝑥𝑛−𝑖

2𝑚
𝑖=1 , 𝜎𝑦,𝑛

2 =
1

𝑚
∑ 𝑦𝑛−𝑖

2𝑚
𝑖=1   (Eq. III.277) 

 

Following the same logic, a similar estimate for the covariance between 𝑋 and 𝑌 is: 
 

cov𝑛 =
1

𝑚
∑ 𝑥𝑛−𝑖 ⋅ 𝑦𝑛−𝑖
𝑚
𝑖=1  (Eq. III.278) 

 

An alternative for updating the covariances is provided by a model similar to the equation for 𝐸𝑊𝑀𝐴. In this 
case the formula is given by: 
 

cov𝑛 = 𝜆 ⋅ cov𝑛−1 + (1 − 𝜆) ⋅ 𝑥𝑛−1 ⋅ 𝑦𝑛−1 (Eq. III.279) 
 

 

Let us present an example involving the concept of correlation, assuming that 𝜆 = 0.95 and the estimation of 

the correlation between the two variables 𝑋 and 𝑌 at day 𝑛 − 1 is equal to corr(𝑋, 𝑌) = 0.6. We also suppose 

that the estimate of the volatilities for 𝑋 and 𝑌 at day 𝑛 − 1 is respectively equal to 𝜎𝑋 = 1% and 𝜎𝑌 = 2%. 
From the relationship between correlation and covariance, it follows that: 
 

Cov𝑛−1(X, Y) = corr(X, Y) ⋅ 𝜎𝑋 ⋅ 𝜎𝑌 = 0.6 ⋅ 0.01 ⋅ 0.02 = 0.00012.  
 

Let us assume that the percentage change between 𝑋 and 𝑌 at day 𝑛 − 1 is 𝑥𝑛−1 = 0.5%, and 𝑦𝑛−1 = 2.5% 

𝑦, respectively. According to the 𝐸𝑊𝑀𝐴 method, the variance and covariance for day 𝑛 must be updated as: 
 

𝜎𝑥,𝑛
2 = 𝜆 ⋅ 𝜎𝑋,𝑛−1

2 + (1 − 𝜆) ⋅ 𝑥𝑛−1 = 0.95 ⋅ 0.01
2 + 0.05 ⋅ 0.0052 = 0.00009625  

 

𝜎𝑦,𝑛
2 = 𝜆 ⋅ 𝜎𝑌,𝑛−1

2 + (1 − 𝜆) ⋅ 𝑦𝑛−1 = 0.95 ⋅ 0.02
2 + 0.05 ⋅ 0.0252 = 0.00041125  

 

Cov𝑛 = 𝜆 ⋅ cov𝑛−1 + (1 − 𝜆) ⋅ 𝑥𝑛−1 ⋅ 𝑦𝑛−1 = 0.95 ⋅ 0.00012 + 0.05 ⋅ 0.05 ⋅ 0.025 = 0.00012025.  
 

The new volatility of 𝑋 is √0.00009625 = 0.981%. 
 

The new volatility of 𝑌 is √0.00041125 = 2.028%. 
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The new correlation between 𝑋 and 𝑌 is: corr𝑛 =
0.00012025

0.00981⋅0.02028
= 0.6044. 

 

Some researchers have proposed a method for updating 𝐺𝐴𝑅𝐶𝐻(1,1) as a basis for predicting future levels of 
covariance: 
 

Cov𝑛 = 𝜔 + 𝛼𝑥𝑛−1𝑦𝑛−1 + 𝛽cov𝑛−1.  
 

Once all variances and covariances have been calculated, a variance-covariance matrix can be constructed. The 

element (𝑖, 𝑗) of this matrix reports the value of the covariance between variable 𝑖 and 𝑗, when 𝑖 ≠ 𝑗. On the 

other hand, when 𝑖 = 𝑗, the value represents the variance of variable 𝑖. 
Not all variance-covariance matrices are internally consistent though, as they must necessarily be positive semi-
definite and this condition is satisfied if all the eigenvalues of the matrix are positive. If this does not occur, it 
is necessary to use mathematical methodologies for generating valid matrices. Among such methods which aim 
to create a positive semi-definite matrix as close as possible to the original one, the following can be mentioned: 
the Shrinkage Approach, the Hypersphere Decomposition, the Spectral Decomposition and the SDP, or 
Semidefinite Programming. 
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IV.1 FUNDAMENTALS 
 
 

Among all the financial innovations introduced in the 1980s none can compete with the swap market. The 
growth of swaps over the last forty years has been phenomenal and today they have established themselves as 
one of the most important classes of derivatives in the capital market. These financial instruments have become 
so widespread that they can be considered a complementary risk management tool to futures and options. 
A swap is a contract in which two counterparties agree to make payments to each other or to exchange a stream 
of cash flows in the future, according to an agreed formula for a predetermined period of time. The start date 
of the swap is called the effective date, while the end date is called the termination date (or maturity date). 

 

 
 

Figure IV.1 Swap between two counterparties 

 
In the early days of the swap market, transactions were conducted by banks and financial institutions which 
were compensated for the offered service through a fee. This implied that the contract was signed directly 
between the two counterparties. Nowadays this is no longer feasible due to the very high market volumes, and 
the problem was easily solved by introducing a financial intermediary: in exchange for a commission the swap 
brokers were entrusted with the task of looking for the suitable counterparty that met the client’s needs. The 
brokers take no risk connected to the contract, as they do not take any position in the swap. On the other hand, 
swap dealers (or market makers) are willing to act as counterparty in a swap contract. When the dealers do 
not want to assume the risks associated with the operation, they will find an interested counterparty to replace 
them or hedge their own book. The swap dealer’s profit consists of the bid-ask spread he applies to swap 
quotes. 
 

For operators on the swap market, working with a swap dealer is beneficial for two reasons: first of all, the use 
of an intermediary reduces the time searching for a suitable counterparty, since the swap dealer is ready to enter 
into the swap at any time. Secondly, an intermediary can reduce credit assessment costs. Such assessment is 
necessary, as each of the two counterparties can potentially incur a default that prevents from fulfilling its 
contractual duties. 
 

In conclusion, the swap with a dealer saves the costs of a detailed creditworthiness analysis. 
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Figure IV.2 Swap dealer 
 

The cash flows typically associated with a swap occur at the initial and at the final stage of the contract, but also 
during the life of the swap, and they can be summarized as follows: 
 

- Initial notional exchange, which is optional as it is not required for all types of swaps: 
 

 
 

Figure IV.3 Initial notional exchange 
 

- Periodic payments between counterparties, which are mandatory for all swaps: 
 

 
 

Figure IV.4 Periodic payments 
 

- Final notional exchange, which is also optional as it is not required for all types of swaps: 
 

 
 

Figure IV.5 Final notional exchange 
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Unlike the main financial markets, the swap market did not include a centralized clearing mechanism until a 
few years ago. 
The terms of the contract for an “over the counter”, or OTC swap are determined between the counterparties 
who follow the best practices proposed by the main professional categories among which we mention ISDA, 
the International Swap Dealer Association and the British Banker’s Association. Following this set of rules and 
guidelines for defining the contractual characteristics leads to greater standardization and consequently greater 
speed in closing the deal. Although the instrument is not subjected to strict regulation, the market participants 
on the other hand, obviously are. 

 

An Interest Rate Swap (IRS) is a derivative in which two counterparties agree to make periodic payments 
calculated based on contractually agreed interest rates on a reference notional. Therefore, to define an IRS, the 
following characteristics must be specified in the contract: 
 

- the swap start date.  
 

- The time to maturity of the swap or expiration time. 
 

- The interest rates to be exchanged, fixed rates or floating rates. 
 

- The frequency of cash flow payments. 
 

- The notional to be considered on which interest will be calculated and paid. 
 

The most common type of interest rate swap is the fixed-for-floating rate swap, also called plain vanilla 
swap or generic swap, in which payments are calculated for one counterparty using the variable interest rate, 
while for the other they are determined based on a fixed interest rate. Payments are usually made in arrears on 
an annual or semi-annual basis. The effective date is the date from which interest begins to accrue and the 
payment date is the date on which the interest is paid. As an example, the mechanics of an IRS can be 
illustrated as follows: 
 

 
 

Figure IV.6 Interest rate swap 
 
The floating interest rate is periodically redefined (floating rate reset), i.e., it is fixed at a specific spot market 
rate (reference rate) observed on the market at the contractual date (reset dates). The most widespread floating 
rate is LIBOR. 
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The two series of payments are called swap legs or swap sides. The fixed rate is called coupon swap. In an 
IRS, the notional is usually not exchanged, only the interest is paid. 
 

Let us examine a practical example: on 12/28/YYYY-1, Company ALPHA enters into a swap transaction with 
Company BETA. Both agree to exchange starting from 01/01/YYYY, cash flows on a notional amount of 
CHF 100 million until 12/31/YYYY+4 (5 years). Company ALPHA will pay counterparty BETA a fixed rate 
of 3% annually on the notional amount of CHF 100 million, while Company BETA will pay a variable interest 
rate indexed to 6-month LIBOR every six months on the notional amount of CHF 100 million. Payment dates 
are 01/01 and 07/01 as shown in the table below. 

 

 
 

Figure IV.7 Interest rate swap example 

 
From the perspective of Company BETA, on the swap starting date, the cash flows are as follows: 

 
Payment Date Receive Fix [CHF] Pay Floating [CHF] LIBOR setting LIBOR 

   01/01/YYYY 3.25% 

07/01/YYYY  -1,625,000 01/07/YYYY ? 

01/01/YYYY+1 +3,000,000 - 6 month LIBOR 01/01/YYYY+1 ? 

07/01/YYYY+1  - 6 month LIBOR 01/07/YYYY+1 ? 

01/01/YYYY+2 +3,000,000 - 6 month LIBOR 01/01/YYYY+2 ? 

07/01/YYYY+2  - 6 month LIBOR 01/07/YYYY+2 ? 

01/01/YYYY+3 +3,000,000 - 6 month LIBOR 01/01/YYYY+3 ? 

07/01/YYYY+3  - 6 month LIBOR 01/07/YYYY+3 ? 

01/01/YYYY+4 +3,000,000 - 6 month LIBOR 01/01/YYYY+4 ? 

07/01/YYYY+4  - 6 month LIBOR 01/07/YYYY+4 ? 

12/31/YYYY+4 +3,000,000 - 6 month LIBOR   

 
Table IV.1 Interest rate swap example: Cash flows 
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Figure IV.8 Interest rate swap. Main characteristics. Source: Bloomberg® 
 

 
 

Figure IV.9 Interest rate swap. Details of the Leg 1: Receive Fixed. Source: Bloomberg® 
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Figure IV.10 Interest rate swap. Details of the Leg 2: Pay Float. Source: Bloomberg® 
 

 
 

Figure IV.11 Interest rate swap. Curves. Source: Bloomberg® 
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Figure IV.12 Interest rate swap. Cashflow Tables. Source: Bloomberg® 
 

 

 
 

Figure IV.13 Interest rate swap. Cashflow Graph. Source: Bloomberg® 
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Unlike futures and options, most IRS contracts are traded over the counter, therefore there is currently no 
location where trades take place and most of the time there is no clearing house to ensure that commitments 
can be honored. 
Swap dealers therefore regularly prepare indicative schedules of quotations to be applied. 
The reference floating rate is generally LIBOR, while Swap prices are frequently quoted as a spread over 
government issues. 

 

Maturity 
Spread over Treasury yield 

if dealer pays fixed 
Spread over Treasury yield 

if dealer receives fixed 
Current Treasury yield 

2 years 38 basis points 44 basis points 1.55% 

3 years 46 basis points 52 basis points 1.72% 

4 years 50 basis points 58 basis points 1.85% 

5 years 52 basis points 60 basis points 1.92% 

6 years 58 basis points 66 basis points 1.96% 

7 years 62 basis points 70 basis points 2.00% 

10 years 74 basis points 84 basis points 2.08% 
 

Table IV.2 Swap quotes 

 
The table assumes half-yearly rates and bullet transactions (i.e. without amortization plan) made by companies 
characterized by the best level of creditworthiness. All rates are quoted against 6-months LIBOR flat. For each 
maturity, in order to obtain the swap price, it is necessary to add the quoted spread to the current yield of the 
government bond. 
 

For example, if the dealer pays fixed on a 5-year swap, the fixed rate on the swap should equal the yield on the 
5-year bond plus 52 basis points. If the dealer pays floating and receives fixed, the fixed swap rate should be 
equal to the yield on the government bond plus 60 basis points. The mid-rate can simply be calculated by 
estimating the average between the pay and receive rates. 
 

For example, the 5-year mid-rate swap is equal to: 
 

[(0.0192 + 0.0052) + (0.0192 + 0.0060)] / 2 = 2.48%. 
 

Generally, fixed rates are expressed on an annual or half-yearly basis according to the conventions adopted by 
the single countries. 
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Figure IV.14 Swap quotes. Source: Bloomberg®  
 

Normal market bid-ask spreads are around 4-12 basis points. Obviously, if the dealer deals in swaps different 
from the plain vanilla ones, adjustments to the base list prices should be made. 
A popular market benchmark is the swap curve, which is a curve that reports the fixed rate of a plain vanilla 
swap (fixed vs. six-month LIBOR) for different maturities. Although the interest rates expressed by the curve 
are not very uniform in fact due, for example, to overlapping maturities between the instruments and different 
interpolations, the swap curve remains a fundamental element in valuing fixed-income products and in 
measuring the interest rate expectations. In constructing interest rates term structures, the swap curve is often 
used to determine the zero rate and the related discount factors for the long end (typically for maturities of 
more than two years). 
 

Figure IV.15 below shows the standard S-45 Bloomberg® Curve. The short term has been stripped using Cash 
Rates, the middle-term using Serial Forward Rates Agreements (FRA) and the long term using Swaps. 
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Figure IV.15 The Swap curve. Source: Bloomberg®  
 
Before their maturity, swap positions may be closed by selling the derivative to the swap dealer or to another 
counterparty. Alternatively, the swap holder could hedge his position by taking an opposite position to the 
current one in another swap or by hedging his position for the remaining time with futures and bonds. 
 

Let us consider, as an example the holder of a swap who pays a fixed rate and believes that interest rates are 
going to fall sharply. Consequently, he wishes to change his exposure and his alternatives can be either to sell 
the swap to the dealer and close his position or to enter into a new swap contract where he pays a floating 
interest rate: the new position should require a LIBOR payment which cancels out what was received from the 
first swap. The spread between the two positions should therefore be equal to the difference between the higher 
fixed interest rate paid in the first swap and the lower fixed interest rate received in the second swap. A third 
alternative consists in using futures contracts if the time to cover is not excessively long. 
 
Up to now, we have seen the most common and standard Interest Rate Swaps category, i.e., the plain vanilla 
swap. With these derivatives, one counterparty (the payer) pays a fixed interest rate to another counterparty 
(the receiver) against a variable interest rate (fixed rate versus floating rate). There are many variations of the 
standard IRS in the financial market and in this context, we will discuss the most widespread types of swaps. 
A counterparty may decide to enter a swap that exchanges a floating interest rate against another floating interest 
rate, such as LIBOR against another prime interest rate. This allows financial institutions to hedge an exposure 
that arises from assets and liabilities subject to different interest rates. Swaps that have the characteristic of 
having both legs linked to a floating rate are called basis swaps. Within this category, Yield curve swaps are 
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basis swaps in which the counterparties agree to exchange payments based on the difference between two rates 
of the same content at two different maturities on a given yield curve. 
 

 
 

Figure IV.16 A basis swap. Source: Bloomberg®  
 
Some swaps are characterized by having an amortization schedule, they are therefore called amortising swaps. 
Then, we have Accreting swaps, which have an increasing notional over time. On the other hand, swaps that 
have a period in which the notional increases and subsequently decreases are called Roller coaster swaps. 
 

Zero-coupon swaps are fixed-for-floating, where the fixed rate is a zero-coupon bond, in this case the fixed 
leg does not pay until maturity, but a large payment is made on that occasion. Rate-capped and Rate-floored 
swaps are swaps that have a maximum or a minimum rate on the floating leg. 
Callable Swaps  and Putable Swaps are swaps for which the payer (or the receiver) has the option to terminate 
the swap early. They are also called Cancellable Swaps. Extendible swaps are swaps in which one of the two 
counterparties has the option to extend the maturity of the derivative, and Reversible swaps are swaps in 
which the payer and the receiver swap roles one or more times during the life of the derivative. 
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Figure IV.17 A cancellable swap. Main Characteristics. Source: Bloomberg®  
 

 
 

Figure IV.18 A cancellable swap. Embedded option. Source: Bloomberg®  
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A currency swap is a transaction in which two counterparties agree to make periodic payments to each other 
based on agreed interest rates on a notional amount denominated in two different currencies. Actually, a 
currency swap is very similar to an IRS, except for the fact that there are two currencies involved therefore the 
notional amounts and the cash flows exchanged are expressed in two different currencies. 
In this case, the counterparties exchange interest payment flows of different types: fixed against fixed, floating 
against floating, fixed against floating. Usually in a currency swap the initial and the final exchange of the 
principal amount occur. 
Therefore, a standard currency swap has three distinct classes of cash flows: the first is the initial exchange of 
notional amounts denominated in different currencies, which set the current exchange rate. Then there are the 
interest payments made by each counterparty to the other. 
Lastly, the final exchange of notional amounts based on the exchange rate registered at the conclusion of the 
swap. 

 
 

 
 

Figure IV.19 Exchange of principals 
 

 
 

 
 

Figure IV.20 Periodic service payments 
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Figure IV.21 Re-Exchange of principals 
 

Let us analyze a practical example of currency swap. On 12/28/YYYY-1, Company ALPHA enters a swap 
transaction with Company BETA. 
Both agree to exchange cash flows on a notional of CHF 100 million starting from 01/01/YYYY until 
12/31/YYYY+4 (5 years) at a fixed rate of 3% and cash flows on a notional of USD 80 million at 6-month 
USD LIBOR. 
Company ALPHA will pay counterparty BETA a fixed rate of 3% annually on the notional amount of CHF 
100 million and Company BETA will pay a floating interest rate indexed to 6-month LIBOR on the USD 80 
million notional every six months. 

 
 

 
 

Figure IV.22 Currency Swap example 

 
In this example, the USD/CHF spot exchange rate would be 1.25, so on 12/31/YYYY+4 Company ALPHA 
will repay BETA CHF 100 million and receive USD 80 million from BETA, regardless of the market spot 
exchange rate recorded at the expiration date. 
 

From the perspective of Company BETA, on the swap starting date, the cash flows are: 
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Payment Date Receive Fix [CHF] Pay Floating [USD] LIBOR setting LIBOR 

01/01/YYYY -100,000,000 +80,000,000 01/01/YYYY 3.25% 

07/01/YYYY  -1,300,000 07/01/YYYY ? 

01/01/YYYY+1 +3,000,000 - 6 month LIBOR 01/01/YYYY+1 ? 

07/01/YYYY+1  - 6 month LIBOR 07/01/YYYY+1 ? 

01/01/YYYY+2 +3,000,000 - 6 month LIBOR 01/01/YYYY+2 ? 

07/01/YYYY+2  - 6 month LIBOR 07/01/YYYY+2 ? 

01/01/YYYY+3 +3,000,000 - 6 month LIBOR 01/01/YYYY+3 ? 

07/01/YYYY+3  - 6 month LIBOR 07/01/YYYY+3 ? 

01/01/YYYY+4 +3,000,000 - 6 month LIBOR 01/01/YYYY+4 ? 

07/01/YYYY+4  - 6 month LIBOR 07/01/YYYY+4 ? 

12/31/YYYY+4 +3,000,000 - 6 month LIBOR   

12/31/YYYY+4 +100,000,000 -80,000,000   

 
Table IV.3 Currency Swap example 

 

 
 

Figure IV.23 Currency Swap. Main Characteristics. Source: Bloomberg® 
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Figure IV.24 Currency Swap. Details of the Leg 1: Receive Fixed. Source: Bloomberg® 

 

 
 

Figure IV.25 Currency Swap. Details of the Leg 2: Pay Float. Source: Bloomberg® 
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Figure IV.26 Currency Swap. Cashflow Graph. Source: Bloomberg® 
 

 
 

Figure IV.27 Currency Swap. Cashflow Table. Source: Bloomberg® 
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Since plain vanilla currency swaps (fixed versus floating) have not always proved suitable to meet the needs of 
investors, swap dealers have created numerous variants of the derivative. 
 

The most common modifications are the following swaps: 
 

Fixed-for-fixed rate currency swaps are swaps in which both parties pay a fixed interest rate. It should be 
noted that such a product can be created using a single swap contract or it can be synthesized by means of a 
combination of two fixed-for-floating swaps featuring the same floating leg. Such swaps are also called circus 
swaps. 
 

Floating-for-floating currency swaps (also called basis swaps in the case of LIBOR-LIBOR swaps) are swaps 
in which both counterparties pay a variable interest rate. Again, such a product can be created using a single 
swap contract or it can be synthesized by means of a combination of two fixed-for-floating swaps featuring the 
same fixed leg. 
 

Amortising currency swaps are swaps in which the notional amounts are gradually swapped over the life of 
the derivative. 

 
 

 
 

Figure IV.28 Fixed-for-fixed currency swap. Source: Bloomberg® 
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 Figure IV.29 Floating-for-floating currency swap. Source: Bloomberg® 
 

As we have seen, generally speaking, swaps are instruments that allow to create fixed-rate and floating-rate 
liabilities. For example, if we consider a company where the treasurer expects interest rates to rise: he may use 
a swap to convert existing floating rate debt into a synthetic fixed rate liability. Under the swap, the firm will 
pay a fixed rate and receive a floating rate, locking in the cost of its short-term debt. 
 

 

Figure IV.30 Synthetic fixed rate liability 
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Similarly, if a treasurer expects a decrease in short-term rates, he will wish to convert an existing fixed-rate debt 
into a synthetic floating-rate liability and a swap would be the right instrument to implement this type of debt 
transformation.  
The firm will pay a floating rate and receive a fixed rate, which may allow the firm to lower the cost of interest 
if the short-term interest rate falls. 

 

 
 

Figure IV.31 Synthetic floating rate liability 
 
Currency swaps can also be used to convert the currency denomination of certain liabilities to a more 
appropriate one or to hedge against a currency exposure. 
As an example, an obligor of an existing liability denominated in a currency that is expected to strengthen can 
hedge its exposure by entering into a currency swap. 
 

Let us analyze an example contemplating the above-described situation. On October 1, a Dutch company 
issued a 5-year fixed-rate bond for a total amount of USD 10 million. 
The EUR/USD exchange rate was 1.17 at the time of issue, and after a year, the EUR/USD exchange rate has 
risen to 1.25. The company is worried about a sharp increase in the next 4 years and decides to enter a currency 
swap in order to hedge against the risk. 
To set up the hedging, the Dutch company stipulates a currency swap with the bank through which it will pay 
interest in EUR on an amount of EUR 8 million and it will receive the interest in USD paid on a notional 
amount of USD 10 million. 
Clearly, the firm should choose to enter a swap in which it receives USD interest from the bank as close as 
possible to the USD interest paid on its loan. 
In short, using a swap structured in the way we described, the company is protected against a possible 
appreciation of the USD, as shown in the figure below. 
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Figure IV.32 Hedging floating rate liability 
 
Besides what we have seen so far, swaps can also be used to profitably manage a portfolio. For example, in an 
environment where the yield curve slopes upward, a portfolio manager might enter a swap transaction in order 
to convert fixed rate investments to floating rate investments. 
 

Another useful feature of swaps is that they can be used to lock in gains or losses on fixed rate investments. If 
we consider, as an example,  a fixed-rate portfolio manager, after a significant decrease in interest rates, he can 
lock in his capital gain by “swapping” his investments in floating rates. 
Finally, swaps can also be used to enhance portfolio performance on both fixed and floating rate investments. 
We will illustrate this last characteristic through the following example. An investor has a portfolio of floating-
rate securities (USD 6M LIBOR). 
In order to increase the overall return, the investor could simultaneously enter two swaps: in the first, called 
original swap, he will exchange his floating rate (USD 6M LIBOR) against a fixed rate (e.g. 3%); and in the 
second, called reverse swap, he will swap a lower fixed rate (e.g. 2.5%) against the same floating rate (USD 6M 
LIBOR). 
As a result of the two transactions, the new rate of return on the overall portfolio is USD 6M LIBOR + 50 
basis points. 
 

Another category is constituted by Equity index swaps, in which at least one leg is linked to the total return 
of an equity index. 
Let us explain this type of contract through an example, considering a well-diversified portfolio, i.e., highly 
correlated to a benchmark stock index, such as the S&P 500 index. 
The portfolio manager who wishes to hedge against the risk of a stock market crash for a certain period of time 
could enter into an equity swap, that strategy is fined as downside market risk hedging. 
More specifically, the manager may contact a swap dealer in order to exchange the total return of the index,  
including capital appreciation/depreciation and dividends, against a floating interest rate. 
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Figure IV.33 Enhancing portfolio performance 
 

 

 
 

Figure IV.34 Equity index swap 
 

Commodity swaps is another type of swap, introduced in 1986 by Chase Manhattan Bank for hedging 
purposes. 
As the name suggests, the simplest case is a contract with which a commodity producer wants to hedge against 
changes in the price of the commodity itself. 
The producer can thus enter into a commodity swap, in which he pays the swap dealer a variable price per unit 
of the commodity (for example, based on the average of the spot prices recorded in the market) and he receives 
a fixed price. 
Since the hedger is also a producer, he can resell the commodity unit on the spot market and receive the 
corresponding spot price per unit, which he will use to pay the swap dealer. By entering a swap with such 
characteristics, the producer is assured of receiving a fixed price for his goods. 
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In this case, the notional amount is not exchanged and all transactions are cash-settled. Clearly, a commodity 
swap can be used not only for hedging purposes, but also for speculation without the transactions going to the 
spot market. 
 

 
 

Figure IV.35 Total Return Swap. Source: Bloomberg® 
 

 
 

 
 

Figure IV.36 Commodity swap 
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Figure IV.37 Commodity swap. Source: Bloomberg® 
 

A volatility swap is a forward contract on realized volatility. Its pay-off at maturity is equal to: 
 

𝑃𝑎𝑦𝑜𝑓𝑓 = 𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 ⋅ (𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 − 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑡𝑟𝑖𝑘𝑒 𝑃𝑟𝑖𝑐𝑒) (Eq. IV.1) 
 

As a standard, all volatilities are annualized and quoted in percentage points. Similarly, a variance swap is a 
forward contract on the realized variance, which is the square root of the realized volatility. Therefore, the 
related pay-off is: 
 

𝑃𝑎𝑦𝑜𝑓𝑓 = 𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 ⋅ (𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑆𝑡𝑟𝑖𝑘𝑒 𝑃𝑟𝑖𝑐𝑒) (Eq. IV.2) 
 

 

Figure IV.38 Variance swap. Current Market. Source: Bloomberg® 
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Figure IV.39 Variance swap. Curve view. Source: Bloomberg® 
 

Lastly, a swaption is an option that gives the right to enter a swap. In a swaption written on an interest rate 
swap, a swaption payer gives the option holder the right to enter a swap that pays a fixed interest rate. A 
swaption receiver gives the holder the right to enter a swap that receives a fixed rate. Swaptions are normally 
European options created ad-hoc to meet the specific needs of a trader and therefore they are mainly traded 
on OTC markets. 
 

 

Figure IV.40 Swaption. Source: Bloomberg® 
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IV.2 QUANTITATIVE ANALYSIS 
 
 

The analysis starts from the observation that a plain vanilla swap can be valued either as a long position in one 
bond combined with a short position in another bond or as a portfolio of forward contracts. Therefore, the 
pricing techniques differ depending on if we consider the former or the latter. Let us examine both techniques. 
 

Swap pricing as a bond portfolio 
 

From a cash flow perspective, in a generic interest rate swap, the fixed-rate payer is in the situation where he 
has sold a fixed-coupon bond and bought a floating-rate note. Similarly, the fixed-rate receiver is in the position 
where he has bought a fixed-rate bond and sold a floating-rate bond. Thus, the simplest approach to valuing a 
generic interest rate swap is to consider it as a portfolio of two fixed-income securities. Swap pricing is therefore 
equivalent to valuing the difference between the theoretical value of the two securities, which can be done using 
traditional bond valuation techniques. However, two factors must be taken into account that complicate this 
pricing methodology. First of all, an IRS generally requires neither an initial nor a matured investment since 
only the interests are exchanged. 
This fact is not actually a problem if both counterparties simultaneously buy and sell the same amount of fixed 
and floating rate securities since the cash flows equalize the same amount of money both at inception and at 
maturity. Secondly, the expected value of the cash flows of the floating leg represented by the floating-rate 
bond are uncertain, since they depend on the future level of interest rates. 
 

In mathematical terms, we assume that, in accordance with the swap statement, a financial institution receives 

a fixed rate payment and makes a floating rate payment at the same time. We denote by 𝑉 the value of the swap, 

𝐵1 the value of the fixed-rate bond underlying the swap, 𝐵2 the value of the floating-rate bond underlying the 

swap, 𝑄 the notional on which interest is calculated (swap principal). 
 

𝑅0,𝑡 is the effective discount rate to be applied on date 𝑡𝑖 and 𝐾 is the fixed payment which corresponds to the 

interest to be paid at time 𝑡𝑖. At each time, the value of the swap can be represented by: 𝑉 = 𝐵1 − 𝐵2. Since 

𝐵1 is the discounted value of the cash flows of a fixed rate bond, we have: 
 

𝐵1 = ∑
𝐾

(1+𝑅0,𝑡𝑖
)

𝑡𝑖

𝑛
𝑖=1 +

𝑄

(1+𝑅0,𝑡𝑛)
𝑡𝑛

  (Eq. IV.3) 

 

For bond 𝐵2, the cash flows are uncertain, since they are dependent on the future level of interest rates. But in 

practical terms, bond 𝐵2 will have a value close to par, given its re-pricing characteristics. Also, when entering 

a swap and immediately after a coupon reset date, the value of 𝐵2 is equal to the notional 𝑄. Expressing this 
concept in the usual mathematical notation, we obtain: 
 

𝐵2 =
𝐾∗

(1+𝑅0,𝑡1)
𝑡1

+
𝑄

(1+𝑅0,𝑡1)
𝑡1

 (Eq. IV.4) 

 

Where 𝐾∗ is the initially known variable amount used for payment on date 𝑡1. The previous mathematical 
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expressions can be expressed using the continuous composition of rates: 
 

𝐵1 = [∑ 𝐾 ⋅ exp(−𝑟0,𝑡𝑖
⋅ 𝑡𝑖)𝑛

𝑖=1 ] + 𝑄 ⋅ exp(−𝑟0,𝑡𝑛
⋅ 𝑡𝑛) (Eq. IV.5) 

 

𝐵2 = 𝐾∗exp(−𝑟0,𝑡1
⋅ 𝑡1) + 𝑄 ⋅ exp(−𝑟0,𝑡1

⋅ 𝑡1) (Eq. IV.6) 
 

At the inception date of the swap, its value should be zero, as the transaction is commonly conducted at current 
market rates such that the net discounted value of the payments is zero, or rather, the fixed rate on a typical 
IRS is set such that the market value of the fixed leg equals the floating leg. In fact, if the swap is not concluded 
at zero market value, one counterparty has to pay the difference to the other. At maturity, the value of the swap 

is zero, while during its life the NPV of the derivative varies according to the value of 𝐵1 and 𝐵2. 
 

We now present as an example a company that has entered an IRS, in which it pays 6-month LIBOR and 
receives the fixed rate of 4% (compounded semi-annually) on a notional of USD 100 million. The swap has a 
remaining life of 1.25 years. The continuously compounded discount rates over 3, 9 and 15 months are 5%, 
5.5% and 6%, respectively. 
The last LIBOR set at the last payment is 5.10% (composed on a semi-annual basis). 
 

The value of the derivative is: 𝑉 = 𝐵1 − 𝐵2.  𝐾 = USD 2 million. K∗ = USD 2.55 million. We can thus 
calculate: 
 

𝐵1 = [∑ 𝐾 ⋅ exp(−𝑟0,𝑡𝑖
⋅ 𝑡𝑖)𝑛

𝑖=1 ] + 𝑄 ⋅ exp(−𝑟0,𝑡𝑛
⋅ 𝑡𝑛) = 2 ⋅ exp(−0.25 ⋅ 0.05) + 2 ⋅ exp(−0.75 ⋅

0.055) + 2 ⋅ exp(−1.25 ⋅ 0.06) + 100 ⋅ exp(−1.25 ⋅ 0.06) = 98.52  
 

𝐵2 = 𝐾∗exp(−𝑟0,𝑡1
⋅ 𝑡1) + 𝑄 ⋅ exp(−𝑟0,𝑡1

⋅ 𝑡1) = 2.55 ⋅ exp(−0.25 ⋅ 0.05) + 100 ⋅ exp(−0.25 ⋅ 0.05) =

101.28  
 

Thus, the value of a swap to the counterparty paying the floating rate and receiving the fixed rate is:  

𝑉 = 98.52 − 101.28 = −𝑈𝑆𝐷 2.75 million. 
 

For the other counterparty who pays fixed and receives variable, the value is + USD 2.75 million. 
 

Swap pricing as a forward contract using the zero-coupon yield curve 
 

On the other hand, in the absence of default risk, an IRS can also be decomposed into a portfolio of forward 

contracts. Using the same notation, let us consider the case of a company that enters a swap with a notional 𝑄, 
paying a floating rate and receiving a fixed rate. Payments are made every six months. The payment to the 
company at each payment date (every 6 months) is equal to: 

𝑄

2
⋅ (𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 − 𝐹𝑖𝑥𝑒𝑑 𝑅𝑎𝑡𝑒) (Eq. IV.7) 

 

Where the floating rate is the reference rate recorded on the payment date. Such formula is the pay-off of a 
standard forward contract written on the reference floating rate, with the exception that it is always settled 6 

months in arrears. Let us now assume that 𝐹𝑖 is the forward interest rate for the six-month period prior to 

payment date 𝑖 (𝑖 > 1). The forward contract value for the 𝑖-th payment (𝑖 > 1) for the counterparty receiving 

the fixed rate payment (which amounts to 𝐾) and paying the floating rate (i.e. 0.5 ⋅ 𝐹𝑖 ⋅ 𝑄 ) is as follows: 
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(𝐾 −
1

2
⋅ 𝐹𝑖 ⋅ 𝑄) ⋅

1

(1+𝑅0,𝑡𝑖
)

𝑡𝑖
 (Eq. IV.8) 

 

On the first payment date, the party makes a payment of 𝐾∗ and receives a payment of 𝐾. The discounted value 
of the first payment is therefore: 
 

(𝐾 − 𝐾∗) ⋅
1

(1+𝑅0,𝑡1)
𝑡1

 (Eq. IV.9) 

 

The total value of the swap for the counterparty receiving fixed and paying floating is: 
 

𝑉 = (𝐾 − 𝐾∗) ⋅
1

(1+𝑅0,𝑡1)
𝑡1

+ ∑ (𝐾 −
1

2
⋅ 𝐹𝑖 ⋅ 𝑄) ⋅

1

(1+𝑅0,𝑡𝑖
)

𝑡𝑖
 𝑛

𝑖=2  (Eq. IV.10) 

 
Similarly, the value of the swap for the counterparty receiving floating and paying fixed is: 
 

𝑉′ = (𝐾∗ − 𝐾) ⋅
1

(1+𝑅0,𝑡1)
𝑡1

+ ∑ (
1

2
⋅ 𝐹𝑖 ⋅ 𝑄 − 𝐾) ⋅

1

(1+𝑅0,𝑡𝑖
)

𝑡𝑖
 𝑛

𝑖=2  (Eq. IV.11) 

 

The previous mathematical expressions can be rewritten using the continuous composition of rates: 
 

𝑉 = (𝐾 − 𝐾∗) ⋅ exp(−𝑟0,1 ⋅ 𝑡1) + ∑ (𝐾 −
1

2
⋅ 𝐹𝑖 ⋅ 𝑄) ⋅ exp(−𝑟0,𝑖 ⋅ 𝑡𝑖)𝑛

𝑖=2  (Eq. IV.12) 
 

𝑉′ = (𝐾∗ − 𝐾) ⋅ exp(−𝑟0,1 ⋅ 𝑡1) + ∑ (
1

2
⋅ 𝐹𝑖 ⋅ 𝑄 − 𝐾) ⋅ exp(−𝑟0,𝑖 ⋅ 𝑡𝑖)𝑛

𝑖=2  (Eq. IV.13) 
 

Let us now present an example, considering the same swap valuation previously discussed. This time it will be 
valued not as a portfolio of bonds, but as a portfolio of forward contracts. The first payment is USD 2 million 
(fixed leg) versus USD 2.55 million (floating leg based on the last LIBOR reset that occurred on the last payment 
date). For the next two payments, it is necessary to estimate the forward rate which is implicit in the zero rates: 

(𝑟0,0.25 = 5%, 𝑟0,0.75 = 5.5%, 𝑟0,1.25 = 6%). Given that the rates are continuously compounded, the spot 

rate is an arithmetic average of forward rates: 
 
 

𝑓0.25,0.75 =
𝑟0,0.75⋅(0.75−0)−𝑟0,0.25⋅(0.25−0)

0.75−0.25
=

5.5%⋅0.75−5%⋅0.25

0.5
= 5.75% p. a.  

 

𝑓0.75,1.25 =
𝑟0,1.25⋅(1.25−0)−𝑟0,0.75⋅(0.75−0)

1.25−0.75
=

6%⋅1.25−5.5%⋅0.75

0.5
= 6.75% p. a.  

 
 

We notice that all forward rates calculated are annualized and continuously compounded. 

The second payment of the floating leg of the swap will therefore be equal to: 100 ⋅ [exp(5.75% ⋅ 0.5) − 1] =
USD 2.917 million. 

The third payment of the floating leg of the swap is: 100 ⋅ [exp(6.75% ⋅ 0.5) − 1] = USD 3.433 million. 
The swap value for the counterparty paying the floating rate and receiving the fixed rate will be - USD 2.75 
million: 
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𝑉 = (2.0 − 2.55) ⋅ exp(−0.05 ⋅ 0.25) + (2.0 − 2.917) ⋅ exp(−0.055 ⋅ 0.75) + (2.0 − 3.433) ⋅ 
 

        ⋅ exp(−0.06 ⋅ 1.25) = −USD 2.75 million.  
 
Using the same methodology, the fixed rate of a fix-to-floater swap can be set such that the initial value of the 
swap is zero. The pricing of a currency swap is very similar to that of a vanilla IRS. In the absence of default 
risk, a currency swap can be decomposed into a short/long position on two bonds or a series of Forex Forward 
contracts. We now provide a market example of pricing. 

 

 
 

Figure IV.41 IRS pricing. Source: Bloomberg® 
 

The Zero Rates we use for pricing come from the ESTER Curve, because of the underlying assumption that 
the swap is collateralized. 
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Term Market Rates Zero Rates Discount Factors 

1 WK 1.90225 1.92831 0.99963 

2 WK 1.9024 1.92811 0.999261 

1 MO 2.04425 2.07082 0.998243 

2 MO 2.21025 2.2369 0.996391 

3 MO 2.39775 2.42379 0.994041 

4 MO 2.5226 2.54694 0.991661 

5 MO 2.652 2.67379 0.988855 

6 MO 2.7543 2.7734 0.986341 

7 MO 2.8428 2.85842 0.983535 

8 MO 2.916 2.92766 0.980619 

9 MO 2.9675 2.97536 0.977992 

10 MO 3.009 3.01268 0.97522 

11 MO 3.04175 3.04116 0.972474 

1 YR 3.066 3.06125 0.969851 

18 MO 3.051 3.05566 0.95524 

2 YR 2.947 2.94235 0.942775 

3 YR 2.727 2.72014 0.921431 

4 YR 2.6 2.5918 0.901393 

5 YR 2.525 2.5161 0.881726 

6 YR 2.4835 2.47452 0.861908 

7 YR 2.455 2.44603 0.842521 

8 YR 2.45 2.44223 0.822413 

9 YR 2.458 2.4522 0.801743 

10 YR 2.477 2.47414 0.780659 

11 YR 2.48775 2.48675 0.760524 

12 YR 2.506 2.50787 0.739966 

15 YR 2.52 2.52429 0.684553 

 
Table IV.4 Interest rates term structure. Tenor 1 day. Source: Bloomberg® 
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Term Market Rates Zero Rates Discount Factors 

6 MO 2.876 2.89506 0.985746 

EUFR0AG 3.093 2.95582 0.982978 

EUFR0BH 3.277 3.03846 0.979893 

EUFR0CI 3.391 3.09135 0.977144 

EUFR0DJ 3.457 3.13757 0.974206 

EUFR0EK 3.526 3.1892 0.971154 

EUFR0F1 3.54 3.22879 0.968228 

EUFR0I1C 3.438 3.23754 0.96036 

EUFR011F 3.263 3.24627 0.952515 

2 YR 3.19425 3.14043 0.939042 

3 YR 2.9855 2.93442 0.91551 

4 YR 2.858 2.80808 0.893618 

5 YR 2.7825 2.72895 0.872196 

6 YR 2.745 2.69551 0.850545 

7 YR 2.72075 2.67222 0.829276 

8 YR 2.713 2.66572 0.80783 

9 YR 2.71375 2.66788 0.786312 

10 YR 2.7185 2.67331 0.765251 

11 YR 2.72825 2.68499 0.744108 

12 YR 2.73025 2.68778 0.724152 

15 YR 2.70475 2.65936 0.670811 

20 YR 2.5445 2.47233 0.609607 

25 YR 2.3545 2.24652 0.570069 

30 YR 2.183 2.04268 0.541588 

 
Table IV.5 Interest rates term structure. Tenor 6 months. Source: Bloomberg® 

 

The Receiving Leg NPV is equal to the sum of all discounted cash flows and in this case, it is EUR 1,028,655.42. 
 

 
Zero Rate(4Y) =2.80808% 
 

Zero Rate(5Y) =2.72895% 
 

𝐹𝑇1.𝑇2
= (

(1+𝑅0.𝑇2)
𝑇2

(1+𝑅0.𝑇1)
𝑇1

)

1

𝑇2−𝑇1

− 1 = 𝟐. 𝟒𝟏𝟕𝟔%  

 

Date T Interp.Zero 

21/01/2027 4.02 2.80611% 

22/07/2027 4.52 2.76667% 
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Pay Date Accrual Start Accrual End Days Notional 
Equiv. 

Coupon 
Payment Discount Zero Rate PV 

07/26/2021 01/25/2021 07/26/2021 181 10,000,000 2 100555.56    

01/25/2022 07/26/2021 01/25/2022 179 10,000,000 2 99444.44    

07/25/2022 01/25/2022 07/25/2022 180 10,000,000 2 100000    

01/25/2023 07/25/2022 01/25/2023 180 10,000,000 2 100000 0.999366 1.92828 99936.62 

07/25/2023 01/25/2023 07/25/2023 180 10,000,000 2 100000 0.985408 2.779983 98540.79 

01/25/2024 07/25/2023 01/25/2024 180 10,000,000 2 100000 0.969 3.048869 96899.96 

07/25/2024 01/25/2024 07/25/2024 180 10,000,000 2 100000 0.954482 3.041903 95448.16 

01/27/2025 07/25/2024 01/27/2025 182 10,000,000 2 101111.11 0.941963 2.929267 95242.94 

07/25/2025 01/27/2025 07/25/2025 178 10,000,000 2 98888.89 0.931513 2.802492 92116.27 

01/26/2026 07/25/2025 01/26/2026 181 10,000,000 2 100555.56 0.920845 2.714092 92596.06 

07/27/2026 01/26/2026 07/27/2026 181 10,000,000 2 100555.56 0.910778 2.642249 91583.8 

01/25/2027 07/27/2026 01/25/2027 178 10,000,000 2 98888.89 0.90082 2.58819 89081.12 

07/26/2027 01/25/2027 07/26/2027 181 10,000,000 2 100555.56 0.890939 2.546825 89588.87 

01/25/2028 07/26/2027 01/25/2028 179 10,000,000 2 99444.44 0.881103 2.513703 87620.83 

 
Table IV.6 Receiving Leg 

 

The NPV of the Paying Leg is equal to the sum of all discounted cash flows and it is EUR 1,578,313.27. 
 

Swap NPV = NPV Receive Leg – NPV Pay Leg = 1,028,655.42 - 1,578,313.27 =  - EUR 549,657.85.  
 

We now compute the Swap Accrued as the difference between the accrued interests of the two legs. 
 

Leg 1 - Receive 
Last Payment Date: 25th July 2022; Valuation Date: 13th January 2023; Day Basis: 30/360 
Accrued Interest = Notional * (C/2) * (30*m+d)/180 =10,000,000 * (0.02/2) * (30 * 5+18)/180 = 93,333.33 
 

Leg 2 - Pay 
Last Payment Date: 25th July 2022. Last coupon = Reset Rate + Additive Margin = 0.632%+0.5%=1.132% 
Valuation Date: 13th January 2023; Day Basis: ACT/360; Exact days 13th January 2023 - 25th July 2022 = 172 
days. 
Accrued Interest = Notional * (C/2) * (Exact days)/180 =10,000,000 * (0.01132/2) * (172)/180 = 54,084.44 
 

Swap Accrued = Accrued Receive - Accrued Paying = 93,333.33 - 54,084.44 = EUR 39,248.89. 
 

Swap Principal = Swap NPV - Swap Accrued = -549,657.85 – 39,248.89 = - EUR 588,906.73. 
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Pay Date Accrual Start Accrual End Days Notional Reset Date Reset Coupon Payment 

07/26/2021 01/25/2021 07/26/2021 182 -10MM 01/21/2021 -0.527 -0.027 1365 

01/25/2022 07/26/2021 01/25/2022 183 -10MM 07/22/2021 -0.517 -0.017 864.17 

07/25/2022 01/25/2022 07/25/2022 181 -10MM 01/21/2022 -0.522 -0.022 1106.11 

01/25/2023 07/25/2022 01/25/2023 184 -10MM 07/21/2022 0.632 1.132 -57857.78 

07/25/2023 01/25/2023 07/25/2023 181 -10MM 01/23/2023 2.9342 3.4342 -172664.05 

01/25/2024 07/25/2023 01/25/2024 184 -10MM 07/21/2023 3.53834 4.0383 -206404.26 

07/25/2024 01/25/2024 07/25/2024 182 -10MM 01/23/2024 3.24331 3.7433 -189245.15 

01/27/2025 07/25/2024 01/27/2025 186 -10MM 07/23/2024 2.791 3.291 -170034.88 

07/25/2025 01/27/2025 07/25/2025 179 -10MM 01/23/2025 2.50499 3.005 -149414.56 

01/26/2026 07/25/2025 01/26/2026 185 -10MM 07/23/2025 2.50183 3.0018 -154260.95 

07/27/2026 01/26/2026 07/27/2026 182 -10MM 01/22/2026 2.40825 2.9083 -147028.23 

01/25/2027 07/27/2026 01/25/2027 182 -10MM 07/23/2026 2.40848 2.9085 -147040.04 

07/26/2027 01/25/2027 07/26/2027 182 -10MM 01/21/2027 2.41432 2.9143 -147335.27 

01/25/2028 07/26/2027 01/25/2028 183 -10MM 07/22/2027 2.41763 2.9176 -148312.82 
 

Pay Date Days Notional Payment Discount Zero Rate PV 

07/25/2022 181 -10000000 1106.11    

01/25/2023 184 -10000000 -57857.78 0.999366 1.92828 -57821.11 

07/25/2023 181 -10000000 -172664.05 0.985408 2.779983 -170144.52 

01/25/2024 184 -10000000 -206404.26 0.969 3.048869 -200005.65 

07/25/2024 182 -10000000 -189245.15 0.954482 3.041903 -180631.01 

01/27/2025 186 -10000000 -170034.88 0.941963 2.929267 -160166.59 

07/25/2025 179 -10000000 -149414.56 0.931513 2.802492 -139181.58 

01/26/2026 185 -10000000 -154260.95 0.920845 2.714092 -142050.39 

07/27/2026 182 -10000000 -147028.23 0.910778 2.642249 -133910.1 

01/25/2027 182 -10000000 -147040.04 0.90082 2.58819 -132456.67 

07/26/2027 182 -10000000 -147335.27 0.890939 2.546825 -131266.74 

01/25/2028 183 -10000000 -148312.82 0.881103 2.513703 -130678.91 
 

Table IV.7 Paying Leg 
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Valuation of the swap as a forwards-like portfolio 
 

Pay Date Payments (Rcv) Payments (Pay) Net Payments Discount Zero Rate PV 

07/26/2021 100555.56 1365 101920.56    

01/25/2022 99444.44 864.17 100308.61    

07/25/2022 100000 1106.11 101106.11    

01/25/2023 100000 -57857.78 42142.22 0.999366 1.92828 42115.51 

07/25/2023 100000 -172664.05 -72664.05 0.985408 2.779983 -71603.73 

01/25/2024 100000 -206404.26 -106404.26 0.969 3.048869 -103105.69 

07/25/2024 100000 -189245.15 -89245.15 0.954482 3.041903 -85182.85 

01/27/2025 101111.11 -170034.88 -68923.77 0.941963 2.929267 -64923.65 

07/25/2025 98888.89 -149414.56 -50525.67 0.931513 2.802492 -47065.31 

01/26/2026 100555.56 -154260.95 -53705.39 0.920845 2.714092 -49454.33 

07/27/2026 100555.56 -147028.23 -46472.68 0.910778 2.642249 -42326.3 

01/25/2027 98888.89 -147040.04 -48151.15 0.90082 2.58819 -43375.54 

07/26/2027 100555.56 -147335.27 -46779.71 0.890939 2.546825 -41677.87 

01/25/2028 99444.44 -148312.82 -48868.38 0.881103 2.513703 -43058.09 

 
Table IV.8 Net Cash Flows 

 
Pricing a Currency swap as a bond portfolio 
 

We now assume that in a swap, a financial institution receives payments in foreign currency and makes payments 

in domestic currency. Let 𝑉 be the swap value, 𝐵𝐹 the value of the foreign currency bond underlying the swap, 

𝐵𝐷 the value of the domestic currency bond underlying the swap, and let 𝑆 be the exchange rate. The value of 

the swap can be expressed as: 𝑉 = 𝑆 ⋅ 𝐵𝐹 − 𝐵𝐷, where 𝐵𝐹 and 𝐵𝐷 can be fixed or floating rate bonds. 
Therefore, the fair value of a currency swap can be determined from the term structure of domestic currency 
interest rates, the term structure of foreign currency interest rates and the spot exchange rate. 
 

Let us analyze a partial example. A financial institution has entered a swap in which it receives a fixed rate of 
5% in JPY and pays a fixed rate of 8% in USD. All payments are made annually and the reference principals in 
the two currencies are USD 10 million and JPY 1,200 million. The time to maturity of the swap is 3 years. We 
assume a flat rate term structure with a continuously compounded Japanese interest rate of 4% p.a. and with a 
composed continuously US interest rate of 9% p.a. 
The NPV of the swap is calculated assuming a USD/JPY exchange rate of 110. The domestic currency bond 
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is worth: 
 

𝐵𝐷 = 0.8 ⋅ exp(−0.09) + 0.8 ⋅ exp(−0.09 ⋅ 2) + 10.8 ⋅ exp(−0.09 ⋅ 3) = USD 9.64 million.  
 

The foreign bond is worth: 
 

𝐵𝐹 = 60 exp(−0.04) + 60 exp(−0.04 ⋅ 2) + 1260 exp(−0.04 ⋅ 3) = JPY 1230.55 million.  
 

The swap fair value is 
1230.55

110
− 9.64 = USD 1.55 million.   

 

For the counterparty paying JPY and receiving USD, the swap value is - USD 1.55 million. 
 
Pricing a Currency swap as a forwards portfolio 
 

The valuation of a currency swap can also be achieved by breaking down the swap into a series of Forex 
Exchange forward contracts. Recalling that a forward contract can be valued using the UIP (Uncovered Interest 
rate parity) formula: 
 

𝐹𝑡.𝑇 = 𝑆𝑡 ⋅
(1+𝑅𝐷)𝑇−𝑡

(1+𝑅𝐹)𝑇−𝑡 (Eq. IV.14) 
 

Or employing the mathematical relationship in continuous time: 
 

𝐹𝑡.𝑇 = 𝑆𝑡 ⋅ exp[(𝑟𝐷 − 𝑟𝐹) ⋅ (𝑇 − 𝑡)] (Eq. IV.15) 
 

Where the subscript D indicates the reference to the domestic rate and the subscript F refers to the foreign 
rate. So, if we have the term structure of domestic currency interest rates, the term structure of foreign currency 
interest rates and the spot exchange rate, we can estimate the value of a currency swap. 
 

Taking as a reference the case of the valuation of the previous currency swap, its price is calculated considering 
the derivative as a portfolio of FX forward contracts. The current exchange rate is 110 USD/JPY or 0.009091 
JPY/USD. The USD-JPY interest rate differential is 5% p.a. We can estimate 1, 2 and 3-year future exchange 
rates as: 
 

𝐹0,1 = 0.009091 ⋅ exp(0.05 ⋅ 1) = 0.0096   
 

𝐹0,2 = 0.009091 ⋅ exp(0.05 ⋅ 2) = 0.001  
 

𝐹0,3 = 0.009091 ⋅ exp(0.05 ⋅ 3) = 0.0106  
 

Exchanging interest payments involves receiving JPY 60 million and paying USD 0.8 million. The risk-free rate 
in USD is 9%. The value of forward contracts expressed in million USD is: 
 

(60 ⋅ 0.0096 − 0.8) ⋅ exp(−0.09 ⋅ 1) = −0.21  
 

(60 ⋅ 0.001 − 0.8) ⋅ exp(−0.09 ⋅ 2) = −0.16  
 

(60 ⋅ 0.0106 − 0.8) ⋅ exp(−0.09 ⋅ 3) = −0.13  
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The final exchange involves receiving JPY 1,200 million and paying USD 10 million. 

The value of the corresponding forward contract, expressed in million USD is: (1200 ⋅ 0.0106 − 10) ⋅
exp(−0.09 ⋅ 3) = 2.04. 
 

The fair value of the swap is: 2.04 − 0.13 − 0.16 − 0.21 = USD 1.54 million. 
 

 
 

Figure IV.42 Currency Swap IRS pricing. Source: Bloomberg® 
 

In this case, the notional exchanges occur on the effective date and on the maturity date (10 million /1.08302 
= USD 9233439.83). 
 

Other cash flows are calculated as usual through the formula: Notional * Reset Rate/100 * Days/360. 
 

Discount factors are estimated using the continuous compounded formula starting from the zero rate: 
(exp (-Zero Rate * (Pay Date – Valuation Date)/365)). 
 

PV = Payment * Discount. 
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Pay Date 
Accrual 

Start 
Accrual End Days Notional Principal Reset Date 

Reset 
Rate 

01/25/2022     9233439.83   

07/25/2022 01/25/2022 07/25/2022 181 -9233439.83 0 01/21/2022 -0.522 

01/25/2023 07/25/2022 01/25/2023 184 -9233439.83 0 07/21/2022 0.632 

07/25/2023 01/25/2023 07/25/2023 181 -9233439.83 0 01/23/2023 2.9342 

01/25/2024 07/25/2023 01/25/2024 184 -9233439.83 0 07/21/2023 3.53834 

07/25/2024 01/25/2024 07/25/2024 182 -9233439.83 0 01/23/2024 3.24331 

01/27/2025 07/25/2024 01/27/2025 186 -9233439.83 0 07/23/2024 2.791 

07/25/2025 01/27/2025 07/25/2025 179 -9233439.83 0 01/23/2025 2.50499 

01/26/2026 07/25/2025 01/26/2026 185 -9233439.83 0 07/23/2025 2.50183 

07/27/2026 01/26/2026 07/27/2026 182 -9233439.83 0 01/22/2026 2.40825 

01/25/2027 07/27/2026 01/25/2027 182 -9233439.83 0 07/23/2026 2.40848 

07/26/2027 01/25/2027 07/26/2027 182 -9233439.83 0 01/21/2027 2.41432 

01/25/2028 07/26/2027 01/25/2028 183 -9233439.83 -9233439.83 07/22/2027 2.41763 

 
 

Pay Date Accrual Start Accrual End Payment Discount Zero Rate PV 

01/25/2022   9233439.83    
07/25/2022 01/25/2022 07/25/2022 24233.16    
01/25/2023 07/25/2022 01/25/2023 -29826.06 0.999252 2.276972 -29803.74 

07/25/2023 01/25/2023 07/25/2023 -136216.47 0.986279 2.612778 -134347.51 

01/25/2024 07/25/2023 01/25/2024 -166985.56 0.971435 2.805811 -162215.68 

07/25/2024 01/25/2024 07/25/2024 -151398.29 0.959063 2.729245 -145200.49 

01/27/2025 07/25/2024 01/27/2025 -133147.63 0.946637 2.686747 -126042.54 

07/25/2025 01/27/2025 07/25/2025 -115005.67 0.937259 2.55958 -107790.07 

01/26/2026 07/25/2025 01/26/2026 -118711.1 0.927671 2.471024 -110124.81 

07/27/2026 01/26/2026 07/27/2026 -112417.55 0.918662 2.398581 -103273.69 

01/25/2027 07/27/2026 01/25/2027 -112428.46 0.909739 2.344061 -102280.57 

07/26/2027 01/25/2027 07/26/2027 -112701.05 0.900868 2.302395 -101528.8 

01/25/2028 07/26/2027 01/25/2028 -9346915.26 0.892028 2.268993 -8337709.83 

 
Table IV.9 Currency Swap pricing – Paying Leg 

 
The NPV of the Receiving Leg is USD 10,492,693.10, The NPV of the Paying Leg is EUR 9,460,317.73, as a 
result the swap price is: 10,492,693.10 - 9,460,317.73 * 1.083020 = 10,492,693.10 - 10,245,713.31 = USD 
246,979.79. 
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Pay Date Accrual Start Accrual End Days Notional Principal Coupon Payment 

01/25/2022     -10000000  -10000000 

07/25/2022 01/25/2022 07/25/2022 181 10000000 0 4 201111.11 

01/25/2023 07/25/2022 01/25/2023 184 10000000 0 4 204444.44 

07/25/2023 01/25/2023 07/25/2023 181 10000000 0 4 201111.11 

01/25/2024 07/25/2023 01/25/2024 184 10000000 0 4 204444.44 

07/25/2024 01/25/2024 07/25/2024 182 10000000 0 4 202222.22 

01/27/2025 07/25/2024 01/27/2025 186 10000000 0 4 206666.67 

07/25/2025 01/27/2025 07/25/2025 179 10000000 0 4 198888.89 

01/26/2026 07/25/2025 01/26/2026 185 10000000 0 4 205555.56 

07/27/2026 01/26/2026 07/27/2026 182 10000000 0 4 202222.22 

01/25/2027 07/27/2026 01/25/2027 182 10000000 0 4 202222.22 

07/26/2027 01/25/2027 07/26/2027 182 10000000 0 4 202222.22 

01/25/2028 07/26/2027 01/25/2028 183 10000000 10000000 4 10203333.33 

 

Pay Date Accrual Start Accrual End Days Payment Discount Zero Rate PV 

01/25/2022    -10000000    
07/25/2022 01/25/2022 07/25/2022 181 201111.11    
01/25/2023 07/25/2022 01/25/2023 184 204444.44 0.998564 4.36955 204150.96 

07/25/2023 01/25/2023 07/25/2023 181 201111.11 0.974954 4.796975 196074.11 

01/25/2024 07/25/2023 01/25/2024 184 204444.44 0.951855 4.777226 194601.41 

07/25/2024 01/25/2024 07/25/2024 182 202222.22 0.93316 4.517063 188705.59 

01/27/2025 07/25/2024 01/27/2025 186 206666.67 0.918385 4.171213 189799.59 

07/25/2025 01/27/2025 07/25/2025 179 198888.89 0.905923 3.902854 180178.01 

01/26/2026 07/25/2025 01/26/2026 185 205555.56 0.893226 3.716326 183607.64 

07/27/2026 01/26/2026 07/27/2026 182 202222.22 0.881157 3.577036 178189.56 

01/25/2027 07/27/2026 01/25/2027 182 202222.22 0.869249 3.472235 175781.39 

07/26/2027 01/25/2027 07/26/2027 182 202222.22 0.857395 3.393222 173384.23 

01/25/2028 07/26/2027 01/25/2028 183 10203333.33 0.845628 3.329804 8628220.58 

 
Table IV.10 Currency Swap pricing – Receiving Leg 

 

Interest Rate Swap Curves are an essential tool for computing forward rates and discount factors used for 
pricing medium-long term financial instruments. We now illustrate how to create a zero curve from market IRS 
swap rates by using the bootstrapping methodology, and since market swap rates have three kinds according 
to their sources, i.e., cash (deposit), futures (Fra), swap, we present the bootstrapping for these three different 
cases. 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

393 

Bootstrapping – Deposit (or Cash)  
 

As the market swap rate for deposits is a quarterly compounding rate, the discount factor is estimated through 
this rate and the zero rate is calculated with the discount factor as follows: 
 

𝐷𝐹(𝑠, 𝑡𝑖) = (1 + 𝑅𝑡𝑖

𝑀𝐾𝑇 ×
𝜏(𝑠,𝑡𝑖)

360
)

−1
 (Eq. IV.16) 

 

𝑅(𝑠, 𝑡𝑖) =
365

𝜏(𝑠,𝑡𝑖)
× ln (

1

𝐷𝐹(𝑠,𝑡𝑖)
) (Eq. IV.17) 

 

Where 𝐷𝐹(𝑠, 𝑡𝑖) is the discount factor from 𝑡𝑖 to 𝑠, 𝑅(𝑠, 𝑡𝑖) is the zero or spot rate from 𝑡𝑖 to 𝑠 and 𝑅𝑡𝑖

𝑀𝐾𝑇 is 

the market par rate at 𝑡𝑖 and 𝜏(𝑠, 𝑡𝑖) is the day count. We use the Bloomberg® convention for this curve 
stripping. 
 
Bootstrapping – Futures 
 

Bloomberg provides the market rate for Euro dollar futures as a rate, not a price, i.e. yield = par value (100) – 
mkt price. 
 

Since maturities of the contiguous futures are successive from 3M and non-overlapping, zero rates can be found 
in the following order: 
 

1) Compute the discount factor from 𝑡𝑖−1 to 𝑡𝑖: 
 

𝐷𝐹(𝑡𝑖−1, 𝑡𝑖) = (1 + 𝑅𝑡𝑖

𝑀𝐾𝑇 ×
𝜏(𝑡𝑖−1,𝑡𝑖)

360
)

−1
 (Eq. IV.18) 

 

2) Compute the discount factor from spot date to 𝑡𝑖: 
 

𝐷𝐹(𝑠, 𝑡𝑖) = 𝐷𝐹(𝑠, 𝑡𝑖−1) × 𝐷𝐹(𝑡𝑖−1, 𝑡𝑖) (Eq. IV.19) 
 
3) Compute the zero rate from discount factor: 

 

𝑅(𝑠, 𝑡𝑖) =
365

𝜏(𝑠,𝑡𝑖)
× ln (

1

𝐷𝐹(𝑠,𝑡𝑖)
) (Eq. IV.20) 

 
Particular attention must be paid to the first future contract. If its starting date exactly matches the maturity of 
the deposit (Case A) we can apply the previous general formula. 
 

But if the starting date for the first futures contract does not exactly match the maturity of the first deposit 
(Case B) we have to consider a synthetic rate, known as stub rate, in order to perform the first zero rate 
computation from Futures/FRAs, then the general formula can be applied for the other contiguous futures. 
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1) Compute the discount factor from 𝑡𝑆𝑇𝑈𝐵 to 𝑡2: 
 

𝐷𝐹(𝑡𝑆𝑇𝑈𝐵, 𝑡2) = (1 + 𝑅2
𝑀𝐾𝑇 ×

𝜏(𝑡𝑆𝑇𝑈𝐵,𝑡2)

360
)

−1
 (Eq. IV.21) 

 

2) Interpolate the discount factor from spot date to 𝑡𝑆𝑇𝑈𝐵. 
 

3) Compute the discount factor from spot date to 𝑡𝑖: 
 

𝐷𝐹(𝑠, 𝑡2) = 𝐷𝐹(𝑠, 𝑡𝑆𝑇𝑈𝐵) × 𝐷𝐹(𝑡𝑆𝑇𝑈𝐵, 𝑡2) (Eq. IV.22) 
 

4) Compute the zero rate from discount factor: 
 

𝑅(𝑠, 𝑡2) =
365

𝜏(𝑠,𝑡2)
× ln (

1

𝐷𝐹(𝑠,𝑡2)
) (Eq. IV.23)                    

 
We start by stripping the short and medium term of the US Swap curve (Bloomberg® id. 23), considering a 
Valuation Date of 17th January 2023 and a Settlement Date of 19th January 2023. 

 

 
 

Figure IV.43 Swap Curve Builder. Curve Construction. Source: Bloomberg® 
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Figure IV.44 Swap Curve Builder. Curve analysis. Source: Bloomberg® 

 
For the Short-term Curve, we consider a 3 months Deposit with maturity on 19th April 2023. The Market 
Rate is 4.79471%, thus: 
 

𝐷𝐹(𝑠, 𝑡𝑖) = (1 + 𝑅1
𝑀𝐾𝑇 ×

𝜏(𝑠,𝑡𝑖)

360
)

−1
= (1 + 0.0479471 ×

90

360
)

−1
= 0.9881552  

 

𝑅(𝑠, 𝑡𝑖) =
365

𝜏(𝑠,𝑡𝑖)
× ln (

1

𝐷𝐹(𝑠,𝑡𝑖)
) =

365

90
× ln (

1

0.9881552
) = 0.04832398  

 

𝑅1
𝑀𝐾𝑇 = 0.0479471  

 

 𝜏(𝑠, 𝑡1) = 𝜏(19 January 2023,  19 April 2023) = 90 

 
For the Medium-term Curve, we have: the First Future in the medium-term section of the curve, which is the 
Eurodollar Futures (EDH3 contract), and the market rate yield which is (100% – 94.97%) 5.03%. 
 
This interest starts to accrue on 13th March 2023 and ends on the futures maturity date, on 21st June 2023. 
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A is the IR curve spot date (19th January 2023), 𝑡0. 
 

B is the stub date of the first future (13th March 2023), 𝑡𝑆𝑇𝑈𝐵. 
 

C is the maturity date of the spot (19th April 2023), 𝑡1. 
 

D is the maturity date of the first future (21st June 2023), 𝑡2. 
 
The first step is to compute the discount factor between B and D as follows:  
 

𝐷𝐹(𝑡𝑆𝑇𝑈𝐵, 𝑡2) = (1 + 𝑅2
𝑀𝐾𝑇 ×

𝜏(𝑡𝑆𝑇𝑈𝐵,𝑡2)

360
)

−1
=  

 

= (1 + 0.0503 ×
𝜏(13 March 2023,21 June 2023 )

360
)

−1
= (1 + 0.0503 ×

100

360
)

−1
= 0.98622    

 
The second step is to interpolate the zero rate or the discount factor 

between A and B, 𝐷𝐹(𝑡0, 𝑡𝑆𝑇𝑈𝐵). 
 
 

We know that 𝐷𝐹(𝑡0, 𝑡0) = 1 and 𝐷𝐹(𝑡0, 𝑡1) = 0.9881552,  
 

consequently the linear interpolated 𝐷𝐹(𝑡0, 𝑡𝑆𝑇𝑈𝐵) is: 
 
 

𝐷𝐹(𝑡0, 𝑡𝑆𝑇𝑈𝐵) = 1 +
0.9881552−1

𝜏(𝑡0,𝑡1)
𝜏(𝑡0, 𝑡𝑆𝑇𝑈𝐵) =  

 

                           = 1 +
0.9881552−1

90
⋅ 53 = 0.993025  

 

 
The third step is to estimate the discount factor between A and D, 

𝐷𝐹(𝑡0, 𝑡2). 
 

𝐷𝐹(𝑡0, 𝑡2) = 𝐷𝐹(𝑡0, 𝑡𝑆𝑇𝑈𝐵) × 𝐷𝐹(𝑡𝑆𝑇𝑈𝐵, 𝑡2) =  
 

                    = 0.993025 ⋅ 0.98622 = 0.97934    
 

The stripped zero rate between the spot date (𝑡0) and 𝑡2 is: 
 

𝑅(𝑡0, 𝑡2) =
365

𝜏(𝑠,𝑡2)
× ln (

1

𝐷𝐹(𝑠,𝑡𝑖)
) =

365

153
× ln (

1

0.97934
) = 4.98%  
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Given that the Futures are contiguous, we can work under the hypothesis that the start date of the following 
contracts matches the expiration date of the previous one. Thus, we are in this case: 
 
 

 

 
We compute the zero rate 𝑅(𝑠, 𝑡𝑖) with 𝑖 = 3, … ,7 using the standard procedure: 
 

1) Compute the discount factor from 𝑡𝑖−1 to 𝑡𝑖 𝐷𝐹(𝑡𝑖−1, 𝑡𝑖) = (1 + 𝑅𝑡𝑖

𝑀𝐾𝑇 ×
𝜏(𝑡𝑖−1,𝑡𝑖)

360
)

−1
 

 

2) Compute the discount factor from spot date to 𝑡𝑖  𝐷𝐹(𝑠, 𝑡𝑖) =
𝐷𝐹(𝑠, 𝑡𝑖−1) × 𝐷𝐹(𝑡𝑖−1, 𝑡𝑖). 
 

3) Compute the zero rate from discount factor 𝑅(𝑠, 𝑡𝑖) =
365

𝜏(𝑠,𝑡𝑖)
× ln (

1

𝐷𝐹(𝑠,𝑡𝑖)
) 

 

𝐷𝐹(𝑡2, 𝑡3) = (1 + 𝑅𝑡3

𝑀𝐾𝑇 ×
𝜏(𝑡2,𝑡3)

360
)

−1
=  

= (1 + 0.05095 ×
91

360
)

−1
= 0.98728  

 

𝐷𝐹(𝑠, 𝑡3) = 𝐷𝐹(𝑠, 𝑡2) × 𝐷𝐹(𝑡2, 𝑡3)  

= 0.97934 ⋅ 0.98728 = 0.96689  
 

𝑅(𝑠, 𝑡3) =
365

𝜏(𝑠,𝑡3)
× ln (

1

𝐷𝐹(𝑠,𝑡3)
) =

365

244
× ln (

1

0.96689
) = 5.037%  

 

𝐷𝐹(𝑡3, 𝑡4) = (1 + 𝑅𝑡4

𝑀𝐾𝑇 ×
𝜏(𝑡3,𝑡4)

360
)

−1
=  

= (1 + 0.04965 ×
91

360
)

−1
= 0.987605  
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𝐷𝐹(𝑠, 𝑡4) = 𝐷𝐹(𝑠, 𝑡3) × 𝐷𝐹(𝑡3, 𝑡4)  

= 0.96689 ⋅ 0.987606 = 0.95490  
 

𝑅(𝑠, 𝑡4) =
365

𝜏(𝑠,𝑡4)
× ln (

1

𝐷𝐹(𝑠,𝑡4)
) =

365

335
× ln (

1

0.9549
) = 5.028%  

 

𝐷𝐹(𝑡4, 𝑡5) = (1 + 𝑅𝑡5

𝑀𝐾𝑇 ×
𝜏(𝑡4,𝑡5)

360
)

−1
=  

= (1 + 0.046 ×
91

360
)

−1
= 0.98851  

 

𝐷𝐹(𝑠, 𝑡5) = 𝐷𝐹(𝑠, 𝑡4) × 𝐷𝐹(𝑡4, 𝑡5)  

= 0.95490 ⋅ 0.98851 = 0.94393  
 

𝑅(𝑠, 𝑡5) =
365

𝜏(𝑠,𝑡5)
× ln (

1

𝐷𝐹(𝑠,𝑡5)
) =

365

426
× ln (

1

0.94393
) = 4.944%  

 

𝐷𝐹(𝑡5, 𝑡6) = (1 + 𝑅𝑡6

𝑀𝐾𝑇 ×
𝜏(𝑡5,𝑡6)

360
)

−1
=  

= (1 + 0.0407 ×
91

360
)

−1
= 0.98982  

 

𝐷𝐹(𝑠, 𝑡6) = 𝐷𝐹(𝑠, 𝑡5) × 𝐷𝐹(𝑡5, 𝑡6)  

= 0.94393 ⋅ 0.98982 = 0.93432  
 

𝑅(𝑠, 𝑡6) =
365

𝜏(𝑠,𝑡6)
× ln (

1

𝐷𝐹(𝑠,𝑡6)
) =

365

517
× ln (

1

0.93432
) = 4.797%  

 

𝐷𝐹(𝑡6, 𝑡7) = (1 + 𝑅𝑡7

𝑀𝐾𝑇 ×
𝜏(𝑡6,𝑡7)

360
)

−1
=  

= (1 + 0.03605 ×
91

360
)

−1
= 0.99097  

 

𝐷𝐹(𝑠, 𝑡7) = 𝐷𝐹(𝑠, 𝑡6) × 𝐷𝐹(𝑡6, 𝑡7)  

= 0.93432 ⋅ 0.99097 = 0.92588  
 

𝑅(𝑠, 𝑡7) =
365

𝜏(𝑠,𝑡7)
× ln (

1

𝐷𝐹(𝑠,𝑡7)
) =

365

608
× ln (

1

0.92588
) = 4.623%  

 
Table IV.11 below summarizes the results obtained from the Short-Medium Curve stripping. 
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Time Maturity Instruments Par Rates Zero Rates Discount Factors 

t1 04/19/2023 Depo 4.79471% 4.8324% 0.988155 

t2 06/21/2023 Future 5.030% 4.9800% 0.97934 

t3 09/20/2023 Future 5.095% 5.0370% 0.96689 

t4 12/20/2023 Future 4.965% 5.0280% 0.9549 

t5 03/20/2024 Future 4.600% 4.9440% 0.94393 

t6 06/19/2024 Future 4.070% 4.7970% 0.93432 

t7 09/18/2024 Future 3.605% 4.6230% 0.92588 
 

Table IV.11 Short-Medium Term stripping 
 
Bootstrapping – Swap (Long-term Interest rates curve) 
 

A numerical optimization technique for finding zero rates is not needed for deposits and futures, as their zero 
rates are directly recovered using the previously discussed formulas. 
The most difficult part of the process is to bootstrap zero rates from market swap rates for IRS. Deposits and 
futures have one bullet payment at maturity, but IRS has in-between cash flows as well. For this reason, we 
have to program a series of goal-seeking routines for stripping the zero curve from Swap Par Rates. 
We illustrate this process through an example, considering the first swap that provides a par coupon of 
4.4671%. This means that a plain vanilla swap “fixed vs floating rate” is worth zero if we use 4.4671% as the 
fixed coupon rate. 
Given that only swaps with standard characteristics are used for stripping, the fixed leg has a semi-annual 
payment frequency with a Day Basis 30/360, while the floating leg has quarterly payments with a ACT/360 day 
basis. The features for a standard IRS might obviously depend on the underlying currency. 
Since the spot date for the curve is 19th January 2023, all the future dates of the swap must be computed 
accordingly. 
 

Bearing this in mind, we can only partially complete the NPV schedule for both legs of the swap. We assume 
we have a principal of USD 10 million as the basis for interest estimation. 
 
The NPV Schedule for the Fixed Leg of the 2-years swap is shown in the table below: 
 

Start Date End Date Notional Coupon Days 30/360 Cash Flow Zero Rate DF NPV 

01/19/2023 07/19/2023 10000000 4.4671% 180 0.5 223355 Z1 DF1 NPV1 

07/19/2023 01/19/2024 10000000 4.4671% 180 0.5 223355 Z2 DF2 NPV2 

01/19/2024 07/19/2024 10000000 4.4671% 180 0.5 223355 Z3 DF3 NPV3 

07/19/2024 01/21/2025 10000000 4.4671% 182 0.505556 225836.7 Z4 DF4 NPV4 
 

Table IV.12 NPV schedule for the fixed leg of 2-years swap. Step 1 
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The values of DFi can be computed starting from the continuous compounded zero rates, Zi, using exp(-Zi * 
Ti), where Ti is the year fraction between the End Date and the Spot Date (01/19/2023). The values of NPVi 
are the product between the CFi and the Dfi, while the NPV of the overall leg is the sum of each NPVi. 
 

Since Zi, with i=1,2,3 fall inside the range of time previously stripped, i.e., from 19th January 2023 to 18th 
September 2024, they can be directly interpolated from the known spot rates. In this case, Z4 is our unknown. 
Thus, we estimate Z1, Z2, Z3 and the other dependent results (DF and NPV) through a linear interpolation. 
 

Z1 = 4.9975% then DF1 = exp (-0.049975 * (07/19/2023-01/19/2023)/365) = 0.975522. 
 

NPV1 = CF1*DF1 = (100,000,000 * 0.044671 * 0.5) * 0.975522 = 217,887.8.  
 

Z2 = 5.0003% then DF2 = exp (-0.050003 * (01/19/2024-01/19/2023)/365) = 0.951226. 
 

NPV2 = CF2*DF2 = (100,000,000 * 0.044671 * 0.5) * 0.951226 = 212,461.2.  
 

Z3 = 4.7396% then DF3 = exp (-0.047396 * (07/19/2024-01/19/2023)/365) = 0.931434. 
 

NPV3 = CF3*DF3 = (100,000,000 * 0.044671 * 0.5) * 0.931434 = 208,040.5.   

 

Start Date End Date Notional Coupon 30/360 Cash Flow Zero Rate DF NPV 

01/19/2023 07/19/2023 10000000 4.4671% 0.5 223355 0.049975 0.975522 217887.8 

07/19/2023 01/19/2024 10000000 4.4671% 0.5 223355 0.050003 0.951226 212461.2 

01/19/2024 07/19/2024 10000000 4.4671% 0.5 223355 0.047396 0.931434 208040.5 

07/19/2024 01/21/2025 10000000 4.4671% 0.505556 225836.7 x f(x) f(x) 
 

Table IV.13 NPV schedule for the fixed leg of 2-years swap. Step 2 
 

We notice that DF4 and NPV4 depend only on the unknown variable Z4 (x), while the other terms are all 
known in this leg. The NPV Schedule for the Floating Leg of the 2-years swap is shown in the table below. 
Using the information known through the short-medium term stripping we can partially fill the cash-flow 
schedule of the floating leg. 
 

Start Date End Date Notional Days Days/360 Zero Rate DF Forward Cash Flow NPV 

01/19/2023 04/19/2023 10000000 90 0.25 Z1 DF1 FWD1 CF1 NPV1 

04/19/2023 07/19/2023 10000000 91 0.252778 Z2 DF2 FWD2 CF2 NPV2 

07/19/2023 10/19/2023 10000000 92 0.255556 Z3 DF3 FWD3 CF3 NPV3 

10/19/2023 01/19/2024 10000000 92 0.255556 Z4 DF4 FWD4 CF4 NPV4 

01/19/2024 04/19/2024 10000000 91 0.252778 Z5 DF5 FWD5 CF5 NPV5 

04/19/2024 07/19/2024 10000000 91 0.252778 Z6 DF6 FWD6 CF6 NPV6 

07/19/2024 10/21/2024 10000000 94 0.261111 Z7 DF7 FWD7 CF7 NPV7 

10/21/2024 01/21/2025 10000000 92 0.255556 Z8 DF8 FWD8 CF8 NPV8 
 

Table IV.14 NPV schedule for the floating leg of 2-years swap. Step 1 
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FWD1 is the fixing rate on the curve settlement date (17th January 2023) of the USD Libor, i.e., 4.79471% and 
we know exactly the correspondent zero rate, that is Z1=4.8324%. Discount factors (DF), Cash Flows (CF) 
and NPVs are estimated using the previous formulas. Regarding the Zero rates indexed with 2,3,…,6, their 
values can be interpolated from the known stripped zero rates as we have done in the fixed leg. 
 

Start Date End Date Notional Days/360 Zero Rate DF Forward Cash Flow NPV 

01/19/2023 04/19/2023 10000000 0.25 0.048324 0.988155 0.04795 119867.8 118447.9 

04/19/2023 07/19/2023 10000000 0.252778 0.049975 0.975522 FWD2 CF2 NPV2 

07/19/2023 10/19/2023 10000000 0.255556 0.050341 0.963047 FWD3 CF3 NPV3 

10/19/2023 01/19/2024 10000000 0.255556 0.050003 0.951226 FWD4 CF4 NPV4 

01/19/2024 04/19/2024 10000000 0.252778 0.048955 0.940672 FWD5 CF5 NPV5 

04/19/2024 07/19/2024 10000000 0.252778 0.047396 0.931434 FWD6 CF6 NPV6 

07/19/2024 10/21/2024 10000000 0.261111 Z7 DF7 FWD7 CF7 NPV7 

10/21/2024 01/21/2025 10000000 0.255556 Z8 DF8 FWD8 CF8 NPV8 
 

Table IV.15 NPV schedule for the floating leg of 2-years swap. Step 2 
 

The implied forward rates (FWDi, i=2,...,8) can be estimated using: 𝐹𝑊𝐷𝑖 =
1

𝜏𝑖
(

𝐷𝐹𝜏𝑖−1

𝐷𝐹𝜏𝑖

− 1). 

For instance, for i=2: 𝐹𝑊𝐷2 =
1

0.252778
(

0.975522

0.988155
− 1) = 5.123%. 

 

We can consequently compute Cash flows and NPVs up to i =7. 
 

Start Date End Date Notional Days/360 Zero Rate DF Forward Cash Flow NPV 

01/19/2023 04/19/2023 10000000 0.25 0.048324 0.988155 0.04795 119867.8 118447.9 

04/19/2023 07/19/2023 10000000 0.252778 0.049975 0.975522 0.05123 129499.4 126329.6 

07/19/2023 10/19/2023 10000000 0.255556 0.050341 0.963047 0.05069 129534.1 124747.5 

10/19/2023 01/19/2024 10000000 0.255556 0.050003 0.951226 0.04863 124271.1 118209.9 

01/19/2024 04/19/2024 10000000 0.252778 0.048955 0.940672 0.04439 112201 105544.4 

04/19/2024 07/19/2024 10000000 0.252778 0.047396 0.931434 0.03924 99177.93 92377.7 

07/19/2024 10/21/2024 10000000 0.261111 Z7 DF7 FWD7 CF7 NPV7 

10/21/2024 01/21/2025 10000000 0.255556 Z8 DF8 FWD8 CF8 NPV8 
 

Table IV.16 NPV schedule for the floating leg of 2-years swap. Step 3 
 

The objective now is to express all the remaining variables in function of the zero rate Z8, which is the spot 
rate that we are seeking. 
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We call this spot rate “x”, and we show the way in which we can express the relationships. Z7 can be estimated 
using a linear relationship between the previous known spot rate (4.7396%) and the unknown x:  
 

z(x)=4.7396%+((x-4.7396%)/(01/21/2025-07/19/2024))*(10/21/2024-07/19/2024).  
 

DF7 = exp (-z(x)*(10/21/2024-01/19/2023)/365). 
 

FWD7 = 1/0.26111 * (0.931434/DF7-1); CF7 = 10,000,000*FWD7*0.26111; NPV7 = CF7*DF7. 
 

The same relationships can be found for i=8.  
 

DF8 = exp (-x*(21/01/2025-19/01/2023)/365). 
 

FWD8 = 1/0.25556 * (DF7/DF8-1); CF8 = 10,000,000*FWD8*0.25556; NPV8 = CF8*DF8. 
 

Both the Fixed leg and the Floating leg can be expressed in function of the only unknown, that is the zero rate 
with maturity 01/21/2025. 
 

Start Date End Date Notional Days/360 Zero Rate DF Forward Cash Flow NPV 

01/19/2023 04/19/2023 10000000 0.25 0.048324 0.988155 0.04795 119867.8 118447.9 

04/19/2023 07/19/2023 10000000 0.252778 0.049975 0.975522 0.05123 129499.4 126329.6 

07/19/2023 10/19/2023 10000000 0.255556 0.050341 0.963047 0.05069 129534.1 124747.5 

10/19/2023 01/19/2024 10000000 0.255556 0.050003 0.951226 0.04863 124271.1 118209.9 

01/19/2024 04/19/2024 10000000 0.252778 0.048955 0.940672 0.04439 112201 105544.4 

04/19/2024 07/19/2024 10000000 0.252778 0.047396 0.931434 0.03924 99177.93 92377.7 

07/19/2024 10/21/2024 10000000 0.261111 f(x) f(x) f(x) f(x) f(x) 

10/21/2024 01/21/2025 10000000 0.255556 x f(x) f(x) f(x) f(x) 
 

Table IV.17 NPV schedule for the floating leg of 2-years swap. Step 4 
 

This allows to design a goal seeking that has the objective to set the NPV of the swap (i.e. the difference of the 
two discounted legs) equal to zero, as the unknown x varies. Let us remember that the rate of the fixed leg is 
the so-called equilibrium coupon of the swap, i.e. the rate for which the swap NPV is zero. 
 

Start Date End Date Coupon Days 30/360 Cash Flow Zero Rate DF NPV 

01/19/2023 07/19/2023 4.4671% 180 0.5 223355 0.049975 0.975522 217887.8 

07/19/2023 01/19/2024 4.4671% 180 0.5 223355 0.050003 0.951226 212461.2 

01/19/2024 07/19/2024 4.4671% 180 0.5 223355 0.047396 0.931434 208040.5 

07/19/2024 01/21/2025 4.4671% 182 0.505556 225836.7 0.043969 0.915486 206750.4 
 

Table IV.18 NPV schedule for the fixed leg of 2-years swap. Step 5 
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Start Date End Date Days/360 Zero Rate DF Forward Cash Flow NPV 

01/19/2023 04/19/2023 0.25 0.048324 0.988155 0.04795 119867.8 118447.9 

04/19/2023 07/19/2023 0.252778 0.049975 0.975522 0.05123 129499.4 126329.6 

07/19/2023 10/19/2023 0.255556 0.050341 0.963047 0.05069 129534.1 124747.5 

10/19/2023 01/19/2024 0.255556 0.050003 0.951226 0.04863 124271.1 118209.9 

01/19/2024 04/19/2024 0.252778 0.048955 0.940672 0.04439 112201 105544.4 

04/19/2024 07/19/2024 0.252778 0.047396 0.931434 0.03924 99177.93 92377.7 

07/19/2024 10/21/2024 0.261111 0.045664 0.922937 0.03526 92067.93 84972.9 

10/21/2024 01/21/2025 0.255556 0.043969 0.915486 0.03185 81388.32 74509.9 
 

Table IV.19 NPV schedule for the floating leg of 2-years swap. Step 6 
 

Setting x = 0.043969, we reach a Swap NPV = 0. As a result, 𝑅(𝑠, 𝑡8) = 4.397%. A similar procedure must 
be adopted for solving all the other zero rates that coming from swap rates. We show the strip for the spot 
rates up to the 4 year swap. All the stripped rates are very close to those estimated by the SWDF Bloomberg® 
module (the difference is less than 1 basis point). 
 
The table below displays the NPV schedule for the Fixed Leg of the 3-years swap: 
 

Start Date End Date Coupon Days Days/360 Cash Flow Zero Rate DF NPV 

01/19/2023 07/19/2023 4.0218% 180 0.5 201090 0.049975 0.975522 196167.8 

07/19/2023 01/19/2024 4.0218% 180 0.5 201090 0.050003 0.951226 191282.1 

01/19/2024 07/19/2024 4.0218% 180 0.5 201090 0.047396 0.931434 187302.1 

07/19/2024 01/21/2025 4.0218% 182 0.505556 203324.3 0.04397 0.915485 186140.4 

01/21/2025 07/21/2025 4.0218% 180 0.5 201090 0.041757 0.900717 181125.2 

07/21/2025 01/21/2026 4.0218% 179 0.497222 199972.8 0.039507 0.88804 177853.8 
 

Table IV.20 NPV schedule for the fixed leg of 3-years swap. 
 

The NPV Fixed Leg is 1,119,601.41, the Equilibrium Coupon, i.e. the par rate is 𝑅𝑡9

𝑀𝐾𝑇 = 4.0218% and the 

zero rate, 𝑅(𝑠, 𝑡9) = 3.9507%. For interpolating the zero rate with maturity 21st July 2025, 𝑅(𝑠, 𝑡8) and 

𝑅(𝑠, 𝑡9) have been used. In the same way, we can continue to solve a 1-dimensional goal seeking problem. 
 

The table below shows the NPV Schedule for the Floating Leg of the 3-years swap. Given that we use the par 

rate for the fixed leg, after solving for the unknown 𝑅(𝑠, 𝑡9), we obtain the same NPV for the floating leg, that 
is 1,119,601.41. 
The strip of zero rates that mature on 04/22/2025, 07/21/2025 and 10/20/2025 must be linearly interpolated 

starting from 𝑅(𝑠, 𝑡8) and 𝑅(𝑠, 𝑡9). 
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Start Date End Date Forward Days Days/360 Cash Flow Zero Rate DF NPV 

01/19/2023 04/19/2023 0.047947 90 0.25 119867.8 0.048324 0.988155 118447.9407 

04/19/2023 07/19/2023 0.051231 91 0.252778 129499.4 0.049975 0.975522 126329.5524 

07/19/2023 10/19/2023 0.050687 92 0.255556 129534.1 0.050341 0.963047 124747.5084 

10/19/2023 01/19/2024 0.048628 92 0.255556 124271.1 0.050003 0.951226 118209.9795 

01/19/2024 04/19/2024 0.044387 91 0.252778 112201 0.048955 0.940672 105544.3572 

04/19/2024 07/19/2024 0.039235 91 0.252778 99177.93 0.047396 0.931434 92377.72239 

07/19/2024 10/21/2024 0.035049 94 0.261111 91516.7 0.045633 0.922987 84468.76604 

10/21/2024 01/21/2025 0.032068 92 0.255556 81951.13 0.043970 0.915485 75025.0259 

01/21/2025 04/22/2025 0.033545 91 0.252778 84795.1 0.042854 0.907787 76975.91777 

04/22/2025 07/21/2025 0.031337 90 0.25 78343.4 0.041751 0.900731 70566.30477 

07/21/2025 10/20/2025 0.029133 91 0.252778 73642.63 0.040635 0.894146 65847.25679 

10/20/2025 01/20/2026 0.026906 92 0.255556 68759.39 0.039507 0.88804 61061.07604 
 

Table IV.21 NPV schedule for the floating leg of 3-years swap. 
 

The below table displays the NPV Schedule for the Fixed Leg of the 4-years swap: 
 

Start Date End Date Coupon Days Days/360 Cash Flow Zero Rate DF NPV 

01/19/2023 07/19/2023 3.7884% 180 0.5 189420 0.049975 0.975522 184783.4239 

07/19/2023 01/19/2024 3.7884% 180 0.5 189420 0.050003 0.951226 180181.3232 

01/19/2024 07/19/2024 3.7884% 180 0.5 189420 0.047396 0.931434 176432.2832 

07/19/2024 01/21/2025 3.7884% 182 0.505556 191524.7 0.04397 0.915485 175337.9423 

01/21/2025 07/21/2025 3.7884% 180 0.5 189420 0.041751 0.90073 170616.2778 

07/21/2025 01/20/2026 3.7884% 179 0.497222 188367.7 0.039508 0.888038 167277.6898 

01/20/2026 07/20/2026 3.7884% 180 0.5 189420 0.038348 0.874355 165620.3234 

07/20/2026 01/19/2027 3.7884% 179 0.497222 188367.7 0.037174 0.861743 162324.4487 
 

Table IV.22 NPV schedule for the fixed leg of 4-years swap. 
 

The NPV Fixed Leg is 1,382,573.71, the Equilibrium Coupon, i.e. the par rate is 𝑅𝑡10

𝑀𝐾𝑇 = 3.7884% and the 

zero rate, is 𝑅(𝑠, 𝑡10) = 3.717%. 

The zero rate with maturity 20th July 2026 has been interpolated using 𝑅(𝑠, 𝑡9) and 𝑅(𝑠, 𝑡10). In the same way, 
we can continue to have only one unknown for our goal seeking problem. The following table shows the NPV 
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Schedule for the 4-years Floating Swap Leg and for the 5-years Swap Fixed Leg:  
 

Start Date End Date Forward Days Days/360 Cash Flow Zero Rate DF NPV 

01/19/2023 04/19/2023 0.047947 90 0.25 119867.8 0.048324 0.988155 118447.9407 

04/19/2023 07/19/2023 0.051231 91 0.252778 129499.4 0.049975 0.975522 126329.5524 

07/19/2023 10/19/2023 0.050687 92 0.255556 129534.1 0.050341 0963047 124747.5084 

10/19/2023 01/19/2024 0.048628 92 0.255556 124271.1 0.050003 0.951226 118209.9795 

01/19/2024 04/19/2024 0.044387 91 0.252778 112201 0.048955 0.940672 105544.3572 

04/19/2024 07/19/2024 0.039235 91 0.252778 99177.93 0.047396 0.931434 92377.72239 

07/19/2024 10/21/2024 0.035049 94 0.261111 91516.7 0.045633 0.922987 84468.76604 

10/21/2024 01/21/2025 0.032068 92 0.255556 81951.13 0.043970 0.915485 75025.0259 

01/21/2025 04/22/2025 0.033547 91 0.252778 84798.56 0.042855 0.907787 76979.03207 

04/22/2025 07/21/2025 0.031339 90 0.25 78347.57 0.041751 0.90073 70570.008 

07/21/2025 10/20/2025 0.029135 91 0.252778 73647.6 0.040636 0.894145 65851.62206 

10/20/2025 01/20/2026 0.026908 92 0.255556 68765.19 0.039508 0.888038 61066.11685 

01/20/2026 04/20/2026 0.031585 90 0.25 78961.46 0.038931 0.881081 69571.44619 

04/20/2026 07/20/2026 0.030432 91 0.252778 76926.35 0.038348 0.874355 67260.93722 

07/20/2026 10/19/2026 0.029273 91 0.252778 73995.14 0.037764 0.867933 64222.80075 

10/19/2026 01/19/2027 0.028108 92 0.255556 71832.23 0.037174 0.861743 61900.89659 
 

 

Start Date End Date Coupon Days Days/360 Cash Flow Zero Rate DF NPV 

01/19/2023 07/19/2023 3.65935% 180 0.5 182967.5 0.049975 0.975522 178488.8666 

07/19/2023 01/19/2024 3.65935% 180 0.5 182967.5 0.050003 0.951226 174043.5342 

01/19/2024 07/19/2024 3.65935% 180 0.5 182967.5 0.047396 0.931434 170422.2034 

07/19/2024 01/21/2025 3.65935% 182 0.505556 185000.5 0.04397 0.915485 169365.1408 

01/21/2025 07/21/2025 3.65935% 180 0.5 182967.5 0.041751 0.90073 164804.3175 

07/21/2025 01/20/2026 3.65935% 179 0.497222 181951 0.039508 0.888038 161579.4568 

01/20/2026 07/20/2026 3.65935% 180 0.5 182967.5 0.038347 0.874355 159978.6019 

07/20/2026 01/19/2027 3.65935% 179 0.497222 181951 0.037174 0.861743 156795.0674 

01/19/2027 07/19/2027 3.65935% 180 0.5 182967.5 0.036538 0.848426 155234.4358 

07/19/2027 01/19/2028 3.65935% 180 0.5 182967.5 0.035892 0.835639 152894.8426 
 

Table IV.23 NPV schedule for the floating leg of 4-years swap and for the fixed leg of 5-years swap 
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The NPV Fixed Leg is 1,643,606.47, the Equilibrium Coupon, i.e. the par rate is 𝑅𝑡11

𝑀𝐾𝑇 = 3.65935% and the 

zero rate is 𝑅(𝑠, 𝑡11) = 3.5892%. In this case, the zero rate with maturity 19th July 2027 has been interpolated 

using 𝑅(𝑠, 𝑡10) and 𝑅(𝑠, 𝑡11), and the goal attainment problem continues to be mono-dimensional. 
 

Start Date End Date Forward Days Days/360 Cash Flow Zero Rate DF NPV 

01/19/2023 04/19/2023 0.047947 90 0.25 119867.8 0.048324 0.988155 118447.9407 

04/19/2023 07/19/2023 0.051231 91 0.252778 129499.4 0.049975 0.975522 126329.5524 

07/19/2023 10/10/2023 0.050687 92 0.255556 129534.1 0.050341 0.963047 124747.5084 

10/19/2023 01/19/2024 0.048628 92 0.255556 124271.1 0.050003 0.951226 118209.9795 

01/19/2024 04/19/2024 0.044387 91 0.252778 112201 0.048955 0.940672 105544.3572 

04/19/2024 07/19/2024 0.039235 91 0.252778 99177.93 0.047396 0.931434 92377.72239 

07/19/2024 10/21/2024 0.035049 94 0.261111 91516.7 0.045633 0.922987 84468.76604 

10/21/2024 01/21/2025 0.032068 92 0.255556 81951.13 0.043970 0.915485 75025.0259 

01/21/2025 04/22/2025 0.033547 91 0.252778 84798.56 0.042855 0.907787 76979.03207 

04/22/2025 07/21/2025 0.031339 90 0.25 78347.57 0.041751 0.90073 70570.008 

07/21/2025 10/20/2025 0.029135 91 0.252778 73647.6 0.040636 0.894145 65851.62206 

10/20/2025 01/20/2026 0.026908 92 0.255556 68765.19 0.039508 0.888038 61066.11685 

01/20/2026 04/20/2026 0.031584 90 0.25 78959.87 0.038931 0.881081 69570.06171 

04/20/2026 07/20/2026 0.030432 91 0.252778 76924.5 0.038347 0.874355 67259.34132 

07/20/2026 10/19/2026 0.029272 91 0.252778 73993.04 0.037764 0.867933 64221.01159 

10/19/2026 01/19/2027 0.028107 92 0.255556 71829.85 0.037174 0.861743 61898.89483 

01/19/2027 04/19/2027 0.031414 90 0.25 78535.85 0.036858 0.855028 67150.37024 

04/19/2027 07/19/2027 0.030784 91 0.252778 77814.45 0.036538 0.848426 66019.82185 

07/19/2027 10/19/2027 0.030146 92 0.255556 77040.15 0.036215 0.84194 64863.18105 

10/19/2027 01/19/2028 0.029504 92 0.255556 75398.74 0.03589 0.835639 63006.15294 
 

Table IV.24 NPV schedule for the floating leg of 5-years swap 
 

A script can be quite helpful to iteratively solve the computation of the zero rates implied by a swap curve. 
 

Time Maturity Market rate Instruments Zero rates Discount Factors 

t8 01/21/2025 4.4671% Swap 4.3970% 0.915486 

t9 01/20/2026 4.0218% Swap 3.9508% 0.887943 

t10 01/19/2027 3.7884% Swap 3.7174% 0.861743 

t11 01/19/2028 3.6594% Swap 3.5892% 0.835639 
 

Table IV.25 Long Term stripping 
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PART V: CREDIT DERIVATIVES 
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V.1 CREDIT DEFAULT SWAP 
 
 

A credit derivative is a financial contract whose pay-off is linked to the creditworthiness of one or more 
companies or states. Such instruments may be used for hedging, trading or as a means of investing in 
government/corporate credit. They help isolate credit risk and allow for its efficient transfer between market 
participants. In fact, the quick rise of credit derivatives constituted one of the most interesting market 
developments that marked the end of the 1990s. According to statistics from the International Swaps and 
Derivatives Association (ISDA), the notional of credit-related contracts in 2008 was about 54.6 trillion dollars, 
ten times as much as those present on the market at the beginning of 2001. Among the many types of credit 
derivatives, Credit Default Swaps (or CDS) on a single issuer are the most common. 
 

A credit default swap is essentially a bilateral agreement in which one counterparty (protection buyer) pays a 
periodic premium to another counterparty (protection seller) to buy protection against losses arising from the 
default of the issuer of a security (reference bond) for a defined period of time. The Credit Default Swap acts 
as an insurance on a debt security: an investor who wants to cover the risk of insolvency generated by the 
issuer of the security in his portfolio (typically bankruptcy and debt restructuring) pays an insurance premium 
to a counterparty that intervenes only if the default event occurs. The premium paid by the protection buyer is 
often called spread, and it is quoted in basis points per annum and generally paid quarterly. 
 

As an example, let us assume a trader holds a bond issued by company XYZ, and a 5-years CDS for company 
XYZ is quoted at 160 bps p.a. on January 10, 2018. This means that if he wanted to buy protection on the 
potential default of company XYZ for an exposure equal to USD 10 million, the trader would have to pay 40 
basis points (or 0.40%) of 10,000,000 i.e., USD 40,000 each quarter as an insurance premium for the protection 
he receives. If the credit event does not occur for the insured period, the protection seller will not make any 
payment on the CDS. On the other hand, if the credit event does occur, the protection buyer stops paying the 
premium to the counterparty: it is sufficient that he pays the accrued premium up to the day of the credit event. 
This allows both counterparties to close out their respective positions immediately after the credit event has 
occurred, eliminating any administrative costs that might have arisen. 
 

Although the most common and standardized CDS provide for quarterly payments, some swap contracts may 
provide for up-front payments. The mechanics of the derivative is outlined below. 
 
 

 
 

Figure V.1 CDS – Before the potential credit event 
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Figure V.2 CDS – After the credit event, Physical settlement 
 

 
 

Figure V.3 CDS – After the credit event, Cash settlement 
 

From a market-instruments perspective, an analyst can identify different types of CDS contracts: 
 

- CDS: instrument that indicates that the protected underlying are senior unsecured bonds issued by corporates 
or government entities. 
 

- LCDS: Loan-only CDS are contracts where protection is bought/sold on syndicated secured leveraged loans. 
They are characterized by higher recovery rates than standard CDS. 
 

- MCDS: the protected entity is a municipality, so the reference security is a municipal bond. 
 

- ABCDS: Asset Backed Security CDS. 
 

From an economic perspective, all CDS are very similar to buying credit event insurance. These contracts can 
therefore also be considered closer to options than to swaps. The protection buyer essentially has the right to 
sell his bond at par if the credit event materializes, but the premium paid is not upfront. The precise definition 
of the credit event, the contractual duties, and the settlement mechanisms are negotiated between the 
counterparties and legally formalized upon inception of the “insurance” contract. To facilitate transactions, 
most of the CDS contracts are standardized by the ISDA, and the most common credit events, also called 
trigger events, have been classified. These are the most important: 
 

Bankruptcy: it is the inability of a company to repay its debt. This serious insolvency must be formalized in a 
written and official form. 
 

Failure to pay: this event occurs when the reference entity, after a certain grace period, fails to pay the principal 
and any interest due. Typically, a threshold amount is defined, and if the accumulation of debt exceeds this 
threshold, the institution enters this state. 
 

Debt restructuring: this event occurs when the debt conditions are changed due to contingent difficulties. 
ISDA provides four options for dealing with the problem of correctly defining the debt restructuring from a 
contractual point of view: 
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No Restructuring: this option excludes the case of debt redefinition from the contract. In this way, the 
possibility for the protection seller of having to pay the buyer for a credit event less than the declared default 
is eliminated. 
 

Full Restructuring: this option allows the protection buyer to deliver bonds of any maturity after the debt 
restructuring, whatever its form. 
 

Modified Restructuring: once the debt restructuring has occurred, this option allows the protection buyer to 
deliver bonds with a maturity of less than 30 months. This form of insurance has become the most common 
standard in North America. 
 

Modified Modified Restructuring: once the debt restructuring has occurred, this option allows the protection 
buyer to deliver bonds with a maturity of less than 60 months. 
 

The first step undertaken when the credit event occurs is the official communication between the counterparties 
of the contract (Credit Event Notice). This formal communication details the reasons why the trigger event 
is proven to have occurred. Once this notice has been accepted by both counterparties, the contract enters its 
settlement phase. 
The amount must be paid by the protection seller to the protection buyer by way of physical settlement or cash 
settlement, as specified in the contract. 
The physical settlement is the market standard. Following the occurrence of the credit event, it provides that 
the protection buyer delivers the reference security to the protection seller in exchange for the notional amount 
of the bond, paid in cash. On the other hand, cash settlement only involves the exchange of cash flows. This 
last feature allows traders to take short credit positions. 
 

Let us examine a practical example, considering a trader who has a USD 10 million bond which yields 5%. The 
issuer of this fixed income instrument is an automotive company. The creditworthiness of the issuer is 
deteriorating and this leads the trader to buy a 3-years CDS. 
The spread at the time of stipulation is quoted on the market at 150 bps. If the firm does not go bankrupt, the 
protection buyer pays the protection seller USD 10,000,000 x 0.015 x 0.25 = USD 37,500 quarterly. 
 

 
 

Figure V.4 No default – CDS cash flows from the protection seller perspective 
 

In the event of default, the premium that the protection buyer must pay to the seller matures until the date on 
which the credit event occurs, while the protection seller must pay the notional amount of the security. Let us 
suppose the recovery rate is 40%. 
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In the event of default and assuming a cash settlement, the protection seller will have to pay (1-0.40) x 
10,000,000 = USD 6,000,000 to the trader and will receive from him the premium accrued up to the default 
date. Under physical settlement, the trader would deliver USD 4,000,000 and receive USD 10,000,000. 

 

 
 

Figure V.5 Default at t – CDS cash flow from the protection seller perspective 

 

 
 

Figure V.6 CDS description. Source: Bloomberg® 
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Figure V.7 CDS market quotes. Source: Bloomberg® 

We now consider a portfolio that consists of a corporate bond maturing in five years with a yield (par yield) 
of 5%, and a long position in a 5-year CDS that costs 250 bps per year. This portfolio is approximately 
equivalent to a long position in a risk-free instrument paying 2.5% per annum.  

The effect of the CDS is to “transform” a corporate bond into a risk-free bond. Indeed, if the issuer of the 
bond does not go bankrupt, the investor earns 2.5% per year (5%-2.5%=2.5%). If the debt issuer goes bankrupt, 
on the other hand, the investor would earn 2.5% until default and would obtain the full initial notional back 
thanks to the CDS. This amount can then be re-invested at the risk-free rate for the time between the credit 
event and the maturity. 

Theoretically, the CDS spread, 𝑠, over 𝑛 years should be very close to the excess yield between a corporate 

bond over 𝑛 years (𝑦) and a risk-free bond of the same maturity (𝑟). 

In mathematical terms: 𝑠 = 𝑦 − 𝑟. 

If this were not the case, arbitrage opportunities would arise. It should be noted though that the above 
relationship is of an approximate nature for various reasons, among which: 

- Market participants are not always allowed to go short on corporate bonds. 

- CDS have a default risk of the counterparty selling protection. 
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- For tax or liquidity reasons, an investor could be not indifferent to buying a risk-free security rather than a 
corporate bond and a CDS. 

- Arbitrage assumes that interest rates are constant over time. 

Another interesting point is to define the risk-free interest rate to be used in the formula. In fact, bond traders 
usually derive the risk-free zero-rate curve from government bond yields, while derivative traders usually use 
the LIBOR zero curve. 

The purpose of the valuation of a CDS is to obtain an equilibrium premium paid on a regular basis by the 
protection buyer towards the protection seller which equals the value of the two legs of the swap (premium leg 
and contingent leg). 

To achieve this objective we need: 

a) The probability of default estimation of the counterparty that issued the security. 

b) An assumption on the recovery rate. 

c) A financial model based on discounted cash flows. 

Regarding point a), the analyst receives this data from the credit risk management office (see the part of the 
Notes dedicated to Credit Risk). This figure is provided via a term structure if the company is publicly traded. 
If such detailed market information is not available, the one-year probability of default is provided and 
prospective values are generated from it.  

If we call the one-year default probability 𝑝𝐷, we obtain the term structures (unconditional default and survival 
probabilities) shown in the table below: 

 

Time (year) Default Probability Survival Probability 

1 𝑝𝐷 1 − 𝑝𝐷 

2 𝑝𝐷(1 − 𝑝𝐷)
1 (1 − 𝑝𝐷)

2 

3 𝑝𝐷(1 − 𝑝𝐷)
2 (1 − 𝑝𝐷)

3 

4 𝑝𝐷(1 − 𝑝𝐷)
3 (1 − 𝑝𝐷)

4 

5 𝑝𝐷(1 − 𝑝𝐷)
4 (1 − 𝑝𝐷)

5 

Table V.1 Default and Survival probability 

For instance, for 𝑝𝐷 = 2%, the table becomes: 
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Time (year) Default Probability Survival Probability 

1 0.02 0.98 

2 0.0196 0.9604 

3 0.019208 0.941192 

4 0.01882384 0.92236816 

5 0.018447363 0.903920797 

Table V.2 Default and Survival probability: example 

As regards point b), the recovery rate is established on the date of signing the CDS contract. It is usually set 

equal to 40%, 𝑅 = 0.4.  

Point c) concerns a model based on discounted cash flows. We assume a continuously compounded risk-free 

rate (LIBOR) of 1% and we calculate the discount factors based on the formula: 𝐷𝐹(𝑡) = exp(−𝑟 ⋅ 𝑡). 

 

Time (year) Risk Free rate Discount Factors 

0.5 0.01 0.995012479 

1 0.01 0.990049834 

1.5 0.01 0.98511194 

2 0.01 0.980198673 

2.5 0.01 0.975309912 

3 0.01 0.970445534 

3.5 0.01 0.965605416 

4 0.01 0.960789439 

4.5 0.01 0.955997482 

5 0.01 0.951229425 

Table V.3 CDS Theoretical pricing: risk free rates and discount factors 

We now have all the relevant information to calculate the CDS spread, 𝑠. The present value of the payments 
expected from the protection seller are summarized in the table: 
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Time Survival Prob. Expected Payment Discount Factors PV (Expected Payment) 

1 0.98 0.98 x s 0.990049834 0.970248837074185 x s 

2 0.9604 0.9604 x s 0.980198673 0.941382805843808 x s 

3 0.941192 0.941192 x s 0.970445534 0.913375572611587 x s 

4 0.92236816 0.92236816 x s 0.960789439 0.88620158713836 x s 

5 0.903920797 0.9039207968 x s 0.951229425 0.859836059334291 x s 

   
Total 4.57104486200223 x s 

Table V.4 CDS Theoretical pricing Expected Payments. Step 1 

The table shows the calculation of the discounted value of payments made on the CDS at rate 𝑠 on a symbolic 

notional of USD 1. For example, there is a 92.237% chance that the fourth payment of 𝑠 will be made. The 

expected payment is therefore (probability x payment) = 0.92237 x 𝑠 and its present value is: 

0.92237 x s x DF (4) = 0.92237 x s x 0.96078 = 0.8862 x s. 

We assume a recovery rate equal to 40%, 𝑅 = 0.4 and that the issuer of the security defaults in the middle of 
the considered time interval (every 6 months). In this case, the expected present values of the pay-offs are 
summarized in the following table: 

 

Time Default Prob. Rec. Rate Expected Payoff Discount Factors PV (Expected Payment) 

0.5 0.02 0.4 0.012 0.995012479 0.01194015 

1.5 0.0196 0.4 0.01176 0.98511194 0.011584916 

2.5 0.019208 0.4 0.0115248 0.975309912 0.011240252 

3.5 0.01882384 0.4 0.011294304 0.965605416 0.010905841 

4.5 0.018447363 0.4 0.011068418 0.955997482 0.01058138 

    
Total 0.056252539 

Table V.5 CDS Theoretical pricing Expected Payments. Step 2 
 

For example, there is a probability of default of 1.88% on the fourth year. Given a 40% recovery rate, the 
expected payoff at this time is 0.0188 x (1-0.4) x USD 1 = USD 0.0113. 

The present value of the expected pay-off is equal to 0.0113 x DF (3.5) = 0.0113 x 0.9656 = USD 0.01091. 
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The total value of all discounted expected payoffs is USD 0.05625. 

The last step is to estimate the accrued premium of payments in the event of default. As shown in the table, 
for example, there is a 1.882% probability that there will be a six-month accrued premium payment in the 
middle of the third year. 

The accrued premium is equal to 0.5 x s. 

The expected value of the payment at this time is 0.01882 x 0.5 x s = 0.00941 x s. Its present value is 0.00941 
x s x DF (3.5) = USD 0.009088. 

The present value of the sum of all cash flows is 0.046877 x s. 

 

Time Default Prob. Expected Accrual Payments Discount Factors PV (Expected Accrual Payment) 

0.5 0.02 0.01 x s 0.995012479 0.00995012479192682 x s 

1.5 0.0196 0.0098 x s 0.98511194 0.00965409700811001 x s 

2.5 0.019208 0.009604 x s 0.975309912 0.00936687639512011 x s 

3.5 0.01882384 0.00941192 x s 0.965605416 0.00908820092938291 x s 

4.5 0.018447363 0.0092236816 x s 0.955997482 0.0088178163828303 x s 

 
Total 0.0468771155073701 x s 

 

Table V.6 CDS Theoretical pricing Expected Payments. Step 3 
 

The discounted value of all expected cash flows for the CDS is therefore equal to: 

4.571 x s + 0.0469 x s = 4.6179 x s 

The discounted value of the expected payoff is equal to USD 0.05625, as seen above. The value of the 
equilibrium CDS spread is therefore: 

4.6179 x s = 0.05625  s=0.05625/4.6179=0.01218 thus  s=121.8 bps. 

It should be noted that the proposed example is simplified: in a real market context, payments take place more 
frequently than annually (typically quarterly) and the default can occur at any time and not only in the middle 
of the period. 
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Figure V.8 CDSW (Credit Default Swap Valuation) module. Source: Bloomberg® 
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PART VI: INFLATION DERIVATIVES 
 
 

Chapter 1 – Inflation indexed swaps 
 
Zero-Coupon Inflation-Indexed Swap (ZCIIS)  
Year-on-Year Inflation-Indexed Swap (YYIIS) 
CPI simulation 
Historical and normalized seasonality 
Daily and monthly CPI interpolation 
Exotic IIS: “BTP Italia” case study
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VI.1 INFLATION INDEXED SWAPS 
 
 

An Inflation-Indexed Swap (IIS) is a swap deal in which, for each future payment date,  𝑇1, … , 𝑇𝑀, counterparty 
A pays the inflation rate of the relevant period to counterparty B, while counterparty B pays a fixed rate to 
counterparty A (or a floating rate typically indexed to EURIBOR plus a spread). The inflation rate is calculated 
as the percentage return of the CPI (Consumer Performance Index) over the reference time frame. So, like any 
swap, this one is also composed of two legs, of which the non-inflation-indexed one is valued using the 
traditional formulas used for IRS (Interest Rate Swap) legs. 
Therefore, in this section we will only focus on the pricing of the exotic leg indexed to the CPI. The valuation 
of the instrument will then be given by the algebraic sum of the prospective discounted cash flows generated 
by the two legs. 
Generally, there are two main types of IIS: the Zero-Coupon Inflation-Indexed Swap (ZCIIS) and the Year-
on-Year Inflation-Indexed Swap (YYIIS). 

In a ZCIIS on the maturity date 𝑇𝑀, counterparty A pays a variable amount to counterparty B equal to: 
 

𝐶𝐹𝑀 = 𝑁 [
𝐼(𝑇𝑀)

𝐼0
− 1]  (Eq. VI.1) 

 

Where 𝐼0 is the baseline CPI and  𝐼(𝑇𝑀),  or written in short form  𝐼𝑀, is the CPI value at time  𝑇𝑀. 
Let us note that an inflation bond, which can form a leg of an IIS, can be modeled as a portfolio of inflation 
Zero Coupons, similarly as a bullet bond can be represented as a portfolio of Zero Coupon Bonds. 
Eq. VI.1 can therefore be rewritten to determine a cash flow of an inflation coupon bearing bond characterized 

by a generic range 𝑇𝑖: 
 

𝐶𝐹𝑖 = 𝑁𝑖  ⋅
𝐼(𝑇𝑖)

𝐼0
⋅ 𝐶𝑖 ⋅ 𝜑𝑖 (Eq. VI.2) 

 

𝜑𝑖   is the year fraction calculated according to the stipulated day base between the previous payment date (𝑇𝑖−1) 

and the next one (𝑇𝑖). If no cash flow exchanges have occurred yet, the start date is considered, or in any case, 
what is specified in the contractual terms of the derivative. In government bonds characterized by a semi-annual 
coupon payment frequency, it is often set equal to 0.5 for simplicity. In a YYIIS, counterparty A pays a periodic 

cash flow to counterparty B at each  𝑇𝑖 equal to: 
 

𝐶𝐹𝑖 = 𝑁𝑖  ⋅ [
𝐼(𝑇𝑖)

𝐼(𝑇𝑖−1)
− 1] ⋅ 𝜑𝑖 (Eq. VI.3) 

 

As clearly shown in Eq. VI.3 in the case of a YYIIS, the inflation base, 𝐼(𝑇𝑖−1), is not fixed, but it varies with 
each payment date (roll-over of the inflation base). 
It should be noted that, regardless of the financial instrument analyzed, it is necessary to have a model capable 
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of conducting projections of the CPI over time in accordance with market prices. 

If a series of listed ZCIIS with a maturity 𝑇𝑀 is available, the prospective value of the CPI at the same time 𝑇𝑀, 
can be derived applying the formula: 
 

𝐼𝑀(0) = 𝐼𝑅𝐸𝐹(0) ⋅ [1 + 𝐾(𝑇𝑀)]𝑇𝑀  (Eq. VI.4) 
 
Where: 

𝐼𝑀(0) is the prospective value of the CPI at time 𝑇𝑀 estimated at time zero of the valuation. Unless otherwise 

specified, in order not to weigh down indexation, the abbreviated notation 𝐼𝑀 will be used, assuming the 
observation of inflation data at the current time of valuation. 

𝐼𝑅𝐸𝐹(0) is the CPI reference value at time zero of the valuation. This corresponds to the level of inflation 

measured 𝑛 months before the settlement date. The standard lag for inflation instruments is 𝑛 = 3 months. 

𝐾(𝑇𝑀) is the fixed interest rate (coupon) between the settlement date and the maturity of the non-inflation-
indexed leg of the ZCIIS which allows the financial balance of the financial instrument. In other words, it is 
the interest rate to be applied to the fixed leg that allows the total NPV of the ZCIIS to be zeroed. This makes 
it possible to intuitively derive Eq.VI.4 as: 
 

𝑁𝑃𝑉𝑅𝐸𝐶 = 𝑁𝑃𝑉𝑃𝐴𝑌 → 𝑁[[1 + 𝐾(𝑇𝑀)]𝑇𝑀 − 1] = 𝑁 [
𝐼(𝑇𝑀)

𝐼0
− 1] → [1 + 𝐾(𝑇𝑀)]𝑇𝑀 =

𝐼(𝑇𝑀)

𝐼0
→ 

 

𝐼(𝑇𝑀) = 𝐼0[1 + 𝐾(𝑇𝑀)]𝑇𝑀  
 

𝑇𝑀 is the time to maturity of the ZCIIS considered for the estimation of 𝐼𝑀. 
A rigorous demonstration of the pricing formula for a ZCIIS and a YYIIS derivative is provided in the Brigo 
and Mercurio milestone. 
  

Market contributions for 𝐾(𝑇𝑀) have a yearly frequency until the tenth year, then the frequency becomes every 
five years until the thirtieth year. For certain countries, as in Europe, Bloomberg also contributes the fiftieth 

year. Since the contributions do not have a sufficient granulometry to have simulated prospective values of 𝐼 
for each month, which is typical of the frequency with which the inflation figure is published, it is necessary to 
use an interpolation to derive these values. The commonly adopted approach is to estimate a constant monthly 
intra-period inflation increase equal to: 
 

Δ𝐼𝑇𝑀 ,𝑇𝑀+1
=

ln(
𝐼𝑀+1

𝐼𝑀
)

12⋅𝜑𝑀+1
 (Eq. VI.5) 

 

𝜑𝑀+1 is the year fraction calculated according to the day basis between the previous (𝑇𝑀) and the following 

(𝑇𝑀+1) ZCIIS contribution date. For instance, in the case of European, Italian and French inflation, the day 
basis that is used is ACT/360. 
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Considering Eq. VI.5 in the time range between  𝑇𝑀 and 𝑇𝑀+1, the inflation values can be simulated with the 
traditional monthly granulometry applying the following relation: 
 

𝐼𝑖+1 = 𝐼𝑖 exp(Δ𝐼𝑇𝑀,𝑇𝑀+1
) (Eq. VI.6) 

 

with 𝐼𝑀 < 𝐼𝑖 < 𝐼𝑀+1 and 𝑖 ranging from 1 to the number of months between 𝐼𝑀 and 𝐼𝑀+1. 
 
Inflation is characterized by seasonality, so it is good market practice to consider it in order to obtain more 
precise forward values, in line with macroeconomic expectations. 
The standard approach consists of calculating the normalized monthly residuals obtained from the historical 
CPI values according to the following formula: 
 

ℛ𝑖 =

∑ ln[
𝐼
𝑖
𝑗

𝐼
𝑖−1
𝑗 ]𝑆

𝑗=1

𝑆
− 𝐼 ̅(Eq. VI.7) 

 
Where: 

ℛ𝑖 is the normalized residual for month 𝑖, therefore 𝑖 = 1, … , 12. Intuitively, 1 corresponds to the month of 
January, 2 to the month of February, and so on. 

𝑆 is the number of years considered to calculate historical seasonality. In the standard model, 5 years are 
considered, equal to the value suggested by the Bloomberg® SWIL inflation module. 

𝐼𝑖
𝑗
 is the CPI recorded in year  𝑗 and for month 𝑖. 

𝐼𝑖−1
𝑗

 is the CPI recorded in year 𝑗 an for month 𝑖 − 1. Clearly, for the calculation of ℛ1, the value of 𝐼𝑖−1
𝑗

 is 

equal to that of December of the previous year (𝐼0
𝑗

= 𝐼12
𝑗−1

).  

 𝐼 ̅ =
∑ ln[

𝐼𝑘
𝐼𝑘−1

]12⋅𝑆
𝑘=1

12⋅𝑆
  is the great mean of all logarithmic returns of inflation values over the considered time period 

of 12 months for the total number of years considered for the seasonality of the model. Thus, in the standard 

market case, the contribution  𝐼 ̅corresponds to the average of the returns of the last 5 years. 
 
The first term of equation Eq. VI.7 is the historical monthly residual, i.e. the logarithmic variation in CPI values 

is measured exclusively in the considered month, while the second term 𝐼 ̅ represents the overall average 
logarithmic variation over the entire time period for the calculation of seasonality. The difference between these 

two contributions gives rise to the normalised residual for the considered month 𝑖. 
A special case for the calculation of residuals occurs when CPI values are present between the reference date 
and the valuation date. In this circumstance, and only for the first time interval from the valuation date to the 

date of the first contribution of 𝐾(𝑇𝑀), an estimate of ℛ is made, excluding from the calculation the 
contributions of inflation for the months between the reference month and the current month. For example, 
if we wanted to evaluate an inflation derivative at the end of December, reasonably the CPI values between the 
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reference month (if the lag is the market standard it would therefore be September) and the current period 
would already have been published. In particular, the CPI values for the months of October and November 

are expected to be available. Referring to Eq. VI.7, for the first contribution, i.e. the historical residuals, the ℛ 

of the months between the reference date and the present time are set to zero (in the example ℛ𝑖 = 0, 𝑖 =
{10,11}) and consequently in the great mean of all returns, 𝐼 ,̅ the contributions of the months discarded in the 
calculation of the historical residuals must be excluded. Obviously, it should be highlighted that this particular 
expedient, also known in jargon as “truncated seasonality”, only applies for the first time interval that goes up 

to the first market contribution of the ZCIIS. After the first 𝐾(𝑇𝑀), formula Eq. VI.7 in its full version 
continues to be applied for all twelve months. 
A linear reproportioning that considers the missing months exclusively for the first period must also be done 

for the interpolation of  Δ𝐼𝑇𝑀 ,𝑇𝑀+1
. In order to take into account the seasonality ℛ𝑖, Eq. VI.6 for the monthly 

inflation estimate is generalized as follows: 
 

𝐼𝑖+1 = 𝐼𝑖 exp(Δ𝐼𝑇𝑀,𝑇𝑀+1
+ ℛ𝑀𝑂𝑁𝑇𝐻(𝐼𝑖+1)) (Eq. VI.8) 

 

with 𝐼𝑀 < 𝐼𝑖 < 𝐼𝑀+1 and 𝑖  ranging from 1 to the number of months between  𝐼𝑀 and 𝐼𝑀+1.  
 

The "𝑀𝑂𝑁𝑇𝐻" function inserted as a subscript of  ℛ𝑀𝑂𝑁𝑇𝐻(𝐼𝑖+1), intuitively allows to derive the month to 

which the CPI projection refers, 𝐼𝑖+1.  
Given the way normalized residuals have been constructed, it is important to note that the forward inflation 
values simulated using the recursive formula Eq. VI.8 continue to generate CPI values for the various maturities 
of the ZCIIS that are internally consistent with Eq. VI.4 and, therefore, in line with market expectations. 
It is evident that if we set all monthly normalized residuals to zero, Eq. VI.8 degenerates into Eq. VI.6. This 
recursive formula allows to derive all the forward levels of inflation on a monthly basis up to the last maturity 
date for which the ZCIIS are contributed by the market. Having these values, the inflation values that appear 
in formulas Eq. VI.1, Eq. VI.2 and Eq. VI.3 can be calculated for the determination of the cash flows of the 
inflation-indexed leg for the different types of IIS. Clearly, once the valuation for both swap legs has been 
calculated, the overall valuation is given by the algebraic sum of the contributions of the two legs. 
Up to this point in the discussion, the main types of IIS present in the global financial markets have been 
discussed, i.e. the ZCIIS and YYIIS, which allow us to outline the fundamental principles for the pricing of this 
type of inflation-linked derivatives. 
 
The equations presented have been implemented in a numerical environment like Matlab, which allows the 
valuation of a hedge of a generic inflation-linked security in accordance with the pricing framework currently 
considered as the market standard. 
If a Bloomberg calculation module (SWPM) that replicates the calculation is present for the observed hedging, 
the result obtained by the program will be compared to the market benchmark. This comparison allows to 
validate the programmed pricing routines and to be confident about the correct implementation of the standard 
valuation framework. All market data have a reference date of 30 June 2023, and the source of market data is 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

426 

the info-provider Bloomberg®. The validation process of the models begins with the derivation of the forward 
values of inflation corresponding to the quotations of the forward-looking ZCIIS. 
Let us consider the market data relating to the ZCIIS of Italian inflation shown in Figure VI.1 with a reference 
date of 30 June 2023. 
 

 
 

Figure VI.1 Contribution of the ZCIIS linked to Italian inflation 𝐾(𝑇𝑀) and strip of the related forward 

values of the CPI. Reference date 30 June 2023. Source: Bloomberg® – SWIL module 

The figure above shows the value of the inflation base, 𝐼𝑅𝐸𝐹(0) which is equal to the March 2023 CPI, i.e. a 

lag of three months is applied prior to the reference date, the market contributions for Zero Coupons, 𝐾(𝑇𝑀) 

for the different maturities of the term structure, 𝑇𝑀 = {1,2,3,4,5,6,7,8,9,10,12,15,20,25,30} and the related 
prospective values of the CPI calculated according to Eq. VI.4. 
 

The output of the strip recursive formula is perfectly aligned with the values of the SWIL module (see Table 

VI.1). A similar procedure and similar results are obtained for European inflation, which data and values are 

shown in Figure VI.2 and Table VI.2. 
 

Tenor T ZC Mid CPI Mid Model Gap 

1Y 1 0.82375 118.972 0.00000 

2Y 2 1.8825 122.4845 0.00000 

3Y 3 2.005 125.241 0.00000 

… … … … … 

30Y 30 2.28243 232.2272 0.00000 

 
Table VI.1 Forward CPI implied by the Italian ZCIIS: CPI Mid = CPI Ref * (1+ZC Mid)^T. CPI Ref = 118 
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Figure VI.2 Contribution of the ZCIIS linked to European inflation 𝐾(𝑇𝑀) and strip of the related forward 

values of the CPI. Reference date 30 June 2023. Source: Bloomberg® – SWIL module 

Tenor T ZC Mid CPI Mid CPI Mid (Bloo) Model Gap 

1Y 1 2.76 125.3672 125.3672 0.00000 

2Y 2 2.5388 128.2733 128.27331 0.00000 

3Y 3 2.4963 131.3664 131.36643 0.00000 

4Y 4 2.48625 134.5929 134.59293 0.00000 

5Y 5 2.475 137.8636 137.86355 0.00000 

6Y 6 2.469 141.2261 141.22605 0.00000 

7Y 7 2.471 144.7327 144.7327 0.00000 

8Y 8 2.473 148.3322 148.3322 0.00000 

9Y 9 2.48125 152.1106 152.11063 0.00000 

10Y 10 2.49 156.018 156.01802 0.00000 

12Y 12 2.5188 164.4379 164.43794 -0.00001 

15Y 15 2.571 178.5372 178.5372 -0.00002 

20Y 20 2.6275 204.9438 204.94382 0.00000 

 
Table VI.2 Forward CPI implied by the European ZCIIS. CPI Ref = 122 
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The next step is to calculate the prospective values for the CPI with the correct monthly granulometry, which 
corresponds to the frequency of publication of the index. The constant monthly intra-period inflation increase, 

Δ𝐼𝑇𝑀 ,𝑇𝑀+1
, is calculated, according to Eq. VI.4 for both time series. The values thus calculated are shown in 

Table VI.3. 
 

T EU CPI Mid ITA CPI Mid EU Δ𝐼 ITA Δ𝐼 EU Model Gap ITA Model Gap 

0 122 118         

1 125.3672 118.97203 0.002269 0.000684 0.000207974 0.000370457 

2 128.27331 122.48452 0.00191 0.002425 0.00000000 0.00000000 

3 131.36643 125.24096 0.001986 0.001855 0.00000000 0.00000000 

… … … … … … … 

25 235.74847 204.91794 0.002334 0.00194 0.00000000 0.00000000 

30 271.61591 232.22722 0.00236 0.002085 0.00000000 0.00000000 

 

Table VI.3 Monthly intra-period inflation increases for the Italian and European CPI, 𝛥𝐼𝑇𝑀 ,𝑇𝑀+1
 with no 

values between the Reference CPI Date and the valuation date.  
 

It is worth to note that the Δ𝐼𝑇𝑀 ,𝑇𝑀+1
 values, for 𝑇𝑀 ≥ 2, record a very low error compared to the one 

committed for 𝑇𝑀 = 1. The reason for this discrepancy is that we have worked under the hypothesis of the 
absence of values between the CPI reference date (i.e. March 2023) and the valuation date (i.e. June 2023). 
If we investigate further on this aspect, we notice that two further values are provided for March and April: 
122.79 and 122.81 for the CPTFEMU Index and 118.4 and 118.6 for the ITCPI index. 

 
Figure VI.3 Contribution of Eurozone HICP Ex Tobacco and Italy CPI Ex Tobacco. Source: Bloomberg® 
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It is important to consider this information for the CPI projections, as a result, the formula has to be scaled 

only for the first period, i.e. 𝑇𝑀 = 1. 
 

T EU CPI Mid ITA CPI Mid EU Delta I ITA Delta I EU Gap ITA Gap 

2 Months 122.81 118.6         

1 125.3672 118.97203 0.002061 0.000313 0.00000000 0.00000000 

2 128.27331 122.48452 0.00191 0.002425 0.00000000 0.00000000 

3 131.36643 125.24096 0.001986 0.001855 0.00000000 0.00000000 

… … … … … … … 

20 204.94382 182.40215 0.002299 0.001903 0.00000000 0.00000000 

25 235.74847 204.91794 0.002334 0.00194 0.00000000 0.00000000 

30 271.61591 232.22722 0.00236 0.002085 0.00000000 0.00000000 

 

Table VI.4 Monthly intra-period inflation increases for the Italian and European CPI, 𝛥𝐼𝑇𝑀 ,𝑇𝑀+1
 with two 

values between the Reference CPI Date and the valuation date.  
 
The following step concerns the modelling of seasonality according to the standard market methodology. 
Figures VI.4 and VI.5 represent the estimation provided by Bloomberg® SWIL computation module for the 
European and the Italian case, respectively. 
 

 
 

Figure VI.4 Historical and normalized seasonality for European inflation, Source: Bloomberg® - SWIL 
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Figure VI.5 Historical and normalized seasonality for Italian inflation, Source: Bloomberg® - SWIL 
 

The code replication is conducted implementing relation Eq. VI.7 and it is shown in Table VI.5. The model 
gap measured as the difference between the values is less than the sixth decimal place in all cases. 
 

Month ITA Hist. Model ITA Norm. Model EUR Hist. Model EUR Norm. Model 

1 0.004729476 0.002248967 -0.004238252 -0.007066837 

2 0.002370192 -0.000110317 0.004928341 0.002099756 

3 0.002333568 -0.000146941 0.011557235 0.008728651 

4 0.001085469 -0.001395041 0.005579979 0.002751394 

5 0.001582952 -0.000897557 0.002241828 -0.000586757 

6 0.002919389 0.00043888 0.003414507 0.000585922 

7 0.001873697 -0.000606812 -0.002354244 -0.005182829 

8 0.0046948 0.002214291 0.001691948 -0.001136637 

9 -0.003362644 -0.005843153 0.004916095 0.00208751 

10 0.007561807 0.005081298 0.005826278 0.002997693 

11 0.001743094 -0.000737415 -0.00104946 -0.003878045 

12 0.002234309 -0.0002462 0.001428763 -0.001399822 

 

Table VI.5 Calculation of Italian and European seasonality, ℛ𝑖 
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For instance, in order to compute ℛ𝑖=12 for the Italian CPI, we have to 
compute the log-returns for all the Decembers in the sample period (the 
market standard convention is to consider the last 5 years). 
 

The average of these five returns constitute the historical seasonality. 
 

In order to get the normalized historical seasonality we have to subtract 

𝐼 ,̅ i.e. the average of all the log-returns on the considered period. 
 

In this case, considering the 60 past CPI values 𝐼 ̅ = 0.0024805. 
 

Consequently ℛ𝑖=12 = 0.0022343 − 0.0024805 = −0.0002462. 
 

It is worth to note that the sum of all the twelve normalized values 

return one, ∑ ℛ𝑖
12
𝑖=1 = 1. 

 
Table VI.6 Example for the calculation of the historical seasonality 
 
 

Once the contributions Δ𝐼𝑇𝑀,𝑇𝑀+1
 and ℛ𝑖 have been estimated, the recursive formulas Eq. VI.6 and Eq. VI.8 

can be applied in order to derive the prospective values of the CPI with monthly frequency, respectively without 
and with the contribution of seasonality. For illustrative purposes, Figure VI.6 highlights the inflation values 
directly derived from the ZCIIS on European inflation using black dots, while the green dot shows the reference 
inflation of March 2023. It is essential that all market-oriented simulation models provide forward-looking CPI 
values that necessarily pass through these points, otherwise market expectations would be disregarded. The red 
line represents the projection of the CPI without the seasonal contribution calculated according to Eq. VI.6, 

while the blue line also considers normalized residuals and it is estimated using Eq. VI.8. As we have all 𝐼𝑖 

values for a generic month 𝑖, we can valuate inflation-linked financial products and consequently design the 
appropriate hedging swap. Here we only analyze the hypothetical inflation leg of an IIS though. 
 
The first valuation concerns the inflation leg consisting of an IIS that hedges a bond issued on 30 June 2023 
and maturing on 30 June 2033. Its financial characteristics are summarized in Figure VI.7. 
Assuming that we want to evaluate the leg of a hedging swap at the reference date of the market data (30 June 
2023) with a reference notional equal to EUR 10 million, we obtain the flows shown in Table. VI.7. 

The formula for calculating cash flow Payment 𝐶𝐹𝑖 is Eq. VI.2 which corresponds to the table value identified 
with [C]. 

The inflation base 𝐼0, i.e. the inflation level at the date of issuance of the bond, is 92.21738. 

𝐼(𝑇𝑖) corresponds to the prospective value of the European CPI recorded three months before the payment 
date and reported in column [D]. 

Therefore, the ratio 
𝐼(𝑇𝑖)

𝐼0
 called index ratio is shown in column [B].  

Date ITA CPI logreturns 

30/11/2018 102.2  
31/12/2018 102.1 -0.00098 

30/11/2019 102.3  
31/12/2019 102.5 0.001953 

30/11/2020 102  
31/12/2020 102.3 0.002937 

30/11/2021 105.7  
31/12/2021 106.2 0.004719 

30/11/2022 117.9  
31/12/2022 118.2 0.002541 

 Average 0.0022343 
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Figure VI.6 Simulation of the forward values of the European CPI using the market standard method 
 

 
 

Figure VI.7 Characteristics of the BTPi security with ISIN code: IT0004545890. Source: Bloomberg® 
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Table VI.7 Pricing of the inflation leg of a IIS hedging the BTP inflation IT0004545890 
 

Pay Date Days Real Notional [A] Index Ratio [B] Payment [C] CPI [D] Discount [E] Zero Rate [F] PV [G]

09/15/2023 180 13355631.98 1.33556 170284.31 123.1621 0.992474 3.581046 169002.74

03/15/2024 180 13451491.22 1.34515 171506.51 124.0461 0.973453 3.791694 166953.58

09/16/2024 180 13710515.73 1.37105 174809.08 126.4348 0.955236 3.764864 166983.85

03/17/2025 180 13778495.29 1.37785 175675.81 127.0617 0.939146 3.660775 164985.16

09/15/2025 180 14031532.01 1.40315 178902.03 129.3951 0.925061 3.518775 165495.38

03/16/2026 180 14107529.29 1.41075 179871 130.0959 0.912198 3.388176 164077.92

09/15/2026 180 14371451.37 1.43715 183236 132.5298 0.899987 3.278935 164910

03/15/2027 180 14452446.48 1.44524 184268.69 133.2767 0.888927 3.173951 163801.35

09/15/2027 180 14723491.83 1.47235 187724.52 135.7762 0.877929 3.089677 164808.78

03/15/2028 180 14804585.45 1.48046 188758.46 136.524 0.86735 3.020007 163719.66

09/15/2028 180 15081605.57 1.50816 192290.47 139.0786 0.856798 2.962814 164754.05

03/15/2029 180 15165337.29 1.51653 193358.05 139.8508 0.846563 2.915988 163689.75

09/17/2029 180 15451105.28 1.54511 197001.59 142.486 0.835989 2.879183 164691.07

03/15/2030 180 15540224.36 1.55402 198137.86 143.3079 0.825672 2.853817 163596.9

09/16/2030 180 15834910.79 1.58349 201895.11 146.0254 0.815075 2.832396 164559.57

03/17/2031 180 15926554.55 1.59266 203063.57 146.8705 0.804679 2.815723 163400.95

09/15/2031 180 16231110.75 1.62311 206946.66 149.6791 0.794334 2.802328 164384.72

03/15/2032 180 16329847.04 1.63298 208205.55 150.5896 0.783992 2.792357 163231.59

09/15/2032 180 16645434.25 1.66454 212229.29 153.4998 0.773657 2.783618 164192.67

03/15/2033 180 16748447.33 1.67484 213542.7 154.4498 0.763596 2.776268 163060.37

09/15/2033 180 17076935.72 1.70769 217730.93 157.479 0.753218 2.77322 163998.91

03/15/2034 180 17190502.72 1.71905 219178.91 158.5263 0.742718 2.775889 162788.2

09/15/2034 180 17531681.61 1.75317 223528.94 161.6726 0.732142 2.779 163654.9

03/15/2035 180 17648272.8 1.76483 225015.48 162.7477 0.721806 2.782736 162417.42

09/17/2035 180 18003669.09 1.80037 229546.78 166.0251 0.711465 2.784776 163314.45

03/17/2036 180 18133735.97 1.81337 231205.13 167.2246 0.701678 2.784502 162231.64

09/15/2036 180 18504183.13 1.85042 235928.33 170.6407 0.692027 2.784248 163268.67

03/16/2037 180 18637865.94 1.86379 237632.79 171.8735 0.682508 2.784012 162186.16

09/15/2037 180 19018611.78 1.90186 242487.3 175.3846 0.673068 2.783792 163210.48

03/15/2038 180 19156011.07 1.9156 244239.14 176.6517 0.66386 2.783589 162140.7

09/15/2038 180 19548155.77 1.95482 249238.99 180.268 0.655172 2.777954 163294.33

03/15/2039 180 19691020.34 1.9691 251060.51 181.5854 0.647575 2.764512 162580.51

09/15/2039 180 20094953.91 2.0095 256210.66 185.3104 0.639943 2.751689 163960.13

03/15/2040 180 20241814.67 2.02418 258083.14 186.6647 0.632482 2.739766 163232.88

09/17/2040 180 20657047.01 2.0657 263377.35 190.4939 0.624947 2.728294 164596.82

03/15/2041 180 20808015.73 2.0808 265302.2 191.8861 0.61778 2.717877 163898.42

09/16/2041 180 21234862.89 2.12349 21505607.39 195.8223 0.61046 2.7077 13128304.29
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The revalued notional [A] is equal to the nominal notional of the swap (EUR 10 million) multiplied by the index 
ratio. 

The cash flow  𝐶𝐹𝑖  which must therefore be paid at payment date 𝑇𝑖 is equal to the notional revalued 𝑁𝑖  ⋅
𝐼(𝑇𝑖)

𝐼0
  

by the coupon of the bond (2.55%), reproportioned to the half-year according to Eq. VI.2. 
 
The discount factors [E] to be applied to each payment date are calculated according to the traditional formula:  
 

𝐷𝐹(0, 𝑇𝑖) = exp(−𝑟𝑇𝑖
𝑇𝑖) (Eq. VI.9) 

 

𝐷𝐹(𝑡0, 𝑇𝑖) is the discount factor to be applied from the valuation time 𝑡0 to the time related to the amount to 

be discounted 𝑇𝑖. If 𝑡0 coincides with the current time, 𝑡0 = 0, the abbreviated notation 𝐷𝐹𝑇𝑖
 is used. 

𝑟𝑡0,𝑇𝑖
 is the spot rate (also called zero rate) between time 𝑡0 and the time related to the amount to be discounted 

𝑇𝑖. If 𝑡0 coincides with the current time, 𝑡0 = 0, the abbreviated notation 𝑟𝑇𝑖
 is used. The discount rate is 

shown in the table in column [F]. 

𝑇𝑖 is a future time expressed in year fractions in which an amount of money has to be considered for the 
discount. In this case, therefore, an ACT/365 day convention applies between the reference date for pricing 
(30 June 2023) and the date of the interest payment. 
 
Zero rates are linearly interpolated from the interest rate term structure that best represents risk. Therefore, in 
the case of collateralised derivatives, the risk-free yield curve to be considered is the 1-day yield curve (OIS-
ESTR), while for non-collateralised derivatives, the reference level of the yield curve should reflect the payment 
frequency. 
Therefore, if the flows were exchanged on a monthly basis, the curve with a tenor of 1 month would be selected; 
if the interest flows were exchanged on a quarterly basis, the tenor would be 3 months, and so on. 
Assuming that the swap in question is collateralised, as per financial best practice to reduce counterparty risk, 
the most correct choice is to interpolate the discount rate using the OIS-ESTR curve. 
The potential counterparty risk is therefore less than 24 hours and, consequently, it is assumed that the fair 
value does not require further adjustments for counterparty risk such as CVA (Credit Valuation Adjustment) 
or DVA (Debt Valuation Adjustment). These contributions would anyhow be negligible. 
The term structure EUR OIS ESTR from which the zero rates [F] have been linearly interpolated is shown in 
Figure VI.8. The NPV of the inflation leg is given by the discounted sum of the single contributions and it is 
equal to EUR 19,033,379. The replication of the net present value with the calculation libraries is less than 50 
Euro cents compared to the market benchmark (Figure VI.9). 
 
The subsequent valuation concerns the pricing of a YYIIS (see Figure VI.9 for the financial characteristics) and 
in this case the valuation formula to be implemented for the determination of cash flow is Eq. VI.3. It is 
therefore assumed to have a leg characterized by a notional of EUR 10 million and a maturity equal to the 
previous bond. In this case, a monthly interpolation of the CPI is used as in the previous case, while the 
frequency payment for the inflation leg is set to be yearly. The Cash flows are shown in Table. VI.8. 
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Figure VI.8 Interest rates term structure used to calculate discount factors. Source: Bloomberg® 
 

 
 

Table VI.8 Pricing of the inflation leg of a IIS to hedge a YYIIS with monthly CPI interpolation 

Pay Date Days Reset Date Reset Rate [A] Reset Price [B] Payment [C] Discount Zero Rate PV

09/15/2023 365 06/01/2023 5.53739 123.16214 561430.24 0.992474 3.581046 557204.87

09/16/2024 367 06/01/2024 2.65718 126.43478 270885.17 0.955236 3.764864 258759.16

09/15/2025 364 06/01/2025 2.34139 129.39511 236740.28 0.925061 3.518775 218999.31

09/15/2026 365 06/01/2026 2.42254 132.52976 245618.55 0.899987 3.278935 221053.48

09/15/2027 365 06/01/2027 2.44958 135.77618 248360.38 0.877929 3.089677 218042.75

09/15/2028 366 06/01/2028 2.43226 139.07862 247279.86 0.856798 2.962814 211868.83

09/17/2029 367 06/01/2029 2.45 142.48604 249764.15 0.835989 2.879183 208799.96

09/16/2030 364 06/01/2030 2.484 146.0254 251160.04 0.815075 2.832396 204714.16

09/15/2031 364 06/01/2031 2.50207 149.67905 252986.7 0.794334 2.802328 200955.88

09/15/2032 366 06/01/2032 2.55265 153.49983 259519.45 0.773657 2.783618 200779.04

09/15/2033 365 06/01/2033 2.59231 157.47903 262831.56 0.753218 2.77322 197969.53

09/15/2034 365 06/01/2034 2.66292 161.67257 269990.94 0.732142 2.779 197671.68

09/17/2035 367 06/01/2035 2.6922 166.02512 274454.57 0.711465 2.784776 195264.77

09/15/2036 364 06/01/2036 2.78007 170.64073 281095.64 0.692027 2.784248 194525.65

09/15/2037 365 06/01/2037 2.78007 175.38465 281867.89 0.673068 2.783792 189716.3

09/15/2038 365 06/01/2038 2.78435 180.26797 282301.76 0.655172 2.777954 184956.13

09/15/2039 365 06/01/2039 2.79719 185.3104 283603.51 0.639943 2.751689 181489.98

09/17/2040 368 06/01/2040 2.79719 190.49388 285934.5 0.624947 2.728294 178693.84

09/16/2041 364 06/01/2041 2.79719 195.82234 282826.51 0.61046 2.7077 172654.16
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The reset rate [A] of the table corresponds to the quantity 
𝐼(𝑇𝑖)

𝐼(𝑇𝑖−1)
− 1 in Eq. VI.3. 𝐼(𝑇𝑖) is the forward inflation 

recorded three months before the payment date. 𝐼(𝑇𝑖−1) is the forward inflation recorded one year and three 

months before the previous payment date. The values of the prospective CPI, 𝐼 are shown in column [B] of 
the table. The cash flow [C] is obtained multiplying the swap notional by the reset rate by the year fraction 
between the two contiguous payment dates. In this case, the day basis is assumed to be ACT/360. The part 
relating to the discounting of the cash flows thus determined is identical to the previous case. The Bloomberg 
SWPM calculation module prices the inflation leg at EUR 4,194,119 and the gap in absolute terms of the NPV 
compared to the programmed library remains less than 50 cents.  
 

 
 

Table VI.9 Pricing of the inflation leg of a IIS to hedge a YYIIS with a daily CPI interpolation 
 

The following pricing example has the same characteristics as the YYIIS leg discussed above, but it assumes a 
daily interpolation of the CPI instead of a monthly one. In this case, for determining the reset rate, it is not 
sufficient to take the value of inflation associated with the relevant month, but it is necessary to make an 
interpolation. 
This means that we apply the following standard formula in order to compute the daily CPI, starting from the 
stripped monthly values: 
 

Pay Date Days Notional Reset Date Reset Rate [A] Reset Price Payment Discount Zero Rate PV

09/15/2023 365 10000000 06/15/2023 5.33974 122.99539 541390.54 0.992474 3.581046 537316

09/16/2024 367 10000000 06/16/2024 2.6284 126.2282 267951.29 0.955236 3.764864 255956.61

09/15/2025 364 10000000 06/15/2025 2.35617 129.20236 238235.38 0.925061 3.518775 220382.37

09/15/2026 365 10000000 06/15/2026 2.42428 132.33458 245794.69 0.899987 3.278935 221212

09/15/2027 365 10000000 06/15/2027 2.44857 135.57488 248257.66 0.877929 3.089677 217952.57

09/15/2028 366 10000000 06/15/2028 2.43261 138.87289 247315.36 0.856798 2.962814 211899.25

09/17/2029 367 10000000 06/17/2029 2.43027 142.24788 247752.87 0.835989 2.879183 207118.55

09/16/2030 364 10000000 06/16/2030 2.49489 145.79681 252261.2 0.815075 2.832396 205611.69

09/15/2031 364 10000000 06/15/2031 2.51512 149.46378 254306.57 0.794334 2.802328 202004.3

09/15/2032 366 10000000 06/15/2032 2.55349 153.28031 259604.36 0.773657 2.783618 200844.72

09/15/2033 365 10000000 06/15/2033 2.59597 157.25942 263202.07 0.753218 2.77322 198248.6

09/15/2034 365 10000000 06/15/2034 2.66292 161.44712 269990.94 0.732142 2.779 197671.68

09/17/2035 367 10000000 06/17/2035 2.67691 165.76891 272895.84 0.711465 2.784776 194155.78

09/15/2036 364 10000000 06/15/2036 2.79992 170.41031 283103.42 0.692027 2.784248 195915.09

09/15/2037 365 10000000 06/15/2037 2.78007 175.14783 281867.89 0.673068 2.783792 189716.3

09/15/2038 365 10000000 06/15/2038 2.78501 180.02572 282369.15 0.655172 2.777954 185000.28

09/15/2039 365 10000000 06/15/2039 2.79719 185.06137 283603.51 0.639943 2.751689 181489.98

09/17/2040 368 10000000 06/17/2040 2.77742 190.20131 283914.43 0.624947 2.728294 177431.4

09/16/2041 364 10000000 06/16/2041 2.80707 195.54039 283825.76 0.61046 2.7077 173264.16
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𝐷𝑎𝑖𝑙𝑦 𝐶𝑃𝐼 𝑜𝑛 𝑑𝑎𝑦 (𝑑) = 𝐶𝑃𝐼𝑚−𝑙𝑎𝑔 + [
(𝑛𝑑−1)

𝑁𝐷𝑚
] ⋅ (𝐶𝑃𝐼𝑚−𝑙𝑎𝑔−1 − 𝐶𝑃𝐼𝑚−𝑙𝑎𝑔) (Eq. VI.10) 

 

𝐶𝑃𝐼𝑚−𝑙𝑎𝑔 is the price index of month 𝑚 − 𝑙𝑎𝑔. Given that the lag for the European/Italian inflation is 3, we 

have  𝐶𝑃𝐼𝑚−3. 
 

𝐶𝑃𝐼𝑚−𝑙𝑎𝑔−1 is the price index of month 𝑚 − 𝑙𝑎𝑔 − 1. Given that the lag for the European/Italian inflation 

is 3, we have  𝐶𝑃𝐼𝑚−2. 
 

𝑛𝑑 is the actual number of days since the start of the month and 𝑁𝐷𝑚 is the number of days in month 𝑚. 
 

Table VI.9 shows the cash flows, while Table VI.10 shows the determinants for calculating the reset rate [A] 
by applying the daily interpolation of inflation. 

 

 
 

Table VI.10 Calculation of the Reset rate in a YYIIS with daily interpolation 
 

The NPV of the YYIIS inflation leg with daily interpolation is equal to EUR 4,173,191 and the model gap still 
remains below the 50 cents threshold. 

I(m-2) I(m-3) (n-1)/D Reset Price I(m-14) I(m-15) (n-1)/D Reset Price Reset Rate

122.805 123.162 0.4670 122.995 116.83 116.7 0.467 116.761 5.340%

126.022 126.435 0.5000 126.228 122.805 123.162 0.467 122.995 2.628%

128.982 129.395 0.4670 129.202 126.022 126.435 0.5 126.228 2.356%

132.112 132.53 0.4670 132.335 128.982 129.395 0.467 129.202 2.424%

135.345 135.776 0.4670 135.575 132.112 132.53 0.467 132.335 2.449%

138.638 139.079 0.4670 138.873 135.345 135.776 0.467 135.575 2.433%

142.039 142.486 0.5330 142.248 138.638 139.079 0.467 138.873 2.430%

145.568 146.025 0.5000 145.797 142.039 142.486 0.533 142.248 2.495%

149.218 149.679 0.4670 149.464 145.568 146.025 0.5 145.797 2.515%

153.029 153.5 0.4670 153.28 149.218 149.679 0.467 149.464 2.554%

157.008 157.479 0.4670 157.259 153.029 153.5 0.467 153.28 2.596%

161.189 161.673 0.4670 161.447 157.008 157.479 0.467 157.259 2.663%

165.545 166.025 0.5330 165.769 161.189 161.673 0.467 161.447 2.677%

170.147 170.641 0.4670 170.41 165.545 166.025 0.533 165.769 2.800%

174.877 175.385 0.4670 175.148 170.147 170.641 0.467 170.41 2.780%

179.749 180.268 0.4670 180.026 174.877 175.385 0.467 175.148 2.785%

184.777 185.31 0.4670 185.061 179.749 180.268 0.467 180.026 2.797%

189.945 190.494 0.5330 190.201 184.777 185.31 0.467 185.061 2.777%

195.258 195.822 0.5000 195.54 189.945 190.494 0.533 190.201 2.807%

Numerator Denominator
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The screen-shots summarizing the financial characteristics of the three IIS on European inflation as well as the 
pricing according to the market standard are shown in Figure VI.9. 
 

                     
 

Figure VI.9 Valuation and main characteristics for the three European IIS analyzed. 
Source: Bloomberg® - SWPM module. Reference date for the valuation: 30 June 2023 

 
We have examined both the ZCIIS and the YYIIS, now starting from this pricing framework, we mention that 
less popular exotic variants have been created and among them, with particular reference to our country, is the 
BTP Italia. If a hedge has to be designed, for which one leg of the IIS is physically represented by this 
government bond, it is necessary to have a valuation and quantitative analysis model of the associated risk and, 
since this financial instrument is not so globally widespread, the usual theoretical Bloomberg® calculation 
modules (SWPM) cannot be used. 
 
The BTP Italia provides the investor with protection against the increase in the Italian price levels: both the 
coupons, paid semi-annually, and the principal, whose revaluation is also paid half-yearly, are revalued based 
on Italian inflation, measured by the national institute for Statistics, ISTAT, through the national index of 
consumer prices for blue-collar and white-collar households (FOI), excluding tobacco (Bloomberg code: ITCPI 
Index).  
Thanks to the indexation mechanism used, every 6 months the holder is entitled to recover the loss of 
purchasing power incurred in that period, through the payment of the half-yearly revaluation of the invested 
capital. In addition, the coupons, which are also paid semi-annually, provide a constant minimum return in real 
terms. In fact, the amount of each coupon is calculated multiplying half of the fixed annual real interest rate, 
established at issue, by the capital, revalued based on the semi-annual inflation. At maturity, the BTP Italia 
guarantees the return of the nominal value. 
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The revaluation of the nominal capital and of the coupons is implemented through the Indexation Coefficient 

(𝐶𝐼). In particular, 𝐶𝐼 is calculated based on the inflation detected by the FOI index, excluding tobacco, 

processed and published monthly by ISTAT. This coefficient allows to know, at a generic date (day 𝑑 of month 

𝑚), the value of the nominal capital revalued based on price trends. 𝐶𝐼 is calculated using the following formula: 
 

𝐶𝐼𝑑,𝑚 =
ℑ𝑑,𝑚

ℑ𝑑,𝑚̅̅ ̅̅ ̅̅
  (Eq. VI.11) 

 

Where ℑ𝑑,𝑚  is the index on day 𝑑 of month 𝑚 of the coupon payment, while ℑ𝑑,𝑚̅̅ ̅̅ ̅̅ , called the basic index, 

means the index on the payment date of the previous coupon (six months earlier). The 𝐶𝐼 value thus obtained 
is truncated to the sixth decimal place and rounded to the fifth. 
In the case of the first coupon payment, when the accrual date of the coupon coincides with the accrual date 

of the bond, then the base index of 𝐶𝐼 is taken as of the accrual date of the bond. 
Since the FOI ex-tobacco price index is published by ISTAT in the second half of the month following the 

reference month, in order to calculate the price index at a generic date (day 𝑑 of month 𝑚), a calculation method 
is used for the daily interpolation (see also Eq. VI.10): 
 

ℑ𝑑,𝑚 = 𝐼𝑚−3 +
𝑑−1

𝐷
⋅ (𝐼𝑚−2 − 𝐼𝑚−3) (Eq. VI.12) 

 

ℑ𝑑,𝑚 is the index of day 𝑑 and month 𝑚. 

𝐼𝑚−3 is the FOI index ex-tobacco that precedes the one for which the calculation is made by three months. 

𝐼𝑚−2 is the FOI index for tobacco that precedes the one for which the calculation is made by two months. 

𝑑 is the day of the month for which the calculation is made. 

𝐷 is the number of actual days in month 𝑚. 
 

The index at the coupon payment date is therefore calculated based on the ISTAT FOI ex-tobacco indices 
relating to three months and two months preceding the month for which the calculation is made. The value 
thus obtained is truncated to the sixth decimal place and rounded to the fifth. 

As mentioned above, the determination of the monthly prospective values of 𝐼 is implemented with the same 
procedure already described above. See in particular the recursive formula in Eq. VI.8. 

The total half-yearly remuneration 𝐶𝐹𝑖 of the swap leg indexed to Italian inflation will therefore be given by 

the sum of the coupon 𝐶�̅� plus the revaluation of capital of the reference period �̅�𝑖 : 
 

𝐶𝐹𝑖 = 𝐶�̅� + �̅�𝑖 (Eq. VI.13) 
 

The variable amount of the semi-annual coupons is calculated multiplying the annual real interest rate, divided 
by two, by the nominal principal revalued on the coupon payment date (equal to the nominal capital multiplied 
by the Indexation Coefficient modified on the coupon payment date). 
 

𝐶�̅� =
𝐶𝑖

2
⋅ 𝑁𝑖 ⋅ max(𝐶𝐼𝑖, 1) (Eq. VI.14) 
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𝐶𝑖  is the annual real coupon rate. 

𝑁𝑖 is the current reference notional. 

𝐶𝐼𝑖 is the inflation coefficient calculated on the payment date of amount 𝑇𝑖. 
max(𝐶𝐼𝑖, 1) represents the so-called “modified” Indexation Coefficient. 
 

In the event that the half-yearly Indexation Coefficient is less than one, i.e. in the event that there is a reduction 
in prices on a semi-annual basis, which would theoretically correspond to a devaluation of the capital, it is 
assumed that the price index is the same as that of the previous period (so-called coupon floor mechanism). 
As a result, the Indexation Coefficient becomes equal to one (modified Indexation Coefficient), and then the 
real coupon rate, which constitutes the guaranteed minimum return, is paid. 
In the following period, if the Indexation Coefficient on a half-yearly basis returns above one, the price index 
of the previous half-year is taken as the basis, provided that the latter is higher than the last maximum value 
recorded in the previous half-years. Otherwise, the basis will continue to be the last maximum value. 
In addition to the payment of the semi-annual coupon, the payment of the revaluation of the capital, accrued 
in the reference half-year, is also envisaged: 
 

�̅�𝑖 = 𝑁𝑖 ⋅ max(𝐶𝐼𝑖 − 1,0) (Eq. VI.15) 
 

In the event that the half-yearly Indexation Coefficient is less than one, no revaluation is paid (so-called capital 
floor mechanism). In the following period, if the Indexation Coefficient on a half-yearly basis returns above 
one, the price index of the previous half-year is taken as the basis, provided that the latter is higher than the last 
maximum value recorded in the previous half-year. Otherwise, the basis will continue to be the last maximum 
value. 
For payment purposes, the result obtained from formulas Eq. VI.14 and Eq. VI.15 for the coupon calculation 
and the capital revaluation calculation, respectively, is rounded to two decimal places. 

The presence of an optionality for determining �̅�𝑖 and 𝐶�̅� makes a stochastic modelling of the forward values 

of inflation necessary. In particular, the characteristic of observation of the previous values of 𝐶𝐼, in the 

different payment dates 𝑇𝑖, makes such optionality path-dependent and consequently difficult to solve in a 
closed formula, if not by introducing approximations. 
For pricing all the floor options incorporated in the financial instrument (both on the coupon and on the 
notional) and due to the characteristic of the retrospective observation of the values of the Inflation Coefficient, 
a Monte Carlo method has therefore to be implemented. 
As an example, the simulations are made implementing a very simple Brownian arithmetic motion applied to 

forward rates calculated in the interval 𝑇𝑀, 𝑇𝑀+1 and derived from the ZCIIS according to the traditional 
financial mathematics relation: 

 

[1 + 𝐾(𝑇𝑀)]𝑇𝑀[1 + 𝐹𝐼(𝑇𝑀 , 𝑇𝑀+1)](𝑇𝑀+1−𝑇𝑀) = [1 + 𝐾(𝑇𝑀+1)]𝑇𝑀+1 → 

𝐹𝐼(𝑇𝑀, 𝑇𝑀+1) = [
[1+𝐾(𝑇𝑀+1)]𝑇𝑀+1

[1+𝐾(𝑇𝑀)]𝑇𝑀
]

1

𝑇𝑀+1−𝑇𝑀 − 1 (Eq. VI.16) 
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Stochastic dynamics is then applied to 𝐹𝐾(𝑇𝑀 , 𝑇𝑀+1) according to the following stochastic differential equation 
(SDE): 
 

𝑑𝐹𝑡
𝐼 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 (Eq. VI.17) 

 

𝑑𝐹𝑡
𝐼 indicates the variation in the inflation forward rate at time 𝑡. The forward follows the granulometry of the 

ZCIIS on inflation. Since the BTP Italia has a maturity below ten years, the tenor is equal to one year. Therefore, 

the notation here adopted 𝐹𝑡
𝐼 represents the synthetic form for 𝐹𝑡,𝑡+𝑡𝑒𝑛𝑜𝑟

𝐼 = 𝐹𝑡,𝑡+1𝑌
𝐼 = 𝐹𝑡

𝐼. 
 

𝜇 is the drift of the stochastic process, in this case the slope of the curve calculated between two contiguous 

ZCIIS is used, i.e.  
𝐾(𝑇𝑀+1)−𝐾(𝑇𝑀)

𝑇𝑀+1−𝑇𝑀
. 

 

𝑑𝑡 is the time instant at which the random perturbation is applied. 
 

𝜎 is the volatility to be applied to the stochastic process. In this case, the implied volatility is used on the 
floorlets of actively traded YYIIS derivatives. Since it is a Brownian arithmetic stochastic process, which is the 
underlying assumption behind the normal Bachelier model, the normal implied volatility quoted by Bloomberg 
and expressed in basis points will be used. Since there are no liquid option contributions on Italian inflation, 
the implied normal volatility for the YYIIS floorlets of French inflation is used as a proxy in the calculation 
model, after verifying that this value does not differ much from the historical volatility recorded by the Italian 
CPI. 
 

𝑑𝑊𝑡 is a Wiener stochastic process.  
 

The solution of equation Eq. VI.17 is quite straightforward since all the variables are well separated, so it can 

be integrated directly from time 𝑇𝑀 to time  𝑇𝑀+1. 
 

∫ 𝑑𝐹𝑡
𝐼𝑇𝑀+1

𝑇𝑀
= ∫ 𝜇𝑑𝑡

𝑇𝑀+1

𝑇𝑀
+ ∫ 𝜎𝑑𝑊𝑡

𝑇𝑀+1

𝑇𝑀
= 𝜇 ∫ 𝑑𝑡

𝑇𝑀+1

𝑇𝑀
+ 𝜎 ∫ 𝑑𝑊𝑡

𝑇𝑀+1

𝑇𝑀
→  (Eq. VI.18) 

𝐹𝑇𝑀+1−
𝐼 𝐹𝑇𝑀

𝐼 = 𝜇(𝑇𝑀+1 − 𝑇𝑀) + 𝜎(𝑊𝑇𝑀+1
− 𝑊𝑇𝑀

) → 𝐹𝑇𝑀+1

𝐼 = 𝐹𝑇𝑀

𝐼 + 𝜇(𝑇𝑀+1 − 𝑇𝑀) + 𝜎(Δ𝑊𝑇𝑀+1−𝑇𝑀
) 

 

Remembering that: 
 

Δ𝑊𝑇𝑀+1−𝑇𝑀
= 𝜖√𝑇𝑀+1 − 𝑇𝑀 = 𝜖√Δ𝑇 (Eq. VI.19) 

 

𝜖 represents an extraction from a standard normal distribution (of mean zero and variance one); we reach the 
definition of a stochastic dynamics suitable for the simulation of forward Year-on-Year inflation rates that can 
be implemented in a programming language: 
 

𝐹𝑇𝑀+1

𝐼 = 𝐹𝑇𝑀

𝐼 + 𝜇Δ𝑇 + 𝜎𝜖√Δ𝑇 (Eq. VI.20) 
 

Once the stochastic perturbation is made to the forward, 𝐹𝑇𝑀+1

𝐼 , and once the previous 𝐾(𝑇𝑀) is known, the 

next simulated ZCIIS, i.e. 𝐾(𝑇𝑀+1) is calculated with Eq. VI.16. 
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In such a way, it is possible to reach a simulation for the ZCIIS along all 𝑇𝑀 and, consequently, an entire 
simulated term structure is available. It is possible to verify that if a sufficiently large number of simulations of  

Eq. VI.20 is implemented and Eq. VI.16 is applied to obtain 𝐾(𝑇𝑀+1), the expected value coincides with the 
initial values contributed by the market. 
Once the simulations of the ZCIIS at the different maturities are available, Eq. VI.4-8 can be applied to derive 
the simulated forward values of inflation. 
Once the CPIs have been estimated, Eq. VI.11-15 that characterize the pay-off of the BTP Italia are applied in 
order to derive the cash flows (thus including the exotic optionality incorporated in the security) at the different 

payment dates, 𝑇𝑖. In accordance with the Monte Carlo methodology, the expected value will be obtained as 
the mean calculated on the number of simulations implemented. 
The sum of such cash flow discounted using the appropriate discount factor constitutes the value of the swap 
leg indexed to the BTP Italia. 
As an example of valuation of a structured financial product linked to inflation, a swap hedging a BTP Italia is 
valued. More specifically, one leg of the derivative is the IT0005410912 bond maturing on 26 May 2025. The 
financial characteristics of this instrument are shown in Figure VI.10. 
 

 

Figure VI.10 Characteristics of the BTP ITALIA bond with ISIN code: IT0005410912. Source: 
Bloomberg® 
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The inflation leg has been valued considering the Monte Carlo model described above. The volatility proxy 
used in the pricing model is the normal one implied in the floorlets written on French inflation at the valuation 
date. The data are shown in Figure VI.11. 
 

 
 

Figure VI.11 Volatility implied in the floorlets written on the French inflation index. Source: Bloomberg® 
 
The leg valuation is equal to EUR 1,539,587.74 with a standard deviation of 4,978 out of a number of 
implemented simulations equal to 5,000. 
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PART VII: AGGREGATE RISK MEASURES 
 
 

Chapter 1 – Risk Measures 
 
Introduction and definitions 
Value at Risk 
Parametric approaches for VaR 
Full-evaluation approaches for VaR 
Factor volatility matrices 
The “rule of the root of time” 
Fat tails and the analysis of returns 
Historical simulations method 
Forward-looking Monte Carlo 
Stress test and back testing 
Expected Shortfall 
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VII.1 RISK MEASURES 
 
 

The traditional approach to measuring market risk was based on the use of metrics related to the sensitivity of 
the position value to changes in the underlying risk factors: the so-called sensitivities. The sensitivity measures 
are specific for each type of financial instrument and the most used for balance sheet exposures are: 
 

For Bonds: the duration, the convexity and the credit point value, i.e. the change in the value of the bond 
following a one basis point widening of the credit spread. 
 

For Equities: the beta, with respect to an index, or a plurality of coefficients as expected in multifactor models 
that predict the relevance of several macroeconomic factors capable of influencing the variability of share prices. 
 

For Options: the Greeks. 
 

The main limitations of sensitivity measures are that they do not allow for comparing the risks assumed in 
different types of financial instruments, for measuring the riskiness of a portfolio made up of different types of 
instruments and for aggregating the risks even within the same category of tools. For example, the duration of 
a bond denominated in euros cannot be added to that of a bond denominated in dollars. Around the 1980s, 
the attempt to overcome the problems mentioned above led some financial institutions to introduce and 
develop the first models which made it possible to quantify, compare and aggregate the risk associated with 
different portfolios. Such models were initially introduced by major US banks and are generally referred to as 
Value-at-Risk or VaR models. One of the first institutions to develop a VaR model and the first to make it 
public was JP Morgan, author of the RiskMetrics model. 
 

In the 1990s, the publication of the methodology underlying the VaR model and of the market data needed to 
feed it was one of the main factors that contributed to the birth and development of VaR methodologies for 
measuring risk. Subsequently, the decisive affirmation of VaR models in the operational reality of financial 
institutions essentially derived from the multiple uses and the relative simplicity of implementation. The first 
advantage consists in the possibility of homogeneously measuring the risk deriving from holding positions in 
different financial instruments and in allowing the various players to communicate their position in terms of a 
common risk unit. To clarify this concept we can give the example of two traders engaged respectively in long 
positions in shares and in securities. The first trader who wants to communicate the potential exposure of his 
portfolio, made up of BTPs, to adverse movements in market factors, can refer to the nominal value of the 
position and the relative duration. On the other hand, the other operator, who we assume is engaged in the 
trading of derivatives on shares, can report, in addition to the value of the position, also the possible volatility 
of the underlying or of the risk indicators, indicative of the sensitivity of the derivative itself with respect to the 
variations of the risk factors characterizing this particular financial instrument (for example, delta, vega, gamma, 
etc.). Although both provide a fairly objective measure of the riskiness of the investment, neither of the two 
indicators can establish the convenience/opportunity of closing the position or simply assess which of them is 
risking more at that moment. In these terms, the advantage of VaR is clear. The use of VaR techniques in the 
context of normal banking operations allows both horizontal communication, between operators of different 
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desks, and vertical communication with senior management, who are able to evaluate the overall exposure of 
the bank’s portfolio in a homogeneous manner and act promptly in the event that the risk profile is not tolerable 
according to the bank’s risk policies. 
 

Another advantage of VaR techniques is that they allow the determination of limits on risk assumption, which 
can, for example, be imparted by senior management to the various operating desks by communicating the 
maximum exposure that the individual trader can assume through a value expressed in the desired currency. 
Based on the assigned capital and the degree of sensitivity of the single position, the operator can autonomously 
evaluate the overall risk of the portfolio without being deprived of the necessary autonomy. 
 

Let us now enter into the merits of quantifying VaR, which answers a very simple question, in its formulation, 
although complex in its solution: “What is the maximum loss that could be incurred over a certain time horizon, 
such that there is a very low probability, for example 1%, that the actual loss will exceed this amount?”. This 
question implies some hypotheses that must be ascertained in empirical terms and continuously monitored: 
first of all, the concept of maximum loss, then the time horizon, and finally, also the level of confidence which 
can be deemed consistent with the bank’s risk appetite. In general terms, the choice of the time horizon and 
the level of confidence is subjective; in particular, the confidence level defines the degree of protection from 
the risk of adverse market movements. The standard values for this variable are 99% which constitutes a very 
conservative estimate or 95%. Similarly, the periods normally adopted are one day or 10 days. The underlying 
assumption is that the composition of the portfolio remains unchanged during this time period, therefore the 
choice of the reference interval for calculating the VaR must depend on the period necessary for the liquidation 
of the portfolio itself. 
 
The two main approaches for measuring VaR are: 
 

- parametric approaches, based on the so-called risk factor volatility-correlation matrices; 
 

- full-evaluation approaches, based on simulations that use historical data on the returns of risk factors 
(historical simulation) or on simulations of hypothetical scenarios generated with statistical methods (Monte 
Carlo simulation). 
 

With the parametric approach based on volatility-correlation matrices, it is assumed that the probability 
distributions of risk factor returns are governed by the normal probability distribution function. The return on 
a portfolio, equal to the weighted algebraic sum of the returns of the individual assets, would therefore in turn 

be governed by a law of normal distribution. If the mean of the Gaussian distribution is 0 (𝜇 = 0) and the 

standard deviation is 1 (𝜎 = 1), the normal distribution is standardized. All values of the standard normal 

distribution can be expressed as a product 𝑘 ⋅ 𝜎, where 𝑘 is a multiple consistent with the probability associated 
with the value to be extracted. Therefore, if we want to obtain the value that limits a certain confidence interval, 
we need to use: 
 

𝑘 = 1 if we want to obtain the most extreme value in 68.27% of the cases. 
 

𝑘 = 1.25 if we want to obtain the most extreme value in 80% of the cases. 
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𝑘 = 1.65 if we want to obtain the most extreme value in 90% of the cases. 
 

𝑘 = 2.33 if we want to obtain the most extreme value in 98% of the cases. 
 

𝑘 = 2.58 if we want to obtain the most extreme value in 99% of the cases. 
 

Depending on the different levels of 𝑘 it is possible to determine the worst case scenario by setting a certain 
level of probability. Thus, based on the properties of the normal distribution, the VaR of a position is estimated 
as the product of three elements: 
 

- The market value of the position (𝑉𝑀). 
 

- The sensitivity of the market value of the position to changes in the market factor (𝛿) e.g. interest rate, 
exchange rate, … 
 

- The potential adverse change in the market factor, obtained as the product of the estimated volatility of that 

market factor (𝜎) and a scalar factor (𝛼) that corresponds to the desired confidence level. 
 

In mathematical notation, we have: 
 

𝑉𝐴𝑅 = 𝑉𝑀 ⋅ 𝛿 ⋅ (𝜎 ⋅ 𝛼) (Eq. VII.1) 
 

Therefore, VaR measures the loss of the security’s position in the scenario of maximum negative variation of 
yields. The estimation of the VaR requires the determination of the market value of the position, its sensitivity 
to the risk factor, the volatility and, finally, the scaling factor which is strictly linked to the statistical distribution 
and to the probability (or confidence interval). 
 

Let us analyze an example, supposing a bank has invested in a zero coupon with an exposure of EUR 1,000,000, 
a 1-year maturity and a 1-year market yield of 3% p.a. 
 

The market value of such position is: 𝑉𝑀 =
1,000,000

(1+0.03)1 = EUR 970,873.79. 

As the yield increases, the market value of the exposure decreases, and vice versa as it decreases: in the case of 

an increasing variation of the interest rate of 2%, 𝑉𝑀 becomes equal to EUR 952,380. 
 

Therefore, the market return represents the risk factor and its volatility, measured by the standard deviation, 
determines the market value of the portfolio in correspondence with the evolution of the changing scenarios. 
 

But how sensitive is the market value of the securities portfolio to the variability of the market return? If we 
compare the change in the market value of the portfolio before and after the 2% rate hike, the market value of 
the portfolio changed by 1.90%: the difference between the change in returns and that in the market value of 

the portfolio depends on the sensitivity coefficient 𝛿 with respect to the variation of the market return. In this 
case, the coefficient is given by the modified duration, in fact: [1/(1+0.03)] x 2% = 1.93% is the local 
approximation of the variation in market values of the zero-coupon bonds portfolio. 
 

Since the risk manager is interested in predicting losses caused by extreme changes in the market return, i.e., 
the worst in 99% of cases, the parametric approach determines the extreme change in the market return through 
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the product 𝛼 ⋅ 𝜎. The values of 𝛼 are codified in accordance with a standard normal distribution: 
 

- 2.05 for a 98% confidence interval, scaled with respect to the 𝑘 seen previously, since the distribution is 
symmetric, and we want to isolate 2% of the extreme cases. 
 

- 2.33 for a 99% confidence interval, scaled with respect to 𝑘 given that we want to isolate 1% of extreme cases. 
 

Assuming that 𝜎 is equal to 0.40%, it is possible to estimate the VaR as follows: 
 

𝑉𝑎𝑅 = 𝑉𝑀 ⋅ 𝛿 ⋅ (𝜎 ⋅ 𝛼) = 970,873.79 ⋅ 1.93% ⋅ 0.40% ⋅ 2.33 = € 174.64 
 

When calculating the VaR of a portfolio, it must be remembered that the volatility of a portfolio is not the 
weighted average of the volatilities of the positions included in the portfolio, since, according to Markowitz’s 
theory, it benefits from the diversification effect produced by the correlations. For example, if we have a 

portfolio characterized by 𝑛 assets, the 𝜎𝑃
2 would be given by: 

 

𝜎𝑃
2 = ∑ ∑ 𝜌𝑖,𝑗𝜔𝑖𝜔𝑗𝜎𝑖𝜎𝑗

𝑛
𝑗=1

𝑛
𝑖=1  (Eq. VII.2) 

 

Where: 𝜔 is the weight invested in the financial instrument and 𝜌 the correlation coefficient. 
 

Then, there are two ways to extend the VaR estimation from a short-term time horizon (e.g. one business day) 
to a longer time horizon (e.g. 10 business days): one way consists in using the risk factor volatility matrices 
estimated directly on returns over the longer period considered. The second way consists in applying the so-

called rule of the root of 𝑇, i.e. multiplying the estimate of the daily VaR by a scale factor equal to the root of 
the number of days contained in the longest period considered (for example, 10 working days). In mathematical 

terms: 𝑉𝐴𝑅𝑇 = 𝑉𝐴𝑅1 ⋅ √𝑇. 
 

In order to understand the rule of the square root of time, let us suppose we have a stock in our portfolio with 

a market value of EUR 2,500,000. We assume that the sensitivity factor of the stock to risk factors is 𝛽 = 1.245 
and the volatility of the stock returns of the market index is 2.15%. We select a confidence interval of 99%, 
which corresponds to a scaling factor of 2.326 and a time horizon of 1 day. The VaR of this equity position in 
the portfolio is: 
 

𝑉𝐴𝑅 = 2,500,000 ⋅ 1.245 ⋅ 2.15% ⋅ 2.326 ⋅ √1 = EUR 155,653 
 

In other words, there is a 1% probability that the loss will be greater than EUR 155,653 in one day. 
 

Taking the values obtained for the daily VaR of the equity investment, if we want to estimate the VaR for a 
time horizon of 10 days, we obtain: 
 

𝑉𝐴𝑅𝑇=10 = 𝑉𝐴𝑅1 ⋅ √𝑇 = 155,653 ⋅ √10 = EUR 492,218 
 

The square root rule allows to quickly transform daily measurements into calibrated measurements for longer 
time horizons. However, the validity of the measure obtained from the transformation is subject to the fact 
that the returns of the asset considered are independent on a daily basis within the time horizon considered, in 
our case 10 days. 
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One of the advantages of the parametric approaches for estimating VaR based on risk factor volatility-
correlation matrices is the simplicity of implementation: by now there are several management software 
producers who offer various off-the-shelf solutions - i.e. standardized and at reduced costs - for this type of 
VaR estimation models. Another advantage consists in the extreme transparency and possibility of analyzing 
the positions from which the risk originates. In particular, the portfolio VaR estimate can be easily broken down 
according to various axes of analysis, like the business unit or trader, the product, the risk factor. One of the 
major criticisms is, however, the acceptance of the hypothesis of normality. In fact, the probability distributions 
of risk factors (stock prices, interest rates, exchange rates, etc.) actually observed on the markets are not 
“normal”, they are instead characterized by the so-called “fat tails” phenomenon. This means that extreme 
events, e.g., particularly large negative returns, tend to occur with a much higher frequency than that predicted 
by the normal distribution. Therefore, the adoption of an assumption of normality of the returns of the risk 
factors can underestimate the portfolio risk measured through the VaR, especially if estimated on high 
confidence levels above 95%. 
 

To solve this potential issue, an idea can be to adopt a statistical distribution different from the gaussian which 
has characteristics more consistent with the empirical observations of the returns on financial assets. 
Alternatively, we can decide to switch to a model that is not based on a predefined distribution of returns, and 
to simulate its dynamics. Precisely, by removing the a-priori assumption on the distribution of losses, the VaR 
can also be determined using historical simulations and Monte Carlo. The calculation procedure in the 
historical simulation method is very simple and disregards any hypothesis on the type of yield distribution 
function. We may decide to retrieve the series of risk factor returns observed over a given historical period, for 
example, over the last 2 or 3 years. Historical returns are applied to existing portfolio positions and the 
corresponding gains and losses are calculated. These results are reported in descending order starting from the 
highest losses and the worst-case scenario corresponding to a certain percentile (quantile) is extracted: that is, 
that level of loss which is exceeded only in a given percentage (for example, 5% or 1%) of the worst cases. 
 

The application of this method naturally implies the full revaluation of the portfolio on each day of the reference 
time horizon and the subsequent calculation of the daily returns of the portfolio by difference with respect to 
the current value. The method is quite simple to communicate and explain and is currently the most popular 
VaR estimation method among banks worldwide. Furthermore, it does not require to estimate volatility and 
correlation matrices between risk factors: the dependence structure between them is in fact implicit in the 
historical yield series used. Lastly, the method works well in the treatment of option contracts, as it correctly 
captures the “non-linear” value changes of these contracts in response to changes in risk factors. However, it 
should be said that it is based on a strong assumption of “stability” over time of the (joint) probability 
distribution of the risk factors. In other words, it assumes that the returns observed in the past will tend to be 
reproduced in the future with unchanged characteristics. Several empirical studies show that this is not true, 
and VaR estimates based on historical data are unable to effectively predict the future evolution of portfolio 
risks, as the recent crisis has also highlighted. Another problem with the historical simulation method is that 
the VaR estimates it produces over a one-day interval are not easily extendable (or scalable) to longer time 
intervals, for example, 10 days. To overcome the limitations of historical simulation VaR estimates, in recent 
years VaR estimates based on Monte Carlo-type simulations have been introduced and are becoming 
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increasingly important in the banking industry. Estimating VaR using the Monte Carlo method involves 
simulating returns or asset prices using stochastic processes. For each risk factor that influences the value of a 
given portfolio (share prices, interest rates, exchange rates, futures prices on commodities, etc.), a mathematical 
model is constructed which describes the possible future evolution, characterized, for example, for simpler 
models, by an expected value and a certain volatility. A specific dependency structure between the risk factors 
is then established by the developer of the simulation model. In other words, it is a question of mathematically 
describing how the various risk factors vary jointly, influencing each other. As an example, usually when stock 
prices fall rapidly, the volatility of returns increases, and when interest rates increase, stock prices or exchange 
rates are also affected etc.. With the scenarios of the simulated risk factors, the changes in the value of the 
portfolio are constructed and once the losses recorded by the portfolio are sorted in descending order, on the 
basis of the quantile corresponding to the pre-selected degree of probability, the Monte Carlo VaR is estimated. 
 

The Monte Carlo simulation method has the great advantage of being forward looking, i.e. it is oriented 
towards the future, in the sense that a skilled risk manager who knows how to correctly calibrate the 
mathematical-statistical models that rule the dynamics of risk factors can generate extreme scenarios and 
complex interactions, highlighting portfolio risk situations that otherwise would not emerge with other methods 
such as parametric or historical simulation methods. The VaR estimates obtained via Monte Carlo simulation 
are also easily “scalable”, i.e. extendable over periods of time longer than a single working day, such as for 
example 10 days or a month. Indeed, it is sufficient to simulate the evolution of risk factors over several 
consecutive periods. However, the disadvantages of the Monte Carlo method consist in a lower transparency 
and readability of the obtained results. Substantially, the method is like a black-box, in the sense that the 
resulting VaR estimate cannot easily be reconnected to the single positions or single risk factors that originated 
it. Furthermore, there is a disadvantage due to the lack of control over the random generation. Besides, there 
is a tendency to base VaR measurements on variations that rarely represent extreme values, for example in the 
case of 10,000 trails, the 99% VaR represents the hundredth most unfavorable variation. The method is also 
more complex to implement and requires the presence of a team of quantitative experts in the bank capable of 
correctly using the mathematical-statistical models that describe the risk factors. Lastly, although the Monte 
Carlo method is forward looking, it still depends on some subjective choices - in terms of model selection and 
parameter calibration - made by the analysts who make the VaR estimates. Therefore, even the VaR estimates 
produced by Monte Carlo simulation methods, even if based on sophisticated techniques, are still subject to a 
high human error component. For this reason, many companies, in addition to calculating the VaR, implement 
a few checks on the behavior of their portfolio under exceptional conditions (stress tests).  
 

Stress tests consist of estimating portfolio performance in the presence of some of the most extreme market 
movements seen in the last 10 or 20 years. 
 

For example, to see the impact of an extreme movement in US stock prices, we can observe the rates of change 
in market variables observed on October 19, 1987. At that point in time, the rate of change of the S&P 500 
was 22.3 times its standard deviation. If this case is deemed to be too extreme, we can select January 8, 1988, 
then the rate of change of the S&P 500 was 7.7 times its standard deviation. Stress tests are performed to 
account for extreme events that occur from time to time but are virtually impossible under the assumed 
probability distributions for market variables. A daily rate of change of a market variable equal to 5 standard 
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deviations is an extreme event. Under the normal assumption, it should occur every 7,000 years, but in reality, 
it occurs once or twice every ten years. Following the credit crisis of 2007/2008, the Supervisory Authorities 
imposed on credit institutions the calculation of the stressed VaR, which is a VaR based on historical simulation 
of how market variables moved during this particularly unfavorable time range. Regardless of the VaR 
estimation calculation model, an important verification of its reliability is represented by back-testing. 
 
Back-testing consists in verifying the behavior of the VaR estimates, based on historical data. Let us assume 
that we are calculating one-day VaR with a 99% confidence level. Back-testing means observing how often the 
losses were greater than the VaR, based on historical data. If the frequency is equal to approximately 1% of the 
days considered, we can be reasonably satisfied with the methodology for calculating the VaR. While VaR has 
been the most successful tool in measuring market risk, a long-debated limitation within the financial industry 
is the inability to estimate the magnitude of losses in those scenarios where the VaR threshold is exceeded. 
 
In this context, the need therefore arises for a consistent risk measure even in cases of non-normal distributions: 
the Expected Shortfall (ES) describes how large the losses are on average when they exceed the level of VaR. 
Thus ES is the expected loss, given a greater loss (in absolute value) than the VaR. ES is also called Conditional 
VaR (cVaR) or Tail Loss. While VaR questions how bad financial investments can go, ES asks: “If investments 

go bad, what is the expected loss?”. The ES represents the expected loss over a period of 𝑛 days, if the loss is 

greater than the 𝑋-th, for example, 100th, percentile. Like VaR, ES is also a function of two parameters: the 
time horizon and the confidence interval. 
 

The below Figure shows the VaR estimation from a probability distribution of changes in portfolio value. 
 

 
Figure VII.1 Value at Risk and Expected Shortfall 

 
In the figure on the right, although the same VaR is highlighted, in reality the portfolio that generated this 
distribution is riskier than the one that generated the distribution on the left. In this case, unlike VaR, the 
Expected Loss is able to distinguish the two cases and therefore correctly attribute a greater risk to the portfolio 
that generated the right-hand probability distribution. 
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VIII.1 FUNDAMENTALS 
 
 

In this preliminary chapter, I firstly analyze the determinants of demand and supply of credit, then I provide a 
summary for the core elements that constitute a mortgage or loan, i.e.,  interest rate, repayment plans, mode of 
extinction, amount and Loan-to-Value (LTV), guarantees, duration and global effective annual rate (“TAEG” 
- Tasso Annuo Effettivo Globale in Italian). 
 

Demand side 
 

Understanding the determinants of the demand for credit requires an analysis of the monetary and economic 
cycle of the family unit, as well as of the methods of analysis and identification of the external financial needs 
in the case of a corporate. A family has a characteristic cycle determined by the production of work, sale (income 
from work) and the acquisition of goods and services to satisfy the primary and discretionary needs of its 
members. The excess of current and non-current spending needs with respect to income and savings, net of a 
precautionary stock of money, determines the financial needs. A family with adequate financial education tends 
to harmonize financial flows of income and consumption throughout the entire life cycle. Therefore, the 
assessment of the economic-financial balance must be implemented considering a medium-long time span. 
Since the 1950s, the banking economy has linked the demand for consumer credit by households to three 
variables: the total disposable income, the propensity to consume/save and the propensity to indebtedness. 
In the presence of a given disposable income, the determinants of the credit demand are the propensity to 
consume and the propensity to borrow. Traditional theories analyze household behavior as part of a broader 
project (life cycle and permanent income theory) in which the use of consumer credit is a way to anticipate 
consumption needs without waiting for the sum to accumulate. In relation to the fact that consumption needs 
(typical of the early stages of a family) and incomes (higher at the end of the professional life) do not match. In 
fact, there are numerous studies with different approaches that have enriched the explanation of the financial 
behavior of household debt, considering economic, demographic, socio-cultural, psychological and institutional 
variables that affect the propensity to borrow and to consume. 
 

Consumer credit 
 

Understanding the determinants of consumer credit behavior responds to numerous needs for risk 
measurement, for commercial and marketing purposes, for the protection of the financial balance of 
households and for the prevention of credit abuse phenomena. There are numerous factors that influence the 
propensity to borrow and the demand for consumer credit. A major role in the debt choices is played by the 
economic determinants concerning the income profile, the wealth and the level of expenses of the family. It 
refers to the current and expected disposable income, the nature of the income received (from employee work, 
self-employed or atypical jobs…), the number of family members who affect the level of actual income, the 
financial wealth, the existence of property real estate, including the house of residence and the existence of 
other debts, in particular long-term real estate loans. The institutional determinants consider the welfare and 
security systems enjoyed by the family and the efficiency of the judicial systems. Under the first profile, the 
level and methods of intervention of the health system, the insurance and social protections, the safety and 
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breadth of the social security and assistance systems are relevant. Under the second profile, on the other hand, 
the ability and timing of justice in sanctioning opportunistic behavior are important. The demographic 
determinants concern the age of the head of the household, the phase of the family’s life cycle, the degree of 
education, the profession, the area of residence, the type and size of the municipality of residence. Those factors 
are important because they influence the needs and the cultural and consumption reference patterns of the 
family. The psychological and behavioral determinants take into account the individual’s perception of credit, 
to consider how personal and psychological factors influence the debt decision-making processes. Another area 
considers the individual factors that affect the personality of individuals, motivations, purposes, skills, 
preferences and perceptions, specifically those relating to the general economic or environmental situation and 
to the individual. The structural determinants mainly concern the characteristics of the financial system, the 
financial intermediaries, the financing products, and the credit distribution channels. These aspects affect the 
decisions to use consumer credit by changing the availability of credit, the simplicity of access to credit and the 
convenience of debt. A fundamental role is played by commercial distribution, in particular by large-scale 
distribution, which has increasingly used consumer credit as a marketing variable and as a promotional lever 
for its products. 
 

Mortgages and retail estate loans 
 

The demand for real estate mortgages can be divided into two categories: the application for financing necessary 
residential purposes and the one for non-necessary residential purposes. However, it is necessary to consider 
that the mortgage product has other areas of use, different from real estate investments and attributable to 
professional needs, and, last but not least, the debt consolidation in situations of family financial difficulty. The 
request for financing necessary residential purposes concerns the purchase, construction or renovation of a 
house that constitutes the habitual residence. This category constitutes the most relevant part of the mortgage 
applications and comes both from families who do not own a house, and from families who want to change 
and improve their housing situation. The application for financing for non-necessary residential purposes 
concerns the purchase, construction or renovation of a home intended for holidays or the future residence of 
the children. In this second case, temporary investment objectives are also often identified in relation to the age 
of the children or the time span existing before their marriage. This segment of demand is more heterogeneous 
than the first one. The application for financing for non-residential purposes concerns the financing of one’s 
profession, the initiation of children into the profession, expenses of an exceptional nature that cannot be 
deferred. In many cases, especially in recent years, families in financial difficulty who needed to make their 
short-term debts sustainable by consolidating and increasing the time horizon of the amortization plan have 
resorted to mortgages. The determinants of the demand for real estate mortgages assume a more distinctly 
economic essence compared to consumer credit, since the importance of the amount, the duration and the 
impact on the household budget overshadow factors that may be more linked to individual or behavioral 
aspects. However, the high psychological value of the ownership of the residence and the high propensity 
towards ownership remain central, even in contexts and conditions that are scarcely rational from a financial 
point of view. The two fundamental factors that affect the demand for real estate mortgages are the trend of 
the real estate market and the level of interest rates, variables for which the cause-effect relationship is often 
not identifiable with certainty. The trend and situation of the real estate market relate to the level of house 
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prices and rents and the depth of the market. The possibility of buying a home can be linked to the possibility 
of selling another real estate property. In certain negative periods or in specific areas, the real estate market is 
unable to feed the housing replacement process or this occurs over a very long period of time and to the 
detriment of the real estate value. The second relevant factor in the demand for mortgages is the level of interest 
rates, although it would be more appropriate to refer to the overall cost of the operations and the sustainability 
of the installments, linked not only to the level of market rates but also to other characteristics of the operation 
such as the expiry and the Loan to Value, which is the ratio between the amount of a loan and the value of the 
assets pledged as collateral. In short, the main purposes of the mortgage application are the following: 
 

- purchase or construction of the first house and/or its renovation. 
- construction of the second house. 
- purchase or construction of the children’s home. 
- purchase or construction of housing for investment purposes. 
- financing of one’s profession or the profession of children. 
- expenses of an exceptional nature and not deferrable. 
- debt consolidation. 
- improvement of the economic conditions of existing mortgages/loans. 
 

Agents classification and clustering 
 

Banks have developed a strong and ingrained market orientation. At the basis of this approach lies the attention 
paid to the customer’s needs i.e. to the demand side. The latter, being expressed in various ways, determine 
different customer segments, that is, relatively homogeneous groups of customers (consumers or corporates). 
Banks aim to define their offer according to these segments in order to meet their needs more effectively or 
more efficiently than their competitors. The clustering of these individuals into segments is one way in which 
banks tend to reduce the complexity of the market with the final aim of organizing their business and achieving 
their goals. A customer cluster, if correctly identified and defined, must be: 
 

- internally homogeneous, in the sense that customers belonging to the segment prefer the same characteristics 
of the product and/or service. 
- externally differentiated, in the sense that customers in different segments have different preferences. 
- characterized by a high reactivity of behaviors to the same marketing impulses. 
 

From a strategic point of view, it is necessary not only to identify the segmentation parameters and customer 
segments but, above all, to choose the segments with which to operate. Segmentation can be done based on 
numerous parameters and criteria. The most common are: 
 

- demographic criteria, generally corresponding to characteristics relating to age, family unit, family life cycle. 
- geographical criteria, relating to the place of residence (area, region, small, medium, large municipality, …). 
- socio-economic criteria, relating to income, type of disposable income, wealth, profession, level of education, 
riskiness, … 
- psychographic criteria, relating to social class, lifestyle, reference group, psychological factors, propensity or 
aversion to risk. 
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- behavioral criteria, relating to the methods of use of the product or service, e.g. frequency of use, intensity of 
use, brand loyalty, sensitivity to different marketing tools, … 

 

From an organizational point of view, suitable segmentation is the prerequisite for greater process efficiency 
through a high standardization of products/services and industrialization of the production phase. This is 
fundamental for a bank, especially for retail customer segments, characterized by small size and poor individual 
ability to generate value for banks, constituting the so-called mass market. In fact, retail customers are not all 
the same. They can be divided into two macro categories: mass retail and relational retail. Mass retail is the most 
standardized group since it is composed of customers (families and small economic operators), with simple 
needs and a high sensitivity to pricing policies. The relational retail sub-segment, on the other hand, includes 
affluents and small businesses, that is, customers who require more articulated assistance and a greater degree 
of customization, made economically sustainable by their ability to develop a greater volume of revenues. 
Chronologically, we have moved from segmentation criteria mainly based on geo-demographic variables 
towards behavioral criteria and, subsequently, towards criteria capable of identifying large groups of customers 
based on the distinction between individuals and companies and, within these two groupings, based on assets 
and turnover. However, there is no lack of more sophisticated segmentation processes that support marketing 
and commercial activities and product differentiation. A further approach to the segmentation of demand was 
that aimed at clustering the customers already acquired due to behavior in the use of banking services. This 
behavioral segmentation has allowed banks to get to know their customers better, both from a static and from 
a dynamic point of view and to identify new development opportunities in terms of cross selling or to recognize 
behavioral anomalies worthy of targeted interventions. Another very important segmentation criterion, which 
helped to redefine the business areas of the banking market, was the one known with the term “organizational 
segmentation”. The private market has been divided into mass customers, affluent customers and private 
customers based on the financial assets owned. Nonfinancial Industries were divided, mainly on the basis of 
the size of their revenues, into small business (generally characterized by annual revenues below 2.5 million 
Euros), corporate (generally characterized by annual revenues above 2.5 million Euros) and large corporate 
(generally characterized by annual revenues greater than 50 million Euros). Like retail customers, corporate 
customers are also subject to segmentation. The market segmentation criteria can be used individually or 
through combinations. In the first case, companies are classified based on a single variable, for example, the 
size class, the financial complexity, the sector, the organizational characteristics, the degree of openness to the 
outside; in the second case they are grouped by referring to more variables at the same time: usually by crossing 
variables with each other (for example, size with complexity) and possibly adding further behavioral descriptors 
(for example, the degree of acceptance of innovative distribution channels). The most common segments are 
shown below: 
 

Dimensional segmentation: the criterion traditionally used to segment the corporate market is based on size. 
Size can be variably measured, for example based on revenues, on the number of employees, etc..., and it allows 
to identify different segments of companies, typically labelled as large, medium and small. The different size of 
the companies corresponds to qualitative differences in the nature of the needs expressed and in the policies 
pursued by the bank to satisfy them. In particular, there are at least four profiles under which the companies 
belonging to the identified segments differ. I) The first profile is linked to the nature of the needs to be satisfied. 
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Traditionally, large firms tend to express complex financial needs that go beyond the mere need for financing. 
Conversely, small and medium-sized enterprises tend more frequently to manifest financial needs in the strict 
sense that translate into financing needs met through cash loans or endorsement loans. Complex financial 
needs, on the other hand, imply needs that also extend, for example, to the risk management determining a 
demand for banking services that is not exclusively oriented towards loans (credit derivatives, outright, flexible 
forward, swap, …). II) The second profile is related to the company’s ability to access alternative sources of 
financing. Normally, larger companies have the possibility to draw on a greater plurality of sources of financing 
to meet their financial needs, such as, for example, the use of the securities market to raise risk capital or debt 
capital. This choice gives them greater bargaining power and consequently the opportunity to obtain more 
favorable price conditions. III) The third profile concerns the sensitivity to the interest rate and to other price 
conditions. The greater contractual strength allows larger companies to focus on the “economic dimension” of 
the relationship with the bank. The smaller the differentiation and complexity of the services that the bank 
offers to large companies, the more the company will choose its financial partner based on the most favorable 
price conditions it can obtain. The small business, on the other hand, is in a position of price taker in the sense 
that it has a limited possibility of influencing the definition of the price conditions of the services that the 
intermediary provides. IV) The fourth aspect refers to the complexity and articulation of the mix of financial 
services used by the company during its relationship with the bank. The size, the territorial distribution, the 
production and distribution complexity are elements that have a strong impact on the type of financial services 
that a company needs. 
 

Segmentation according to the life cycle of the sector/company: the segmentation criterion based on the 
analysis of the life cycle of the sector and/or the company identifies the specific financial needs in relation to 
the phase of the life cycle in which the company, or sector, is located. In particular, this model identifies four 
phases, the birth, development, maturity and decline, which correspond to financial needs that differ from a 
qualitative-quantitative point of view. For example, in the development phase the company needs strong 
financial support, by way of loan capital; in the maturity phase, on the other hand, its primary financial needs 
are linked to the management of financial cash-flows and strategic advice. The basic hypothesis behind this 
criterion is that the company’s growth process is accompanied by a change, an expansion and a greater 
complexity of the financial services it may need. 
 

Segmentation based on organizational characteristics: this criterion is based on the organizational and 
managerial features that characterize the management of a company (for example “family-based management” 
vs. “managerial handling”, private company vs. public company, etc.), recognizing the different organizational 
structures and different ownership structures purchasing behavior and their different needs. For example, a 
family-type business probably has a centralized decision-making process with mainly basic financial and credit 
needs. On the contrary, a managerial company is characterized by articulated, formalized and decentralized 
decision-making processes, in which the rational component is predominant; financial needs are more complex 
and lead to the need for advice in restructuring operations, support in capital market listing operations, the 
provision of guarantees for the issue of bonds, etc… 

 

Segmentation based on the legal form: customer segmentation, specifically for lending purposes, can also refer 
to the different legal forms of the company, distinguishing between: I) the entrepreneur who, individually and 
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professionally carries out an organized economic activity, not in a corporate form; II) the partnership, 
characterized by imperfect financial autonomy in which the partners are jointly liable, on a subsidiary and 
unlimited basis, for the obligations of the company, with certain exceptions established by law. The legal system 
recognizes a legal subjectivity to a partnership: it constitutes a separate subject from the partners, owner of its 
own legal relationships and its own assets; III) the stock company, characterized by perfect financial autonomy: 
the shareholders are liable for the corporate obligations within the limits of the share conferred, with some 
exceptions established by law. Legal personality is recognized by the legal system. The segmentation based on 
legal form has numerous implications from a credit profile since for each segment the information available, 
the administrative-accounting obligations, the separation between company and personnel assets, etc. are 
substantially different, and these elements affect the assessment of creditworthiness. 
 

Segmentation based on the level of international opening: this segmentation criterion is used to consider the 
different management needs of companies that have a high degree of operations on foreign procurement. For 
this customer segment, risk management needs are particularly important, mainly linked to hedge their open 
positions in exchange rates. A further segmentation can be determined based on the areas of interest for the 
internationalization: operating in advanced foreign countries close to the country of origin is very different 
from operating in developing or emerging countries that can be geographically and culturally very distant. 

 

Multi-criteria segmentation: the application of multiple criteria for market segmentation and, subsequently, to 
optimize the business portfolio activates a process that increases the degree of detail of the analysis. The first 
phase of the segmentation process consists of an economic analysis of the environment in which the company 
operates and the general data relating to the company. With regard to environmental data, the information 
commonly collected relates to the sector to which it belongs, while as regards the company, the information is 
limited to its size class and its geographical location. The second phase of the process involves an analysis of 
customers to identify elements of homogeneity in relation to economic-financial and behavioral aspects, such 
as: I) the preference for certain services provided by the bank and for particular distribution channels, like the 
preference for using the branch or on-line distribution methods; II) the possibility of establishing long-term 
relationships with customers, identifying “relationship-oriented” customer segments or, vice versa, the 
possibility of identifying companies with which to adopt risk-limiting behavior (“transaction-oriented” 
customers); III) greater or lesser attention to elements of customization/standardization of the service; IV) the 
logic that characterizes the process and the purchasing behavior of the company (short-term and price 
orientation, long-term orientation, relationship and quality of service). 

 

The list of possible criteria could continue, but the identification and preference accorded to a segmentation 
policy must conform to the needs of the bank in relation to its functionality in managing the relationship with 
its customers. 
 

Supply side 
 

The purpose of this section is to analyze the main economic agents able to satisfy the demand for money. In 
this context it is essential to distinguish if the required amount of money comes from consumer lending or a 
real estate loan. 
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Consumer credit 
 

The analysis of the structure of the supply side of the consumer credit market consists in examining the 
operators who offer products designed to meet the financial needs of households for consumption. From a 
regulatory point of view, agents who can offer loans to households and, therefore, potentially be present in the 
consumer credit market are: 

 

- Banks. 
 

- Suppliers of goods and service providers in accordance with TUB - art.122. They may conclude credit 
agreements in the form of a deferral of the payment of price with the exclusion of the payment of interest and 
other charges. For example, an appliance retailer could sell to its customers by splitting the price of the asset 
into multiple payments over time i.e., as if it were a loan but without adding any cost to the selling price. 
 

- Foreign banks. The legislation allows banks and financial companies controlled by banks authorized in a 
Member State of the European Union (EU) to carry out banking activities admitted to mutual recognition in 
Italy, through a branch or under the provision of services without establishment, on the basis of the 
authorization issued by the authority of the country of origin and under the control of the authority itself, which 
remains responsible for their financial soundness. In many cases, this is the way in which financial and banking 
intermediaries linked to large industrial groups, especially in the automotive sector, are present in Italy, operating 
through the offices of dealerships and sales outlets located in Italy. 

 

- Financial intermediaries in accordance with TUB - art. 106. The activity of granting loans to the public in any 
form is reserved for authorized financial intermediaries, registered in a specific list. Currently, financial 
intermediaries that carry out financing activities must possess specific legal and equity requirements, while their 
directors and shareholders must possess the requisites of professionalism, integrity and independence. Financial 
intermediaries are supervised entities, they must comply with the minimum capital requirements imposed by 
the regulations, and they must be able to carry out all risk containment activities in its various configurations. 
Finally, they must have an administrative and accounting organization and an internal control system capable 
of assisting and optimizing their risk management skills. 
 

- Payment institutions in accordance with TUB - art. 114-sexies. Payment institutions may grant credit in close 
relation to payment services provided as an ancillary activity to the provision of payment services. For example, 
by placing a credit line at the disposal of its customers to avoid lack of funds to meet payment orders received 
over time. Payment institutions can grant loans as part of credit lines granted to payment service users or as 
part of the issue of payment instruments provided that: I) the loan is accessory and granted exclusively in 
relation to the execution of a payment transaction, II) the loan is short-term, not exceeding twelve months; 
only loans granted in relation to payments made by credit card can have a duration beyond 12 months, III) the 
loan is not granted using funds received or held for the purpose of executing a payment transaction. 
 

- Microcredit companies in accordance with TUB - art. 111. Microcredit companies are a specific category of 
operators that can provide loans under specific conditions. They can grant loans, with specific characteristics, 
for starting or carrying out self-employment or micro-enterprise activities. Strictly speaking, this is not a 
consumer credit activity as it is a loan for professional purposes. However, they can operate in consumer credit 
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pursuant to the third paragraph of art. 111 of TUB, which establishes that microcredit companies can also 
provide, on a non-prevalent basis, loans in favor of individuals in conditions of particular economic or social 
vulnerability, provided that the loans granted fulfill the following requirements: I) they are granted for a 
maximum amount of 10,000 Euro, they are not backed by collateral and have a maximum duration of 5 years, 
II) they are accompanied by the provision of auxiliary family budget services that provide debtors with useful 
information to improve the management of income and expenditure flows and are carried out during the entire 
duration of the loan repayment plan, III) they have the purpose of allowing the social and financial inclusion 
of the beneficiary, IV) their terms are more favorable than those prevailing on the market. 

 

Please note that this classification only refers to operators and financial intermediaries. A category of activities 
directly implemented through the web can be added: 
 

- Crowdfunding: a process through which a group of people financially supports an initiative (economic, social 
or other) or the satisfaction of a need (of a family, business or non-profit organization) through the web. 
 

- Peer to peer lending: financing activities by numerous subjects who do not know each other, carried out 
without the help of financial intermediaries directly on the Internet through specialized sites that deal with 
putting the parties in contact and carrying out a credit check. 
 

- Social lending: loan activity carried out by individuals to other individuals or non-profit companies on the 
Internet through specific platforms managed by specialized operators. Generally, the loan is split between 
numerous lenders. 

 

The structure of the offer is also influenced by the type of distribution channels used by intermediaries. The 
legislation on consumer credit (Legislative Decree n. 141 of 2010) has significantly intervened on the 
organization of distribution channels, in order to improve the supervision of the customer relationship and 
fairness in the context of household financing. In the literature, distribution channels are defined as the set of 
subjects, activities, processes and technologies that allow the provision of a service to the customer. The focus 
is therefore on all types of channels that banks use in the context of their business. A functional classification 
for the analysis of the consumer credit market is that which distinguishes between: 
 

- Direct distribution channels: branches of the company and the network bank. 
- Intermediated distribution channels: commercial dealers, credit brokers, financial agents and branches of 
commercial partner banks. 
- Virtual channels: Internet, ATM counters, credit cards, call center and smart phones. 

 

Direct channels do not provide for the intervention of any person between intermediary and consumer. They 
can be defined as “short” and all those who act within these channels have a hierarchical relationship of 
dependence on the lender. In the case that the interaction with the consumer is mediated by technology, we are 
in the context of virtual channels that organize the provision of the service differently, with a greater 
participation of the consumer in the improvement of the service but always without any third-party intervention 
apart from the debtor and the lender. The intermediated distribution channels, on the other hand, provide for 
the intervention of one or more subjects other than the lender in the provision of the financing service. These 
subjects can carry out different types of activities, from the simple reporting of the customer, to the promotion 
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of the loan and, in some cases, to the conclusion of the same. In many cases, they manage the interaction with 
the customer and constitute the only interface with which the consumer relates in the assignment process. The 
management of these negotiation phases, the most delicate for a correct development of the relationship and 
for the protection of the consumer, has pushed the legislative authorities to regulate the “credit intermediaries”. 
The legislation (Legislative Decree n. 141 of 2010) regulates financial intermediaries and the intermediated 
distribution channels of consumer credit and the entire consumer financing activity. With reference to the 
distribution channels, it specifies the role of the activity and the extent of intervention of agents, credit brokers 
and commercial establishments both in the context of the credit process and in the individual phases and also 
in the financial relationship with the consumer. Particularly: 

 

- Commercial dealers can participate in the promotion and conclusion of loan agreements solely for the 
purchase of their own goods and services based on specific agreements entered into with banks and financial 
intermediaries. However, these activities cannot be implemented if they concern contracts relating to the 
issuance of credit cards. 
 

- Brokers can only promote bank loans but cannot under any circumstances conclude contracts, as well as carry 
out the provision of loans and any form of payment or collection of money on behalf of banks or financial 
intermediaries. 
 

- Financial agents can act under a single mandate, that is, they cannot be agents of several financial 
intermediaries and offer similar products from different banks or financial companies. For reasons of 
completing the range of products, they may act under a maximum of three mandates but only if they concern 
different products. 

 

From an operational point of view the classification of the products intended for the financing of households, 
which represents the demand side, can be carried out with reference to the purposes (finalized and non-finalized 
credit) and to the methods of use and duration (revolving credit or fixed-term credit). A possible classification 
of consumer credit products can be found below: 
 

- Finalized credit: it includes all loans whose purpose is determined at the time of the request and, in general, 
concerns the purchase of a durable good, a consumer good or a service. The customer can access the financing 
directly from the point of sale of the supplier of goods or services. 
 

- Non finalized credit: it includes all loans disbursed to households, intended to cover a generic financial need, 
the cause of which is not directly linked to the purchase of a specific good or service. 
 

- Fixed-term loan: a loan with a specific duration and a debt amortization plan predefined in the installments 
and payment deadlines. 
 

- Loan with an unspecified maturity: it includes all loans without any defined deadline and with high flexibility 
of use in which the debtor is granted the right to decide the amounts and the period of use in relation to his 
own financial needs. Generally, they are revolving credit lines where the return of the sums used restores the 
amount to be used. 
The most important financing product used to be the classic installment loan, used mainly to finance the 
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purchase of durable goods and, in particular, the purchase of new and used cars. Over time, thanks to a 
progressive change in consumer behavior and dominant orientations on the supply side, a significant 
disintermediation of consumer credit has been generated. The role of commercial dealers decreased 
significantly, and the weight of non-finalized loans recorded a significant increase. It should be specified that 
this is not due to a contraction in the volumes of finalized credit but to a higher growth of non-finalized forms 
of financing, like personal loans, salary-backed loans and revolving cards. The increase in the importance of 
non-finalized credit is a trend shared both by retail banks and specialized intermediaries. The main household 
financing products are: 
 

- Personal loan: the personal loan is a non-finalized loan agreement that provides for the disbursement of a 
sum to a customer, who undertakes at the time of signing the contract to repay it according to a predefined 
amortization plan. The contractual scheme of the personal loan consists of the loan agreement, therefore the 
personal loan is perfected with the delivery of the money by the bank. The financed party assumes the obligation 
to repay the loan plus interest within a period normally not exceeding 10 years. Generally, in consumer credit, 
personal loans are mostly fixed-rate with French repayment but, with the lengthening of the duration of 
personal loans, floating-rate loans are also spreading. The personal loan allows to enhance the customer 
relationship since the applicant can contact the bank with which he has a fiduciary relationship and obtain 
conditions that are expressive of the actual economic and financial situation. This type of financing proves to 
be quite useful to satisfy financial needs of greater amounts and maturities or customer segments with greater 
risk, which therefore require a more in-depth assessment capable of enhancing even the so-called qualitative 
information. Both consumers and lenders have shown a growing preference for this type of loan. Currently, 
around 40% of consumer credit is made through this technical form. The personal loan is the preferential 
product of the banks’ offer. 

 

- Finalized credit: the targeted loans constitute a form of consumer credit whose purpose is determined at the 
time of the request and consists in the financing of the purchase of a durable good, a consumer good or a 
service. The customer normally accesses this type of loan directly from the sales branch of the commercial 
distributor through different organizational methods that allow quick management of the credit investigation 
activated by the commercial dealer. Although the operation involves only and directly the lender and the 
consumer, the sum is directly credited in favor of the commercial distributor who made the sale of the asset. 
This represents the real difference between the finalized loan and the personal loan. The other characteristics 
of the operation are substantially similar to the personal loan. Finalized credit is one of the most traditional 
forms of consumer credit, and indeed we can say that it has been the driver of the development of the Italian 
market. Although reduced in importance, it currently constitutes about 31% of the total credit. 
 

- Loan against assignment of one fifth of the salary: the salary-backed loan is a personal loan intended for those 
who receive an income from public or private employment, open-ended and fixed-term, from retirement and 
from atypical work. The disbursement of the salary-backed loan does not require any minimum working 
seniority and its duration must not exceed ten years. The renewal of the loan is allowed only after at least two 
fifths of the original duration have elapsed. The salary-backed loan must be assisted by a double insurance 
policy that protects the creditor in the event of death and loss of employment. In fact, the insurance policy is 
also a way of protecting the heirs or family members in order to limit the effects of debt in the case of one of 
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the two events. There are no limits on the amount, although considering the maximum maturity and the 
constraint of the installment, the minimum pension treatment net of the installment must be protected. Loans 
to retirees only provide for an insurance policy which ensures the recovery of the residual credit in the event of 
the death of the retiree. 
The salary-backed loan is a form of financing that involves several subjects, even though the credit relationship 
is always between the bank and the customer. In addition to the lender and the consumer, the loan against 
assignment of the fifth obligatorily involves an insurance company and the assigned administration (social 
security institution or employer). The third-party administration is the government, state or public 
administration, or the private company where the transferor works, which will have to pay, after notification of 
the contract, the monthly payment of the portion relating to the repayment of the loan, withheld from the 
salary. The administration, despite having an active part in the transaction, is a figure who does not intervene 
for the purpose of signing the contract, which remains exclusively bilateral between the bank and the customer. 
The insurance company guarantees the operation through two types of policy. The legislation provides that the 
loan is always guaranteed by an insurance policy that covers the risk of the transferor’s death or loss of 
employment, whether due to resignation or dismissal. With reference to pensioners, however, only the life risk 
policy is envisaged. In the event of a claim (i.e. the negative event for the employee), the beneficiary of the 
policy is the lender who will collect the residual amount of the credit. The insurance retains a right of recourse 
against the transferor with reference to the employment risk. The assignment of the fifth, therefore, plays a 
positive role in all transactions with a higher risk profile, being a product naturally guaranteed by its operating 
structure and by the existence of insurance policies. Salary-backed loans, although having always existed on the 
market, have undergone an important revitalization with the regulatory measures that have affected them since 
2005. Currently they represent about 10% of the overall consumer credit disbursed in Italy. 
 

- Revolving credit cards: credit cards are electronic documents in the form of plastic cards that allow the holder, 
within the agreed monthly limit, both to make payments through the POS terminals installed in the affiliated 
shops, and to obtain cash advances at ATMs. The settlement of the balance takes place in installments through 
a specific credit line. Reimbursements periodically made aim to replenish the credit line for the same amount 
for a further use of the card. In most cases, these cards are issued with a dual functionality, by installments and 
by full settlement, in order to be used by the customer according to his preferences and needs. Such cards are 
called “option cards”. The installment credit card is a form of financing with reduced monitoring possibilities 
and should therefore be granted to customers who have an adequate degree of reliability. The credit repayment 
plan used through a credit card is normally based on an installment proportional to the amount used or a fixed 
installment, defined in relation to the amount of the credit granted or on the basis of a predefined repayment 
period that determines the amount of the installment. Interest is calculated with the nominal annual rate and 
relates only to the amounts actually used by the credit card holder. In the case of an unused or inactivated 
installment card, the bank and/or the financial company do not receive any payment as interest. Installment 
credit cards are the most advanced financing instrument on the market as they allow access to credit in any area 
of consumption and leave maximum flexibility of use but at the same time they require a high degree of financial 
education to be able to correctly manage credit use and the effects on the income of the family. They represent 
approximately 10% of the total consumer credit disbursed. 
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Mortgages and Retail estate loans 
 

The structure of the supply side of the household mortgage market is mainly composed of banks and specialized 
operators. Banks are the main operators, with a wide range of products for families. Over time, they have 
differentiated their business models by operating above all through the reorganization of both the production 
and the distribution. Some banking groups have opted for business models that provide for a unit specialized 
in the production of mortgages that carries out a captive activity towards the group’s customers and operates 
through intermediated distribution channels. Several other groups and smaller banks have adopted integrated 
organizational solutions, internalizing production and distribution. Some banks make use of third-party 
networks but the main reference is constituted by the branches. Specialized operators operating in the Italian 
market are diversified in nature: in some cases, they are financial intermediaries belonging to banking groups, 
in others, they are the emanation of foreign banking groups operating in Italy through intermediated or virtual 
channels, in further cases they are financial intermediaries or specialized banks which operate solely in the 
household financing sector. In relation to the operational characteristics, their distribution organization is 
equally varied, which is strongly marked by multi-channeling (third-party networks, credit brokers, agents, 
financial advisors, points and financial shops as well as branches). With reference to the market as a whole, 
however, real estate mortgages are disbursed to a greater extent (and increasing) through traditional direct 
channels, branches, which carry about 79% of mortgages. This reflects not only the structure of the market but 
also the credit policies of the intermediaries: the increasing use of branches allows for greater control of risks 
and greater severity of customer acquisition criteria, a consequence of the greater economic difficulties and the 
increased riskiness that have characterized families since 2009. Indirect channels, consisting of third-party 
networks and credit intermediaries, affect approximately 17% of the volumes of credit disbursed, with a 
decreasing significance compared to previous years. Virtual channels (direct, i.e. managed by the lender, and 
indirect, i.e. managed by third parties) still have a marginal role on the market. Specialized financial 
intermediaries use external networks to a greater extent as a distribution channel, while the situation is reversed 
in banks, where the branch is the main distribution channel. For operational purposes we can distinguish four 
types of mortgages with reference to the different types of guarantees that assist it and to the different type of 
financial needs of the family: 
 

- the mortgage loan (“mutuo fondiario” in Italian): the mortgage loan is a medium and long-term loan secured 
by a first degree collateral on a property. It is specifically governed by the TUB which defines its technical 
characteristics and operating methods. This kind of mortgage loan is normally aimed at the purchase or 
construction of a property. The maximum amount is determined in proportion to the value of the property 
placed under guarantee or the cost of the works to be carried out on it. The amount of the mortgage loan 
relating to the purchase of residential homes must never exceed 80% of the value of the property. This 
percentage can be raised up to 100% if additional guarantees are given. In any case, the mortgage must respect 
the following relationship: 

 
𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 𝑙𝑜𝑎𝑛 𝑎𝑚𝑜𝑢𝑛𝑡

𝑟𝑒𝑎𝑙 𝑒𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑢𝑛𝑑𝑒𝑟 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒+𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝑠
≤ 80%  (Eq. VIII.1) 
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In short, the concept behind mortgage loans is based on three substantial aspects: I) the amount of the loan 
must never exceed 80% of the real value of the property purchased, except in cases where there are additional 
guarantees; II) the duration of the loan must be medium and long term, thus over 18 months; III) the guarantee 
must be of a mortgage nature, which means strictly first degree and relating to a property. 

 

- unsecured mortgages (“mutui chirografari” in Italian): unsecured mortgages (or “chirographary” from the 
Greek “cheiros”, hand) are unsecured mortgages deriving from a simple private agreement signed by the debtor. 
In this sense they are practically identical to a personal loan. In operational practice, however, the unsecured 
loan indicates a loan without mortgage guarantees but, often, backed by personal guarantees, drafts or other 
guarantees. The absence of collateral affects both the duration of the loan, which normally does not exceed 10 
years, and the investigation times, which are longer compared to consumer credit. 
 

- “Liquidity” Mortgage Loans: “Liquidity” mortgage loans are defined as all mortgages that aim to finance the 
financial needs of families other than the purchase or construction of homes. Liquidity mortgages are by 
definition mortgages and have the function of transforming real estate into money necessary to meet the needs 
of the family related to the financing of their profession, specialized studies of children, expenses related to 
particular events such as marriage or to cope with situations of particular gravity related to health. Real estate 
property constitutes the guarantee of the loan but, in any case, the amount is proportionate to the current 
income of the family and its repayment capacity, in order to make the loan repayment plan sustainable. Liquidity 
mortgages constitute the competing product to the assignment of the fifth if reference is made to employees. 
However, it is necessary to verify the amount of the financial requirement and the deadlines necessary to make 
the installments sustainable, which, in some cases, exceed the constraints of the assignment of the fifth. One 
of the more specific purposes of the liquidity loan is debt consolidation. It happens that some families put in 
place an incorrect debt process, sometimes too short-term oriented or that originates a stratification of several 
unsustainable loans. In other cases, the same effect is determined by unforeseen events that affect income or 
current expenses or the weight of financial charges (trend in interest rates). All this can result in the financial 
inability to repay the installments and the consequent need to dilute them over a longer period of time. In these 
cases, liquidity mortgages combine to consolidate all existing debts into a single debt with a duration and a 
repayment profile more suited to the repayment capacity of the family. 
 

- lifetime mortgage loans (PIV) or “reverse mortgage” - Law n. 44 of 2015 defines the lifetime mortgage loan 
as a medium and long-term loan, granted by banks as well as by financial intermediaries (pursuant to art. 106 
TUB), with annual capitalization of interest and expenses and full repayment in a single installment. The loan 
can only be disbursed to individuals over the age of 60. Lifetime mortgage loans are secured by a first degree 
mortgage on residential properties. The first degree mortgage guaranteeing the PIV cannot be registered at the 
same time on several properties owned by the borrower. The reimbursement can be requested in a single 
solution: I) at the time of the death of the financed party; II) if the ownership or other real or entitlement rights 
on the property given as guarantee are transferred, in whole or in part; III) if acts are carried out that significantly 
reduce the value of the property given as a guarantee, including the establishment of collateral real rights in 
favor of third parties who burden said property. When signing the contract, the financed party is allowed to 
agree on any procedure for the gradual reimbursement of the portion of interest and expenses, before the 
occurrence of the aforementioned events. 
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Obviously, this is allowed on the repaid sums on which the annual capitalization of interest is not applied. In 
short, this is a loan that advances an amount proportional to the value of the property on which the mortgage 
guarantee is registered, normally never exceeding 50% of the evaluation value and, in any case, linked to the 
characteristics of the property, of the market in which it is located and its possibility to be resold. Mostly all 
types of properties are allowed, but the loan is normally refused in the presence of properties with poor 
possibility to be resold or in the presence of risks that characterize the property or the area in which it is located. 
The payment of interest and the return of capital are not envisaged until the death of the owner of the property 
or, if jointly held, of the longer-lived of the two owners. In any case, the debtors do not lose their right to live 
in the home. The lifetime loan (i.e. the amount disbursed plus accrued interest) can be repaid in a single solution 
by the heirs and/or assignees, normally within 12 months following the death of the longest-lived of the 
contractors. 
When this event occurs, the heirs may decide to return the loan and interest without proceeding with the sale 
of the property, using other financial resources. If there are no heirs, or if they do not proceed with the 
repayment, the loan is extinguished with the sale of the property. In this case, the lender sells the property at a 
value equal to the market value, determined by an independent expert appointed by the lender, using the sums 
obtained from the sale to extinguish the credit due to the loan itself. 
Once a further twelve months have elapsed without the sale having been completed, this value is reduced by 
15 percent for each subsequent twelve months until the sale of the property is finalized. The function of these 
types of loans is to give an elderly person the opportunity to cope with exceptional health events or to guarantee 
the care needs of those who find themselves in difficult situations but are owners of the house in which they 
reside. 
 

Interest rate 
 

One of the main variables that characterize a mortgage is the method of calculating the interest, since it 
represents the component of the biggest cost. The main options are: fixed rate, floating rate, mixed rate, capped 
rate. 
 

Fixed rate 
 

The fixed rate provides that the interest rate is defined at the signing of the contract, and it remains constant 
for the entire duration of the loan. The fixed rate therefore allows to know both the amounts of the single 
installments and the total amount of debt (principal and interest) to be repaid at the time of subscription. With 
the fixed rate, the interest rate risk associated with any market fluctuations remains in the bank’s income 
statement. Banks usually set an interest rate linked to the Interest Rate Swap (IRS) rate, that is the rate offered 
in swap contracts relating to interest rates that discounts the rational expectations on the market. From the 
customer’s point of view, the choice of the fixed rate substantially responds to prudential and insurance needs 
deriving from the need to align the installments to the level of their income, normally not of a high amount but 
with characteristics of stability and certainty. This type of rate is advisable for those who want to be sure of the 
amounts of the single installments and the total amount of the debt to be repaid from the moment the contract 
is signed, in the face of more onerous conditions compared to floating rate mortgages. The disadvantage is not 
being able to take advantage of any reductions in market rates. 
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Floating rate 
 

The floating rate provides that the interest rate is indexed to a market parameter which is defined at the time 
of the contract to which an annual nominal increase (spread) is normally added to take into account the costs 
and risk of the loan. Currently, banks mainly refer to the Euribor (Euro Interbank Offered Rate, i.e. the rate at 
which banks with primary credit standing declare themselves willing to exchange money with each other), or 
to the marginal refinancing rate of the ECB (i.e. the rate applied by the ECB on loans granted to banks for 
liquidity reasons). The money market and interbank rates reflect the trend in the cost of money on the market. 
However, banks mainly use other methods to raise money and, therefore, the average cost of funding does not 
coincide with the market cost, and it is usually lower. The variable rate follows the trend of the benchmark 
parameter and therefore transfers the entire risk rate to the borrower. Banks promote fixed or floating rate 
mortgages not only in relation to market trends but also to their exposure to interest rate risk, which also 
considers the characteristics of the interest rates adopted with depositors and bondholders. Given that they are 
facing the interest rate risk, families generally enjoy lower rates since they do not have to discount the prudential 
component that banks provide for the fixed rate in the face of uncertainty. In any case, the floating rate is only 
recommended for families who want to take advantage of the market trend but can support any increase in the 
amount of the installments. Traditional mathematical finance formulas can be applied to estimate the forward 
rate between two payment dates starting from the benchmark rate swap curve. 
 

Mixed rate 
 

The mixed interest rate implies the right of the borrower to periodically change their choice regarding the 
methods of calculating interest, transforming the mortgage from a fixed rate to a floating rate and vice versa. 
This option is specifically defined by the contract, together with the dates in which it can be exercised and the 
methods of determining the variable rate and the fixed rate (which is recalculated at each expiry of the exercise 
of the option). The mixed rate mortgage has a cost and is advisable when the borrower actually can follow and 
predict the trend of interest rates, otherwise it becomes a counterproductive and more expensive option due to 
the delay with which the choices are made. The balanced interest rate is different because it provides for the 
existence of a fixed rate and a variable rate used “pro quota” for the calculation of interest. Basically, the 
mortgage is partly at a fixed rate and partly at a variable rate, in order to balance the disadvantages of both and 
offer an intermediate solution in terms of risk and cost. From a quantitative point of view, it is not a big problem 
to calculate the interests on a mixed-rate loan if there is no optionality, that is the customer (or the bank) cannot 
dynamically choose if there is the convenience to switch from a floating to a fixed rate, or viceversa. The 
problem arises if there is no pre-fixed plan of the installments, that is a counterparty has the right to choose 
the type of rate to be applied at certain dates. In this second case, to evaluate the right to change the nature of 
the interests, it is necessary to perform an algorithm able to simulate the floating rates in the dates in which the 
option can be exercised. These projections are then compared with the fixed rate. If the customer originally has 
a fixed rate to pay to the bank and the simulated forward rate is lower, he has the convenience to switch, 
otherwise not. This reasoning can also be applied if the bank has a long position on this option: in this case the 
financial institution will exercise its right if the projection of the simulated forward rates is higher than the fixed 
rate. In quantitative finance, a numerical (or, when it is possible, analytical) integration of a Stochastic 
Differential Equation (SDE) has been typically adopted to design a Monte Carlo engine. Among the numerous 
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short-rate dynamics that can be implemented for simulating the floating rates, we choose the Vasicek (also 
known as Ornstein-Uhlenbeck) model. 
The stochastic motion can be represented by the following SDE: 

 

𝑑𝑟𝑡 = 𝑘[Θ − 𝑟𝑡]𝑑𝑡 + 𝜎𝑑𝑊𝑡 (Eq. VIII.2) 
 

with: 𝑟𝑡 the short-rate observed in the market at time 𝑡; 𝑊𝑡 the standard Wiener process; 𝑘 the mean reversion 

speed rate; Θ the long-term mean and 𝜎 the volatility. 
 

This model is popular among professionals for different reasons: 
 

- it considers the mean-reversion of the underlying, which is an important feature for this kind of variable. 
 

- it only has three constant parameters to be calibrated, i.e. the long term mean level, Θ, the speed of the mean 

reversion, 𝑘 and the volatility 𝜎. The financial instruments which can be used for this task are very common 
on the markets (zero coupon bonds). The historical time series of the benchmark short-rates can also be used. 
 

- there is an analytical solution for the SDE. This means that the projections of the rate can be performed 
directly on the relevant date without the need to code a numerical integration scheme, like the Maruyama-Euler 
scheme. This considerably reduces the computational time. 
 

- the core dynamics also works in a low-rate environment. For the sake of precision, the tuning of the SDE 
parameters may have some problems with deep negative levels as shown in (Giribone, 2020). In this case, it is 
reasonable to adopt a one-factor Hull-White model, which is a generalization of the Vasicek model in which 
the mean reversion is time-variant and linked to the interest rate term structure. 

 

There are two techniques for calibrating the model parameters of the SDE (𝑘, Θ and 𝜎): the least squares 
regression method and the maximum likelihood method. 
 

Most software tools have built-in functionality for the least square regression. The formulas needed to perform 

it without using the standard software routine are reported below. We denote with the variable 𝑆𝑖 the i-th 

sample in the dataset of rates used for the model calibration and with 𝑛 the cardinality of this set. A least square 
regression can be done by calculating the following quantities: 
 

𝑆𝑥 = ∑ 𝑆𝑖−1
𝑛
𝑖=1 , 𝑆𝑦 = ∑ 𝑆𝑖

𝑛
𝑖=1 , 𝑆𝑥𝑥 = ∑ 𝑆𝑖−1

2𝑛
𝑖=1 , 𝑆𝑦𝑦 = ∑ 𝑆𝑖

2𝑛
𝑖=1 , 𝑆𝑥𝑦 = ∑ 𝑆𝑖−1

𝑛
𝑖=1 𝑆𝑖 (Eq. VIII.3) 

From which we obtain the following parameters of the least square fit: 
 

𝑎 =
𝑛 𝑆𝑥𝑦−𝑆𝑥𝑆𝑦

𝑛𝑆𝑥𝑥−𝑆𝑥
2 , 𝑏 =

𝑆𝑦−𝑎𝑆𝑥

𝑛
 and 𝑠𝑑(𝜖) = √

 𝑛𝑆𝑦𝑦−𝑆𝑦
2−𝑎(𝑛𝑆𝑥𝑦−𝑆𝑥𝑆𝑦)

𝑛(𝑛−2)
 (Eq. VIII.4) 

 

Where 𝜖 is the independent and identically distributed (i.i.d.) normal random term. The relationship between 

the linear fit 𝑆𝑖+1 = 𝑎𝑆𝑖 + 𝑏 + 𝜖 and the model parameters is given by: 
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𝑎 = exp(−𝜅𝛿), 𝑏 = 𝜃(1 − exp(−𝜅𝛿)) and 𝑠𝑑(𝜖) = 𝜎√
1−exp(−2𝜅𝛿)

2𝜅
  (Eq. VIII.5) 

where 𝛿 is the process time step. Rewriting these equations in terms of 𝜅, 𝜃 and 𝜎, we obtain the tuned 
parameters for the Vasicek dynamics in accordance with the least square regression technique. 
 

𝜅 = −
ln(𝑎)

𝛿
, 𝜃 =

𝑏

1−𝑎
 and  𝜎 = 𝑠𝑑(𝜖)√

−2 ln(𝑎)

𝛿(1−𝑎2)
 (Eq. VIII.6) 

 

Now let us deal with the calibration of the model parameters using the Maximum Likelihood. The conditional 
probability density function is derived by combining the simulation equation Eq. VIII.2 with the probability 

density function of the normal distribution: 𝑃(𝑁0,1 = 𝑥) =
1

√2𝜋
exp (−

1

2
𝑥2). The equation of the conditional 

probability density of an observation 𝑆𝑖+1 given a previous observation 𝑆𝑖 (with a 𝛿 time step between them) 
is given by: 
 

𝑓(𝑆𝑖+1| 𝑆𝑖: 𝜃, 𝜅, �̂�) =
exp[−

(𝑆𝑖−𝑆𝑖−1 exp(−𝜅𝛿)−𝜃(1−exp(−𝜅𝛿)))
2

2�̂�2
]

√2𝜋�̂�2
 (Eq. VIII.7) 

 
 

With �̂�2 = 𝜎2
1−exp(−2𝜅𝛿)

2𝜅
. The log-likelihood function of a set of observations {𝑆0, 𝑆1, … , 𝑆𝑁} can be derived 

from the conditional density function: 
 

ℓ(𝜃, 𝜅, �̂�) = ∑ ln 𝑓(𝑆𝑖𝑆𝑖−1: 𝜃, 𝜅, 𝜎)
𝑁
𝑖=1 = (Eq. VIII.8) 

= −
𝑁

2
ln(2𝜋) − 𝑁 ln(�̂�) −

1

2�̂�2
∑[𝑆𝑖 − 𝑆𝑖−1 exp(−𝜅𝛿) − 𝜃(1 − exp(−𝜅𝛿))]

2

𝑁

𝑖=1

 

 

The maximum of this log-likelihood surface can be found at the location where all the partial derivatives are 
zero. This leads to the following set of constraints: 

 

𝜕ℓ(𝜃,𝜅,�̂�)

𝜕𝜃
= 0 (Eq. VIII.9) 

 
1

�̂�2
∑ [𝑆𝑖 − 𝑆𝑖−1 exp(−𝜅𝛿) − 𝜃(1 − exp(−𝜅𝛿))]
𝑁
𝑖=1 = 0 → 𝜃 =

∑ [𝑆𝑖−𝑆𝑖−1 exp(−𝜅𝛿)]
𝑁
𝑖=1

𝑁(1−𝑒𝑥𝑝(−𝜅𝛿))
  

 
𝜕ℓ(𝜃,𝜅,�̂�)

𝜕𝜅
= 0 (Eq. VIII.10) 

 

−
𝛿 exp(−𝜅𝛿)

�̂�2
∑ [(𝑆𝑖 − 𝜃)(𝑆𝑖−1 − 𝜃) − exp(−𝜅𝛿)(𝑆𝑖−1 − 𝜃)

2]𝑁
𝑖=1 = 0 → 𝜅 = −

1

𝛿
ln
∑ (𝑆𝑖−𝜃)(𝑆𝑖−1−𝜃)
𝑁
𝑖=1

∑ (𝑆𝑖−1−𝜃)
2𝑁

𝑖=1

  
 

𝜕ℓ(𝜃,𝜅,�̂�)

𝜕�̂�
= 0 (Eq. VIII.11) 
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𝑁

�̂�
−

1

�̂�3
∑ [𝑆𝑖 − 𝜃 − exp(−𝜅𝛿)(𝑆𝑖−1 − 𝜃)]

2𝑁
𝑖=1 = 0 → �̂�2 =

1

𝑁
∑ [𝑆𝑖 − 𝜃 − exp(−𝜅𝛿)(𝑆𝑖−1 − 𝜃)]

2𝑁
𝑖=1    

 

The problem with these conditions is that the solutions depend on each other. However, both 𝜅 and 𝜃 are 

independent of 𝜎, and knowing either 𝜅 or 𝜃 will directly give the value of the other. The solution of 𝜎 can be 

found once both 𝜅 and 𝜃 are determined. To solve these equations, it is thus sufficient to find either 𝜅 or 𝜃. 

Finding 𝜃 can be done by substituting the 𝜅 condition into the 𝜃. 
 

Firstly, we change the notation of the 𝜃 and 𝜅 condition using the same notation as Eq. VIII.3 which gives us: 
 

𝜃 =
𝑆𝑦−𝑒𝑥𝑝(−𝜅𝛿)𝑆𝑥

𝑁(1−𝑒𝑥𝑝(−𝜅𝛿))
, 𝜅 = −

1

𝛿
ln
𝑆𝑥𝑦−𝜃𝑆𝑥−𝜃𝑆𝑦+𝑁𝜃

2

𝑆𝑥𝑥−2𝜃𝑆𝑥+𝑁𝜃
2  (Eq. VIII.12) 

 

Substituting 𝜅 into 𝜃 gives: 

𝑁𝜃 =
𝑆𝑦−(

𝑆𝑥𝑦−𝜃𝑆𝑥−𝜃𝑆𝑦+𝑁𝜃
2

𝑆𝑥𝑥−2𝜃𝑆𝑥+𝑁𝜃
2 𝑆𝑥)

1−(
𝑆𝑥𝑦−𝜃𝑆𝑥−𝜃𝑆𝑦+𝑁𝜃

2

𝑆𝑥𝑥−2𝜃𝑆𝑥+𝑁𝜃
2 𝑆𝑥)

  (Eq. VIII.13) 

 

Removing denominators: 
 

𝑁𝜃 =
𝑆𝑦(𝑆𝑥𝑥−2𝜃𝑆𝑥+𝑁𝜃

2)−(𝑆𝑥𝑦−𝜃𝑆𝑥−𝜃𝑆𝑦+𝑁𝜃
2)𝑆𝑥

(𝑆𝑥𝑥−2𝜃𝑆𝑥+𝑁𝜃
2)−(𝑆𝑥𝑦−𝜃𝑆𝑥−𝜃𝑆𝑦+𝑁𝜃

2)
  (Eq. VIII.14) 

 

Collecting terms: 
 

𝑁𝜃 =
(𝑆𝑦𝑆𝑥𝑥−𝑆𝑥𝑆𝑥𝑦)+𝜃(𝑆𝑥

2−𝑆𝑥𝑆𝑦)+𝜃
2𝑁(𝑆𝑦−𝑆𝑥)

(𝑆𝑥𝑥−𝑆𝑥𝑦)+𝜃(𝑆𝑦−𝑆𝑥)
 (Eq. VIII.15) 

 

Moving all 𝜃 to the left: 
 

𝑁𝜃(𝑆𝑥𝑥 − 𝑆𝑥𝑦) − 𝜃(𝑆𝑥
2 − 𝑆𝑥𝑆𝑦) = 𝑆𝑦𝑆𝑥𝑥 − 𝑆𝑥𝑆𝑥𝑦 (Eq. VIII.16) 

 

Solving for 𝜃: 
 

𝜃 =
𝑆𝑦𝑆𝑥𝑥−𝑆𝑥𝑆𝑥𝑦

𝑁(𝑆𝑥𝑥−𝑆𝑥𝑦)−(𝑆𝑥
2−𝑆𝑥𝑆𝑦)

 (Eq. VIII.17) 
 

𝜅 remains the same as in Eq. VIII.10. Having found an expression for 𝜃 and 𝜅 and using the notation 

introduced in Eq. VIII.3, we can also derive a formula for �̂� and 𝜎. 
 

�̂�2 =
1

𝑁
[𝑆𝑦𝑦 − 2𝛼𝑆𝑥𝑦 + 𝛼

2𝑆𝑥𝑥 − 2𝜃(1 − 𝛼)(𝑆𝑦 − 𝛼𝑆𝑥) + 𝑁𝜃
2(1 − 𝛼)2] (Eq. VIII.18) 

 

𝜎2 = �̂�2
2𝜅

1−𝛼2
 (Eq. VIII.19) 
 

With 𝛼 = exp(−𝜅𝛿). 
 

Now that we have two tools to calibrate the Vasicek dynamics, let us proceed to calibrate the model on the 
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time series of the ICE IBOR GBP 3 month (BP0003M Index). We take into consideration the fixing of the 
British pound short rates from 31st December 2010 to 30th September 2021 with a quarterly sample. The red 
line in Figure VIII.1 shows this time series, the x-axis label are the quarterly periods (i.e. 0 is the latest value, 
negative integers are the number of the previous quarters counting from 9/30/2021, positive numbers are the 
upcoming quarters). After implementing the two techniques for the Vasicek parameters in Python, we obtain: 

𝜅 = 0.258, 𝜃 = 0.323 and 𝜎 = 0.235. By the application of Itô’s lemma, Eq. VIII.2 can be rewritten into an 
analytical solution: 
 

𝑟𝑡+1 = 𝑟𝑡 exp(−𝜅𝛿) + 𝜃(1 − exp(−𝜅𝛿)) + 𝜎√
1−exp(−2𝜅𝛿)

2𝜅
𝜖0,1 (Eq. VIII.20) 

 

With 𝜖0,1 a random draw from a standardized normal distribution: NID(0,1). 
25 paths are simulated in accordance with Eq. VIII.20 and they are represented in blue in Figure VIII.1. 
 

 
Figure VIII.1 Short rates simulations in accordance with the Vasicek model 

 

This tool is useful to estimate the convenience to exercise the right for the holder to switch from paying an 
interest linked to a floating rate to a fixed rate. The main idea is to implement many replications (for instance 
10,000) of the short rate for all the dates in which the analyst is interested in measuring his convenience to 
exercise the option, i.e., he has to compare the level of the simulated rates with the fixed level of the constant 

rate. The Python code is able to store the simulated values of 𝑟 for each replication and for every future quarters. 
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Starting from this data, quants can calculate the in-the-moneyness probability of the option for each future 
time-step. In particular, the proposed code estimates the probability of having a short rate (assuming that 
BP0003M Index is equal to the value recorded on the market on 30th September 2021: 0.08188%) greater than 
the fixed rate equal to 0.8% within 21 quarters. This probability of having the option in-the-money at least once 
has been estimated in accordance with the implemented Vasicek model to be about 11.30%. 

 

 
 

Figure VIII.2 Graphical representation of the short rates paths used for estimating the convenience to 
exercise the right of switching the mode for paying the interest on a mortgage 

 
 

Capped rate 
 

Banks have begun to offer households structured mortgages capable of associating the protections offered by 
derivative products to the loan agreement. The capped rate is a variable rate method which offers the customer 
the possibility of defining the maximum level of the interest rate: in the event that the level of market rates 
exceeds the maximum level (cap), the customer pays the target rate until interest rates return to the predefined 
level. In general, these mortgages have a higher spread than variable rate mortgages, but they have aroused 
growing interest from customers especially as a result of the instability and uncertainty that has characterized 
the market these past few years. The pricing formulas in accordance with the log-normal and normal pricing 
framework has already been discussed in Part III. 
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Repayment plans 
 

The loan repayment plan (or loan amortization) summarizes the methods for repaying the loan by the debtor 
and specifies the amounts to be paid, the payment deadlines and the composition of the single installments in 
terms of interest and capital share. This feature of the loan is the area that allows the greatest degree of 
customization in terms of return flexibility and consistency with the family’s income flows. The amortization 
of an undivided loan (that is a loan which cannot be divided into debt securities, such as bonds) is a form of 
loan in which the repayment of the capital and the payment of interest take place according to particular 
methods, among which the most widespread is the one that provides for the disbursement, by the debtor, of a 
certain number of periodic installments including capital and interests. The list of installments to be repaid, 
each with its own due date and in which the capital share and the interest share are usually paid, is called the 
“repayment plan” of the loan or the amortization plan of the loan. The essential elements of the loan with 
periodic repayment are: 
 

- the initial capital (𝐶) loaned to the borrower by the lender, which is typically a bank or a finance company. 
 

- the amount of periodic installments (𝑅), which can be the same for all installments or vary from one to the 
other. 

- the frequency of the installments, indicated with (𝑚), for instance if 𝑚 = 12 the frequency is monthly, if 𝑚 =
2, it is semiannual, etc…. 
 

- the interest rate (𝑖) at which the loan is settled in a compounded interest regime. 
 

- the total duration of the loan (𝑛), i.e. the period from the moment of disbursement (when the sum is materially 
given to the debtor) to the payment of the last installment provided for in the amortization plan. It is expressed 
in years. 
 

In the next subsections, we will examine the main typologies of amortization linked to loans and mortgages. 
 

Amortisation with single reimbursement of capital 
 

The simplest form of amortisation is that which provides for a reimbursement on a single maturity, after 𝑛 

years, of the full loan amount (𝐶) and the payment of the interest 𝑖 at the end of each period (Table VIII.1). 
 

 
 

Table VIII.1 Depreciation with single reimbursement of capital 
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The debtor only pays the interest 𝐶𝑖 for 𝑛 − 1 years calculated on the residual debt (which for the entire 

duration of the loan is always 𝐶), while at the end of the last year (the 𝑛-th ) the debtor pays both the interest 

and the full capital 𝐶, which is then repaid in a lump sum at the maturity of the loan, i.e. after 𝑛 years. The 

interest payable at the end of each period is therefore the simple result of the product 𝐶 ⋅ 𝑖 . Generally, loans 
are repaid through a depreciation plan characterized by the progression of the capital share, i.e. by the inclusion 
in the single payment of a share-part of the capital lent, which is added to the interest in the payment on the 
residual debt at the end of each period (Table VIII.2). 
 

 
 

Table VIII.2 Depreciation with periodic reimbursement of capital 
 

Progressive French amortisation with constant installments 
 

This is a gradual amortization in which the installments to be paid at the end of each year are calculated so that 
they remain constant over time for the entire duration of the loan. The installments therefore include a share 
of capital and a share of interest which, combining harmoniously together, maintain a constant periodic amount 
for all years. This is possible since the amount of capital repaid is low at the start of the amortization and then 
gradually increases while the loan is repaid. Vice versa the interest amount starts from a very high level and then 
gradually decreases during the amortization plan. It should be noted that this trend in the interest part is 
explained by the fact that the interest is calculated on an initially high residual debt and then increasingly lower 
by virtue of the progressive repayment of the capital that occurs at each installment date. Most of the loans of 
Italian banks are repaid using the French amortization method with constant installments which is the most 
widespread in Italy. Table VIII.3 briefly shows the mechanism of a standard progressive French amortisation 

with constant yearly installments. In accordance with (a quite old-fashioned) mathematical finance: v =
1

1+𝑖
 and 

𝑎𝑛¬𝑖 =
1−(1+𝑖)−𝑛

𝑖
 (Italian actuaries read this notation as 𝑎 “figurato” 𝑛 at rate 𝑖). Generally, the installments of 

a loan have infra-yearly payments. One of the simplest methods to define the French amortisation values with 
infra-yearly installments is to calculate the monthly interest rate starting from the annual one, using the 

equivalent rate formulas valid in the compound interest regime 𝑖𝑚 = (1 + 𝑖)
1/𝑚 − 1. Having no longer (𝑖) but 

(𝑖𝑚), the amortization is identical to that already considered, except for the need to extend the total duration of 

the loan to 𝑛 ⋅ 𝑚. Table VIII.4 shows this generalization. 
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Table VIII.3 Progressive French amortization with constant yearly installments 
 

 
Table VIII.4 Progressive French amortization with constant infra-yearly installments 

 

Progressive Italian amortisation with constant capital shares 
 

This is another particular case of progressive or gradual amortisation. It is characterized by the fact that in this 
repayment plan the capital shares are constant, but not the installments as in the French one. The capital shares 

are therefore all equal to: 𝐶/𝑛. Therefore, the amortization plan of the loan assumes the configuration indicated 
in Table VIII.5. In the case the installment had an infra-yearly periodicity, we can use the equivalent rates 
formula as in the previous amortisation plans. 
 

 
 

Table VIII.5 Italian amortization with a constant capital share 
 

German amortisation 
 

In this amortisation, interest is paid at the beginning of each period and not at the end; for this reason we have 
to use an anticipated interest rate for the calculation. Hence two cash flows are paid every year: the interest at 
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the beginning and the capital share at the end of each period. The German amortisation works as follows: 
 

- Upon stipulation of the loan (year 0) the debtor only pays the portion of interest of the first year. 
- After one year he pays the first principal amount and the interest portion of the second year. 
- After n-1 years he pays the capital share of the penultimate year and the interest share of the last year. 
- After n years, the debtor only pays the last share of the capital (that of the last year). 
 

French amortization can also be adapted to become “German”, i.e. to provide for the payment of interest at 
the beginning of the period, rather than at the end. It is sufficient to leave the formulas for calculating the 
principal amount unchanged (which continues to be paid at the end of each period) and modify the formulas 
of the interest portion to consider that at the beginning of each year the debtor pays for the amount deriving 
from the application of the proper discount rate to the amount of the residual debt resulting at the end of the 
previous year. The latter value is therefore the result of the residual debt relating to the previous year multiplied 
by the discount factor, or, of the share of deferred interest (contained in the French amortization table) divided 

by (1 + 𝑖) to anticipate it by one year. As said before, we can adopt the equivalent rates formula in the case of 
infra-annual cash flows. 

 

American amortisation 
 

The latter case is also called two-rate amortization, and is essentially built on two hypotheses: 
 

- from the first to the 𝑛 − 1-th maturity, the debtor reimburses only the interest portion 𝐶𝑖 according to a rate 

of remuneration 𝑖, while at maturity of the loan he repays the entire sum lent in addition to interest: 𝐶(𝑖 + 1); 
- at the same time, the debtor also pays an installment to another subject at each period, accumulating money 

which, capitalized at an accumulation rate 𝑗, generally different from 𝑖, generates the sum 𝐶 to be repaid on 
maturity of the loan. 
Therefore, each total installment paid by the debtor amounts to: 

 

𝑅 = (𝑖 +
𝑗

(1+𝑗)𝑛−1
)𝐶 (Eq. VIII.21) 

 

The debtor should use this method if the accumulation rate 𝑗 is higher than the rate of return 𝑖. We have coded 
a Python function able to calculate repayment plans in accordance with the previous rules. 
The coded function getAmortisationPlan(C,i,N,m,Type,j=0) takes as inputs: the capital C, the interest i of the 
installment, the duration of the loans in years N, and the infra-yearly frequency m. As a result, the number of 
installments to be paid is m * N. The function has a further optional argument: the accumulation rate j which 
is only taken into consideration in the American amortisation. In the following tables, the script automatically 
generates the plans for a loan with C = 10, 000, i = 0.05, N = 3, m = 2 varying the type of amortisation. In 
particular: 
 
Table VIII.6 implements the Amortisation with single reimbursement of capital rules (Table VIII.1). The 
function must be called with Type=‘Single’. 
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Table VIII.6 Amortisation with single reimbursement of capital: C = 10.000, i = 5%, N = 3 and m = 2 

 
Table VIII.7 implements the Progressive French amortisation with constant installments (Table VIII.4). The 
function must be called with Type=‘French’. Note that setting m=1, the code generates Table VIII.3. 
 

 
 

Table VIII.7 Progressive French amortisation with constant installments: C = 10.000, i = 5%, N = 3, m = 2 
 

Table VIII.8 implements the Progressive Italian amortisation with constant capital shares (Table VIII.5). The 
function must be called with Type=‘Italian’. 

 

 
 

Table VIII.8 Progressive Italian amortisation with constant capital shares: C = 10.000, i = 5%, N = 3, m = 2 
 

Table VIII.9 implements the German amortisation. The function must be called with Type=‘German’. 
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Table VIII.9 German amortisation: C = 10.000, i = 5%, N = 3 and m = 2 
 

Table VIII.10 implements the American amortisation. The function must be called with Type=‘American’ and 
specifying the accumulation rate j = 0.04. 
 

 
 

Table VIII.10 American amortisation: C = 10.000, i = 5%, N = 3, m = 2 and j = 5.5% 
 

The global effective annual rate – “TAEG” 
 

The “TAEG” is the main information parameter through which the actual cost of a loan can be verified. The 
TAEG identifies how much the charges relating to the loan affect, on an annual basis, the total sum of the 
amounts made available to the consumer. It therefore provides an indication of the actual cost of a loan since, 
on the one hand, it considers all the costs that the consumer has to bear, regardless of whether they are 
components of the lender’s revenue (taxes, for example) and, on the other hand, it considers the sums actually 
transferred to the consumer (disbursed capital). The use of the financial discounting formula (which indicates 
the present value of a future cash flow) also allows to take into account the temporal distribution of costs, 
withdrawals and reimbursements and, therefore, to consider the actual period of use of the money (and the 
financial value of time). The formula is the same used in financial mathematics to calculate the internal rate of 
return (IRR) obtained by equating the net present value (NPV) to zero. Finally, it should be remembered that 
the calculation of TAEG must be done with a prudential logic that is, where there are different options - for 
example cost - the worst hypothesis for the customer should be used, in order to represent the most expensive 
possible situation of the customer’s financing. The TAEG introduced by the legislation includes interest and 
all costs, commissions, taxes and all other expenses that the consumer must pay in order to obtain and use the 
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loan and of which the lender is aware. Only notary fees are excluded, if they exist. The TAEG includes any fees 
from credit intermediaries, costs relating to ancillary services connected with the credit agreement and 
mandatory to obtain the credit or to obtain it at the conditions offered which the lender is aware of. It also 
includes - if subject to an agreement between the lender and the consumer – the costs of managing the account 
on which the payment transactions and withdrawals are recorded, the costs related to the use of means of 
payment that allow payments and withdrawals to be made and all other costs relating to payment transactions. 
In the event that the account can also be used for different transactions, the TAEG includes all fixed costs 
(even if aimed at remunerating services unrelated to the loan) and only variable costs depending on the use of 
the loan alone. An example of a TAEG calculation is now presented. It has been said that the TAEG is 
calculated as the discount rate that results from the solution of the net present value equation, which considers 
the (algebraic) sum of all repayments, withdrawals and costs that occur during the life of a loan. On March 28, 
2013, the change in the hypothesis for calculating the TAEG (EU Directive 90/2011) was implemented, which 
provides for the existence of a single calculation method for all consumer loans, including current account 
overdrafts. 

 

∑
𝐹𝑘

(1+𝑇𝐴𝐸𝐺)𝑡𝑘
𝑛
𝑘=1 = 0 (Eq. VIII.22) 

 

Let us suppose we have a one-year loan of EUR 5,000: 
- to be repaid in 12 constant installments, at a rate of 10%. 
- with fixed commissions of various kinds in the amount of EUR 200 with advance payment. 
- and monthly expenses of EUR 5. 
The monthly payment, given by principal and interest, is equal to EUR 439.58. The TAEG is 22.25%, that is a 

value which makes the sum of 𝐹𝑘 equal to zero (Table VIII.11). 
 

 

 
 

Table VIII.11 TAEG computation 
 

The correct calculation of TAEG can be checked summing the NPVs contribution in Table VIII.11. This sum 
should be zero. The importance of the real estate debt decision is confirmed by the regulatory attention placed 
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on the degree of information transparency that must characterize this moment. Financial intermediaries must 
provide a complete information framework both in the pre-contractual phase and in the phase of signing the 
contract. They follow the principle of proportionality by providing a protection modulated according to the 
subjective characteristics of the customer, through the preparation of provisions applicable exclusively in 
relation to retail customers. With reference to the loan, as part of these obligations, intermediaries are required 
to provide: 
 

- the TAEG; 
- information on economic conditions in such a way that the overall cost can be easily understood. 
- the indication that the customer will be able to consult the global average effective rate (TEGM - Tasso 
Effettivo Globale Medio), i.e. the reference rate for identifying the threshold relating to the hypothesis of usury. 
- the comparison sheet of mortgages: it is added to the information sheet in the case of mortgage loans for the 
purchase of a house and it has the function of facilitating the understanding of the products allowing an optimal 
choice by the customer. 
 

The TEGM indicates the average value of the rate effectively applied by the banking and financial system to 
homogeneous categories of credit transactions (for example: current account credit, personal loans, leasing, 
factoring, mortgages, etc.) in the second previous quarter. The calculation of the rate must consider the 
commissions, remuneration and the costs associated with the provision of credit and incurred by the customer, 
of which the lender is aware, also taking into account the legislation on transparency. Taxes, fees and notary 
fees are excluded. The recognition takes place in a differentiated manner both for the technical forms and for 
the amount classes, to take into account the greater incidence of fixed costs on low-value loans. The average 
overall effective rate is used to calculate the threshold rate, beyond which transactions are considered usurious. 
The TEGM results from the survey carried out every three months by the Bank of Italy on behalf of the 
Minister of Economy and Finance. From 14th May 2011, the limit beyond which interest is deemed usurious 
is calculated by increasing the average overall effective rate by a quarter, plus a margin of a further four 
percentage points. In any case, the difference between the threshold rate and the TEGM cannot exceed eight 
percentage points. 
 

Mode of Settlement plans 
 

The repayment of the loan can take place in different ways in relation to the evolution of the relationship 
between the customer and the bank and the evolution of the debtor’s earning and savings capacity which could 
give rise to the need for a modification of the original loan or allow to repay in advance. The ordinary hypothesis 
is that the obligation is closed with the payment of all installments and, therefore, upon the natural expiry of 
the loan. The evolution of the loan can also follow other directions: 
 

- early repayment of the loan. The customer can pay off all or part of the loan before the maturity without 
having to pay any penalty, fee or additional charge. Total repayment involves the termination of the contractual 
relationship with the repayment of the capital still due before the loan expires. The legislation has broadened 
the choice of the debtor, reducing the contractual rigidity of the mortgages and the cost of the changes, 
assuming that the cost of repayment represents a serious obstacle to competition in the credit market.  In the 
case of mortgages other than those granted for the purchase of the house, this involves the right of the debtors 
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to pay off early and the right of the bank to demand, as consideration for the early withdrawal, exclusively an 
all-inclusive fee for the repayment, which must be defined in the contract. In the case of loans granted for the 
purchase of the house, it involves the nullity of any agreement or clause, even after the conclusion of the 
contract, by which it is agreed that the borrower is required to pay a fee or penalty for early repayment (total or 
partial) of the loans taken for the purchase or renovation of real estate units used as homes or for the 
performance of their economic or professional activity by individuals. 
 

- replacement of the creditor (subrogation). The legislation provides for the possibility of replacing the bank 
that granted the loan through the subrogation of the original creditor, thus creating the so-called “portability” 
of the loan. This allows the borrower to replace the loan with a new loan without the need for the lender’s 
consent. The reasons are substantially linked to the possibility of obtaining more favorable economic conditions 
compared to the pre-existing contract which, therefore, increases competition and promotes fairness in the 
bank-customer relationship. In particular, thanks to the subrogation discipline (Article 120-quater TUB), the 
subrogate lender (i.e. the new bank) takes over the personal and real guarantees that were lent by the borrower 
to guarantee for the original credit (i.e. the old mortgage) without the need to cancel the old mortgage and 
register the new one, while the debtor does not have to incur charges, expenses or commissions for the granting 
of the new loan. Therefore, expenses or commissions cannot be imposed on the customer (not even indirectly) 
for the granting of the new loan, for the preliminary investigation and for the cadastral assessments, which must 
be implemented according to collaboration procedures between intermediaries, based on general criteria. 

 

- replacement of the debtor (assumption of debt). The replacement of the debtor through the assumption of 
the debt determines the replacement of the debtor by a third party. The assumption occurs in the purchase and 
sale transactions in which the buyer decides to take over the seller’s obligations against a sale price of the 
property which considers the debt incurred in terms of residual capital and interest. Another frequent case of 
replacement of the debtor may also occur in the case of separation of the spouses, when the loan agreement is 
jointly held by the spouses or in the case of the debtor’s disappearance, if the heirs take over the obligation. 
The replacement is assessed by the bank which verifies the reliability and sustainability of the new debtor and 
may request new additional guarantees, if necessary. 

 

- termination due to default. The bank has the right to terminate the contract in the event that the debtor is late 
in fulfilling to pay the installments at least seven times, even if not consecutive. For this purpose, the law 
considers the payment made between the thirtieth and the 180th day from the expiry of the installment to be a 
delayed payment. 

 

- the renegotiation of the loan. The renegotiation of the loan is not a real method of repayment, but it gives 
flexibility to the bank-customer relationship, reducing the competitive demands coming from the market. The 
liberalization that has taken place in the mortgage market and the reduction in exit or change costs incentivize 
banks to favor the renegotiation of loan conditions in order not to lose the customer relationship or, in some 
cases, to rebalance the economic and financial situation of the debtor. In the event that the renegotiation 
concerns the reduction of the duration, the reduction of the spread, the variation of the indexing parameter, 
the reduction of the fixed interest rate or the variation of the frequency of the installments, only the consent of 
the parties and an exchange of correspondence are required. In the case of a mortgage loan, the extension of 
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the duration of the loan requires, however, the use of a public deed. 
 

The loan amount and the Loan to Value ratio 
 

The legislation does not identify a maximum amount of the loan. The only requirement concerns the mortgage 
where, as seen, there is a maximum amount equal to 80% of the value of the guarantee, which can be extended 
to 100% in the presence of additional guarantees. Consequently, the Loan to Value (LTV), or the relationship 
between the amount of the loan and the value of the property placed as collateral (which often coincides with 
the property purchased) can assume values up to 100%. The trend of the real estate market and the dynamics 
of house prices have produced a generalized increase in the amounts requested in the last 15 years. Over two 
thirds of the required mortgages exceed EUR 100,000. The amount is a direct function of the value of the 
property and, above all, of the capacity and income stability of the family that must ensure the repayment of 
the loan. The LTV of land loans also reaches 100% of the property value. In these cases, banks may request 
additional guarantees from third parties, or they may require a third party to commit with their income to repay 
the loan in the event of non-payment by the borrower. In Italy, the average LTV is approximately 59%. 
 

Duration 
 

The price of houses has produced a generalized increase in financial needs and, consequently, in the amount of 
mortgage applications. This contributed to extending the duration of the mortgages in order to be able to 
distribute the loan repayment plan over a broader time span and thus make the installments sustainable. The 
duration of the mortgages normally varies from 5 to 30 years, and a few financial intermediaries offer mortgages 
with even longer durations. The duration of the loan is influenced by the socio-demographic and economic 
characteristics of the borrower. Age, level and characteristics of income are the main factors that determine the 
choice of duration. Young people with a low income level but with a “stable” growth prospect can access 
longer-lasting mortgages that increase the sustainability of the installment. People of advanced age encounter 
obvious limits in accessing very long durations. The flexibility of the duration of the loan and the possibility of 
suspending the payment of a specified number of installments to cope with the temporary financial difficulties 
of families have been highly sought after and decisive characteristics in the choice of mortgages in the past few 
years. Recently, with the worsening of the financial situation of many families following the negative phase of 
the economy, the duration has been the subject of government interventions and agreements between banks 
and consumer associations to improve the sustainability of the loan in times of difficulty for the households. 
 

Guarantees 
 

The traditional concept of guarantee in the banking sector has become rather reductive since it is necessary to 
consider all forms of credit risk mitigation, i.e. the set of techniques, instruments, operations, contracts and 
their combinations which allow to reduce the credit risk and the negative effects of lending. However, in this 
paragraph the focus is on the traditional forms of guarantees that assist numerous loans, divided into real 
guarantees, having as their object a real thing, such as a mortgage and a pledge, and personal guarantees, in 
which there is the possibility for the creditor to contact a person other than the original debtor to demand the 
fulfillment of the obligation, such as the surety and the endorsement. With reference to mortgages, the lien is 
the main form of guarantee to which the greatest space will be dedicated. The other forms of guarantee will 
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also be briefly discussed. The creditor guaranteed through the lien (so-called lien creditor) acquires two related 
rights: 
 

- the right to expropriate the asset pledged as security (so-called mortgaged asset), i.e. the right to ask the judge 
to sell the asset in order to satisfy their credit with the proceeds (or the assignment of ownership of the asset 
itself). 
- the right to be satisfied with preference over other creditors on the proceeds of the sale. 
 

The rights that the mortgage assigns to the creditor follow the asset; therefore, following the establishment of 
the mortgage, the creditor may also request expropriation against the third party who, after the establishment 
of the mortgage, purchased the mortgaged property from the debtor. For this reason, the mortgage is defined 
as a real right of guarantee, and together with the pledge it constitutes a real guarantee, to emphasize the fact 
that, like the property right and other real rights, it can be enforced against anyone. In any case, the mortgage 
is enforceable against anyone who claims a real right acquired after the constitution on the mortgaged property. 
Furthermore, in all cases in which several creditors claim to assert their reasons on the mortgaged asset, the 
mortgage creditor will have the right to be fully satisfied on the proceeds from the sale of the asset, while the 
other creditors (so-called “chirographary” credits) may divide the residual in proportion to the their credit. 
 

The assets on which it is possible to establish a lien, in the most common cases, are: 
 

- real estate and its appurtenances. 
- the usufruct of real estate. 
- the right of surface, that is the right that allows its owner to build and maintain a building on someone else’s 
land, while retaining ownership. 
- the State revenues. 
- ships, planes and cars. 
 

The establishment of the lien takes place through the registration in the public real estate register of the place 
where the property is located. This is a necessary condition for the existence of the lien. The creditor can 
proceed with the registration only if he has a title, that is, if there is a legal act or fact that recognizes the right 
to lien the property. The title can be a rule of law (legal lien), an agreement between the parties (voluntary lien) 
or a provision of the judicial authority (judicial lien). It should be noted that the existence of the title to proceed 
with the registration does not mean that the lien exists: the lien is validly constituted only once it has been 
registered in the public real estate register. The registration retains its effects for twenty years from the date on 
which it was made. These effects cease if the registration is not renewed within this period. To obtain the 
renewal, a new registration note must be submitted, conforming to the original one, in which the intention to 
renew the original registration is declared. Even if the renewal is not carried out in time, the creditor retains the 
right to request a new registration, which however is effective from the date in which it is implemented, with 
the consequence that the lien cannot be opposed to the third party purchasers of the lien property. It is possible 
to establish several liens on the same property. The first lien to be registered is called a first degree lien and, in 
the same way, the subsequent liens are named after the order in which the registration took place (for example: 
second degree lien, third degree lien, ...). It is possible that liens have the same degree, in the case in which 
several people present the registration request at the same time, against the same person or on the same 
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properties. The degree of the lien is very important in the exercise of the banking business, because the TUB 
provides that the legislation on land credit applies when the lien granted to the bank is a first degree lien on real 
estate. Even if the lien is indivisible, weighing on all the assets on which it is registered and on each part of 
them, the law provides for the possibility of reducing the lien, when the guarantee is excessive compared to the 
credit to be guaranteed. The reduction can take place in two ways. First, it is possible to reduce the amount of 
credit for which the registration was made. Alternatively, it is possible to restrict the registration to only a part 
of the assets on which the lien was established. In land credit, each time the debtors have repaid the fifth part 
of the original debt, they can request a reduction of the amount registered in the lien. Furthermore, they have 
the right to obtain the partial release of one or more properties when it appears, from the documents produced 
or from appraisals, that for the sums still due the remaining tied assets constitute a sufficient guarantee to the 
80% level. The lien can be extinguished for several reasons: 
 

- for cancellation. 
- for failure to renew the registration within the term of the lien. 
- for the extinction of the guaranteed obligation. 
- for the creditor’s waiver. 
- for the expiry of the term to which the lien was limited or with the occurrence of the termination condition. 
- for the provision that transfers the expropriated right to the buyer and orders the cancellation of the 
mortgages. 
 

The cancellation is implemented by the registrar of the real estate register in which the lien is registered, upon 
presentation of the deed containing the consent of the creditor, as well as the request for cancellation. The 
pledge gives the guaranteed creditor a series of faculties relating to an asset or a right. The so-called pledge (i.e. 
secured) creditor has the right to have the asset received as collateral sold and the right to satisfy its claims on 
the asset received as collateral with pre-emption over other creditors. The pledge may relate to assets, rights 
relating to assets and credits. The pledge of property takes place through the delivery of the asset, or through 
the delivery of the document that ensures the creditor the exclusive availability of the asset. In the first case, 
for example, the debtor delivers a jewel to guarantee the payment of a sum of money; in the second case, since 
the asset cannot be physically delivered to the creditor, a document is delivered which exclusively attributes the 
availability of the asset itself (for example the so-called pledge note). The creditor must keep the asset and 
cannot use it without the consent of the person who gave the guarantee. In the event of non-payment, he can 
proceed with the sale of the asset (at auction or through an authorized intermediary) or by asking the judge for 
the assignment, i.e., the ownership of the asset. In the case of pledge of a credit, the agreement establishing the 
pledge must be in writing and be communicated to the debtor of the pledged credit. In the event of non-
payment, the creditor can proceed with the collection of the credit received as a pledge. The surety is a personal 
guarantee. It does not refer to an object but to a person other than the creditor who ensures the fulfillment of 
the obligation with his assets and his income capacity. If the debtor fails to pay the debt, the creditor can contact 
the guarantor and demand the fulfillment of the guaranteed obligation, without even bothering to act against 
the original debtor. However, the guarantor who fulfills the guaranteed obligation has the right to retaliate 
against the principal debtor and any other guarantors. The surety must be given expressly, that is, through an 
explicit declaration of the guarantor and indicate the maximum amount of the guarantee. Furthermore, it 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

488 

follows the main obligation (so-called accessory nature of the surety) for which the surety is valid if and to the 
extent that the guaranteed obligation (i.e. the credit) exists. The endorsement is a declaration affixed to a bill of 
exchange or (more rarely) to a bank check through which a person guarantees the payment of the sum, in whole 
or in part. The declaration consists in the signing of the security by the guarantor with an indication as an 
endorsement or guarantee. Unlike the surety, the endorsement is an autonomous guarantee and therefore the 
guarantor can only oppose the creditor with formal exceptions. 
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VIII.2 COUNTERPARTY RISK 
 
 

From a financial point of view, clearly a loan can be managed like a fixed income instrument and its theoretical 
fair value can be estimated using the discounted cash flows (DCF) methodology. As a result, the most 
challenging aspect is to consider the risk premium to be added to the risk-free discount rates. The first part of 
the chapter shows how to extend the DCF methodology with the aim of implementing a more realistic pricing 
model for a loan or a mortgage. In the second part, we introduce how the Probability of Default can be 
estimated using financial market data. 
The most preferred methodology is to use Credit Default Swap (CDS) Premiums. When they are not listed, the 
second financial approach is to use the quotes for actively traded bonds, and this approach will be explained. 
As a last resort, the KMV (Kealhofer, Merton and Vasicek) model can be employed, which is heavily based on 
statement data. 
 

Broadly speaking, counterparty risk can be considered as a sort of hybrid between the traditional financial risk 
and credit risk. One of the main risks when a bank lends money is clearly the possibility that the borrower is 
unable to fulfill his obligations. A traditional way to consider the risk premium is to extend the traditional 
method used for pricing financial instruments like bonds. If we consider the value of the loan as the sum of the 
present value (i.e. the current value) of the expected cash flows (principal plus interests), discounted at a rate 
including the bank’s risk premium, we can capture the effects of changes in the debtor’s risk, similarly to what 
happens for the value of a bond.  
 

The interests received by the creditor are normally fixed or indexed to a market parameter to cover the 
variations in the cost of funding, like the coupons of a security: they are not able to remunerate the bank for 
the greater risk borne following a possible deterioration in the quality of the debtor. 
 
Let us analyze a practical example and consider a five-year loan of EUR 500,000 at a fixed rate of 3% with a 
monthly payment of EUR 8,975.36. If there is no change (for example a deterioration in the external rating of 
the borrower), the theoretical value of the loan is equal to: 
 

∑
8,975.36

(1 + 3%)
𝑡
12

60

𝑡=1
= 500,000 

 
If, on the other hand, there were a worsening that required an increase in the discount rate - which would cover 
a greater risk - of 0.5% - the theoretical value of the loan would be equal to: 
 

∑
8,975.36

(1 + 3.5%)
𝑡
12

60

𝑡=1
= 494,042.8 

If the bank did not incorporate such “risk increase” in the rate, the worsening of the individual debtors would 
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result in an increase in the positions in default, at the loan portfolio level, therefore, in the losses borne by the 
bank, equal to the value of the new expected losses not transferred into the price. 

A code can be easily written allowing to compute a risk-adjusted NPV generalizing the previous example: the 
code is written in order to take into account different discount rates to be applied at the different future payment 
dates, as well as variable installment amounts. 
 

 
 

Figure VIII.3 NPV versus Discount Rate 
 

If the counterparty has listed Credit Default Swaps (CDS) on active markets, the probability of default can be 
calculated using their premiums (s), in accordance with the following formula: 
 

𝑃𝐷(𝑇) = 1 − exp(−�̅�(𝑇)𝑇) (Eq. VIII.23) 
 

where: 

�̅�(𝑇) =
𝑠(𝑇)

1−𝑅𝑅
 is the hazard rate. 

 

𝑇 is the time to maturity, expressed in years. 
 

𝑅𝑅 is the recovery rate. 
 

𝑠 is the spread, which is typically expressed in basis points. 
 

The equation can be derived in accordance with probabilistic theory in the following way. The hazard rate 𝜆(𝑡) 
at time 𝑡 is defined so that 𝜆(𝑡)Δ𝑡 is the probability of default between time 𝑡 and 𝑡 + Δ𝑡 conditional on no 
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earlier default. 
 

If 𝑉(𝑡) is the cumulative probability of the company surviving to time 𝑡, the conditional probability of default 

between time 𝑡 and 𝑡 + Δ𝑡 is: 
 

𝑉(𝑡)−𝑉(𝑡+Δ𝑡)

𝑉(𝑡)
 (Eq. VIII.24) 

 

Since this equals 𝜆(𝑡)Δ𝑡, it follows that: 
 

𝑉(𝑡)−𝑉(𝑡+Δ𝑡)

𝑉(𝑡)
= 𝜆(𝑡)Δ𝑡 →

𝑉(𝑡+Δ𝑡)−𝑉(𝑡)

𝑉(𝑡)
= −𝜆(𝑡)Δ𝑡 →

𝑉(𝑡+Δ𝑡)−𝑉(𝑡)

Δ𝑡
= −𝜆(𝑡)𝑉(𝑡)  (Eq. VIII.25) 

 

For Δ𝑡 → 0 
 

𝑑𝑉(𝑡)

𝑑𝑡
= −𝜆(𝑡)𝑉(𝑡) (Eq. VIII.26) 

 

Solving the Ordinary Differential Equation (ODE) for 𝑉(𝑡), we obtain the general solution: 
 

𝑉(𝑡) = exp [−∫ 𝜆(𝜏)𝑑𝜏
𝑡

0
] (Eq. VIII.27) 

 

Defining 𝑃𝐷(𝑡) as the probability of default by time 𝑡, so that 𝑃𝐷(𝑡) = 1 − 𝑉(𝑡), it follows that: 
 

𝑃𝐷(𝑡) = 1 − exp [−∫ 𝜆(𝜏)𝑑𝜏
𝑡

0
] = 1 − exp[−�̅�(𝑡)𝑡] (Eq. VIII.28) 

 

Where �̅�(𝑡) is the average hazard rate (or, equivalently, the default intensity) between 0 and time 𝑡. 
 

In the case of CDS markets, the premium can be seen as a direct compensation received by the insurer for the 

possibility of default up to the maturity, 𝑡 = 𝑇. This means that the average loss rate between time 0 and 𝑇 

should be approximately 𝑠(𝑇) per annum. 
 

Let us suppose that the average hazard rate during this time is �̅�(𝑇). Considering that the Recovery Rate, 𝑅𝑅, 

in a standard CDS is 40%, we can express the average loss rate with the quantity: �̅�(𝑇)(1 − 𝑅𝑅). This means 
that it is approximately true that: 
 

�̅�(𝑇)(1 − 𝑅𝑅) = 𝑠(𝑇) → �̅�(𝑇) =
𝑠(𝑇)

(1−𝑅𝑅)
 (Eq. VIII.29) 

 

As an example, let us consider Table VIII.12 which shows the EUR CDS Senior Curve for one of the most 
important Italian power-energy companies. 
 

Applying the previous, we can obtain the hazard rates, 𝜆(𝑇), and consequently the estimation of the 

probabilities of default for every tenor, 𝑃𝐷(𝑇). 
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T 0.5 1 2 3 4 5 7 10 

𝑠(𝑇) 11 12.8 18.5 29.8 41 55.5 77.5 100.5 

𝜆(𝑇) 0.0018 0.0021 0.0031 0.005 0.0068 0.0092 0.0129 0.0167 

𝑃𝐷(𝑇) 0.09 0.21 0.61 1.48 2.7 4.52 8.64 15.42 

 
Table VIII.12 CDS and probability of default 

 
 

 
 

Figure VIII.4 Probability of Default using CDS premium. Source: Bloomberg® 
 

 
Let us present another example. Based on Bloomberg® CDSW module, the probability of default implied by 
the premium of CDS for the Novartis AG Group in 5 years is about 1.97%. The Evaluation Date is 20th  

January 2023, the Spread is 24 bps (0.0024), the Recovery Rate (𝑅𝑅) is typically equal to 40% as said above, the 

Hazard Rate is 𝜆 =
𝑠

1−𝑅𝑅
=
0.0024

1−0.4
= 0.004. The Maturity Date is 20th December 2027, and theTime to 

Maturity (Day Basis: ACT/360) is 𝑇 = 4.9861111. We can thus calculate: 
 

Implied Probability of Default: 𝑃𝐷(𝑇) = 1 − exp(−𝜆𝑇) = 1 − exp(−0.004 ⋅ 4.986111) = 0.0197469  
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Figure VIII.5 CDSW (Credit Default Swap) module. Source: Bloomberg® 
 
Another approach for the Probability of Default estimation is to consider the bond yield spreads. A bond yield 
spread is the excess of the promised yield on the bond over the risk-free rate. The usual assumption is that the 
excess yield is the compensation for the possibility of default. 
Let us now consider a portfolio composed of a corporate bond that matures in 5 years having a par yield of 
5%, and of a long position in a 5-years Credit Default Swap (CDS) which costs 250 basis points per annum. 
Such portfolio is approximately equivalent to a long position in a risk-free instrument that pays 2.5% per year. 
 

The effect of the CDS is to “transform” a corporate bond into a risk-free bond. In fact, if the bond issuer does 
not fail, the investor yields 2.5% p.a. (that is 5% - 2.5% = 2.5%). On the other hand, if the debt issuer fails, the 
investor earns 2.5% up to default and the entire initial notional is then returned thanks to the Credit Derivative. 
This amount can then be re-invested at the risk-free rate for the time elapsing from the credit event to maturity. 

Theoretically, the 𝑇-year CDS spread, 𝑠, should be close to the excess yield between a 𝑇-year corporate bond 

and a risk-free bond of equal maturity. In mathematical terms: 𝑠 = 𝑦 − 𝑟, where 𝑠 is the excess spread, 𝑦 the 

yield of the corporate bond and 𝑟  the risk-free rate. If this did not happen, arbitrage opportunities would arise. 
 

It is worth noting that the relationship outlined here is to be considered as an approximation for several reasons, 
among which we mention the following: 
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- Market participants are not always allowed to take a short position on bonds issued by companies. 
 

- a CDS has itself a default risk coming from the protection seller. 
 

- For tax or liquidity reasons an investor may not be indifferent to buying a risk-free security rather than a 
corporate bond and a CDS. 
 

- Arbitrage assumes that interest rates are constant over time. 
 

Consequently, if the market provides a CDS curve, it is preferable to use this approach for the PD estimation 
rather than a synthetic spread computed from fixed income markets. 
 

Once the implied spread 𝑠 has been estimated, the usual Equation based on the hazard rate holds. 
 

𝑃𝐷(𝑇) = 1 − exp (−
𝑠(𝑇)

1−𝑅𝑅
𝑇) (Eq. VIII.30) 

 

Another interesting point of discussion regards the definition of the risk-free rate (𝑟) to be used in the formula. 
In fact, bond traders usually derive the risk-free zero-rate curve from government bond yields, while derivative 
traders generally use the LIBOR-swap zero curve. Given that treasury bonds yields are riskier than LIBOR-
swap market yields, it is a good practice to adopt the latter, more prudential, zero-curve.  
 

In order to calculate the 𝑃𝐷(𝑇) for different tenors, let us consider a few bullet senior unsecured bonds issued 
by the same important Italian power company already used previously. They are fixed-coupon bonds 
contributed by the markets, as a result, the spread over the risk-free swap curve can be computed starting from 
the quoted Clean Prices. Using these elements for performing the queries on the Bloomberg® Database, four 
fixed-income instruments can be found, useful to this aim. The financial characteristics for the Zero-spread 
calculation over the 6-months tenor swap curve are reported in Table VIII.13. 
 

Tenor Bloomberg Ticker Financial Instrument Yield [%] 

6M EUR006M Index Deposit -0.515 

7M EUFR0AG BGN Curncy Forward Contract -0.511 

8M EUFR0BH BGN Curncy Forward Contract -0.506 

9M EUFR0CI BGN Curncy Forward Contract -0.504 

10M EUFR0DJ BGN Curncy Forward Contract -0.494 

11M EUFR0EK BGN Curncy Forward Contract -0.489 

12M EUFR0F1 BGN Curncy Forward Contract -0.482 

13M EUFR0G1A BGN Curncy Forward Contract -0.475 

14M EUFR0H1B BGN Curncy Forward Contract -0.467 

15M EUFR0I1C BGN Curncy Forward Contract -0.461 

16M EUFR0J1D BGN Curncy Forward Contract -0.454 

17M EUFR0K1E BGN Curncy Forward Contract -0.447 

18M EUFR011F BGN Curncy Forward Contract -0.44 
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2Y EUSA2 BGN Curncy Swap -0.4583 

3Y EUSA3 BGN Curncy Swap -0.3965 

4Y EUSA4 BGN Curncy Swap -0.3277 

5Y EUSA5 BGN Curncy Swap -0.2566 

6Y EUSA6 BGN Curncy Swap -0.1826 

7Y EUSA7 BGN Curncy Swap -0.1097 

8Y EUSA8 BGN Curncy Swap -0.0358 

9Y EUSA9 BGN Curncy Swap -0.0345 

10Y EUSA10 BGN Curncy Swap 0.1002 

11Y EUSA11 BGN Curncy Swap 0.1619 

12Y EUSA12 BGN Curncy Swap 0.2206 

15Y EUSA15 BGN Curncy Swap 0.3591 

 
Table VIII.13 IR Term Structure. Source: Bloomberg® 

 

ID Coupon Cpn. Frequency Day Basis Maturity date Mid MKT Price 

A 5.25 Annual ACT/ACT 20th May 2024 115.85 

B 5.625 Annual ACT/ACT 21st June 2027 132.55 

C 5.675 Annual ACT/ACT 1st October 2032 145.95 

D 5.5 Annual ACT/ACT 7th October 2033 147.56 

 
Table VIII.14 Bond Mid MKT Price. Source: Bloomberg® 

 

Having the financial characteristics of the fixed incomes, the market prices and the risk-free term structure, the 
excess yields over the risk-free can be calculated for the four bonds. The idea is to find the spread to be added 
to the discount rate that can match the Market price. This task can be solved handling the minimization of the 
following objective function: 
 

min
𝑠≥0
|𝑃𝑀𝐾𝑇 − 𝑃𝑇𝐻| = min

𝑠≥0
|𝑃𝑀𝐾𝑇 − [∑

𝐶𝐹𝑖

(1+𝑟𝜏𝑖+𝑠)
𝜏𝑖
− 𝐴𝑐𝑐𝑟𝑢𝑒𝑑 𝐼𝑛𝑡.𝑁

𝑖=1 ]|  (Eq. VIII.31) 

 

Or a quadratic form as well, like the SSE – sum of squared error. 
 

In the previous formula, 𝑠 is the spread and the solver has the aim to find it to minimize the gap between the 

market price, 𝑃𝑀𝐾𝑇, and the theoretical price, 𝑃𝑇𝐻, estimated using the traditional Discounted Cash-Flows 
(DCF) model. 
 

In accordance with the DCF technique, the Dirty Price of a bond is equal to the discounted sum of all the 

𝑁 future payments (coupons and the Face Amount at maturity). Thus, the 𝑖-th CF has to be multiplied by the 
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proper discount factors, that is 
1

(1+𝑟𝜏𝑖+𝑠)
𝜏𝑖

 where 𝜏𝑖 is the vector of all the year fractions related to the 𝑖-th 

future payment dates, and 𝑟𝜏𝑖 is the risk-free rate interpolated from the zero-rates swap curve for the considered 

year fraction. Given that the market provides a Clean Price, in accordance with the most popular quote 
convention, the Accrued Interest should be subtracted from the theoretical Dirty Price. All the four straight 
bullet bonds have an annual coupon payment frequency, the day basis is ACT/ACT, as a result the Accrued 
Interest can easily be calculated. The estimated spreads can be considered as synthetic CDS premiums to be 
paid for a time equal to the maturity of the analyzed bond. Using a recovery rate equal to 40% and writing the 
code able to solve the minimization problem, we can calculate the bond issuer’s probabilities of default for the 
four maturities. 
 

Bond ID T[years] Implied Spread Convergence PD(T) [%] 

A 2.89 19.066 2.17E-10 0.914 

B 5.98 35.248 5.09E-10 3.451 

C 11.26 73.124 6.44E-10 12.826 

D 12.28 73.91 3.17E-10 14.038 

 
Table VIII.15 Goal Implied spread and PD 

 

The coherence of the Z-spreads, i.e. the spreads applied over the deterministic risk free zero-rates of the swap 
curve, has been tested using the Bloomberg® Yield and spread (YAS) module. The accuracy of this second 

methodology fails when the market for the security is not liquid, in fact in this case 𝑠 cannot be only attributed 
to the creditworthiness of the issuer. Unluckily the overlapping of these two effects cannot be easily 
distinguished. Another point of interest is the choice of the Recovery Rate to be applied for the PD estimation 
using bonds. In this example, the standard value of 40% is used, but it can also be calibrated from market data. 
In fact, the recovery rate for a bond is normally defined as the bond’s market value a few days after a default, 
as a percentage of its face value. Typically Rating Agencies, such as Moody’s, Fitch or S&P, provide historical 
data on average recovery rates for all categories of fixed incomes. Table VIII.16 below shows the Recovery 
rates on corporate bonds as a percentage of face value (1982-2012), from Moody’s. (Source: Hull – Options, 
Futures and other derivatives). 
 

Class Average RR [%] 

Senior secured bond 51.6 

Senior unsecured bond 37 

Senior subordinated bond 30.9 

Subordinated bond 31.5 

Junior subordinated bond 24.7 
 

Table VIII.16 Average Recovery Rates. Source: Hull – Options, Futures and other Derivatives 
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Figure VIII.6 YAS (Yield and Spreads Analysis) module. Source: Bloomberg® 
 

If CDS or listed bond quotes are not available on the financial markets, a quantitative analyst can use the KMV 
(Kealhofer, Merton and Vasicek) model. It is a method based on the Equity market price and on the availability 
of the firm statements. The assumptions under the Merton methodology can be divided into four sections: 
 

- Debt: it is homogeneous with a time to maturity equal to 𝑇. 
 

- Capital Structure: it is assumed that the public firm is funded using debt and equity. Consequently, it holds 

that 𝑉𝐴(𝑡) = 𝐷(𝑡) + 𝑉𝐸(𝑡), where 𝑉𝐴(𝑡) is the value of the company’s assets at time 𝑡, 𝐷(𝑡) is the debt 

repayment, 𝑉𝐸(𝑡) is the value of the company’s equity at time 𝑡. 
 

- Dynamics of the assets: the model assumes that the firm’s assets are tradable and they follow a geometric 

Brownian motion: 𝑑𝑉𝐴 = 𝜇𝐴𝑉𝐴𝑑𝑡 + 𝜎𝐴𝑉𝐴𝑑𝑊𝑡, where 𝜇𝐴 is the instantaneous expected rate of return, 𝜎𝐴 the 

volatility and 𝑑𝑊𝑡 is a standard Wiener process. 
 

- Market perfection: it assumes that taxes are ignored. There is no penalty to short sales. Market is fully liquid; 
investors can purchase or sell any assets at the desirable market price. Borrowing and lending are at the same 
risk free interest rate, and this interest rate is constant through the horizon. 
 

Based on these assumptions, in 1974, Merton proposed a model where a company’s equity is an option on the 
assets of the company. 
 

If 𝑉𝐴(𝑇) < 𝐷, it is (at least in theory) rational for the company to default on the debt at time 𝑇. The value of 

the equity, 𝑉𝐸(𝑇), is then zero. 
 

If 𝑉𝐴(𝑇) > 𝐷, the company should make the debt repayment at time 𝑇 and the value of the equity at this time 

is 𝑉𝐸(𝑇) = 𝑉𝐴(𝑇) − 𝐷. 
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In mathematical terms, the firm’s equity value at time 𝑇 is given by the pay-off: 
 

𝑉𝐸(𝑇) = max(𝑉𝐴(𝑇) − 𝐷, 0) (Eq. VIII.32) 
 

The analogy with the pay-off of a European call option is clear: the value of the equity is a call option on the 
value of the assets with a strike price equal to the repayment required on the debt. 
 

Under the assumptions of the model, the traditional Black-Scholes-Merton (BSM) option pricing framework 
can be applied and consequently the following equation is valid: 
 

𝑉𝐸(𝑡) = 𝑉𝐴(𝑡)𝜙(𝑑1) − exp[−𝑟(𝑇 − 𝑡)]𝐷𝜙(𝑑2) (Eq. VIII.33) 
 

𝑑1 =
ln(

𝑉𝐴(𝑡)

𝐷
)+(𝑟+

1

2
𝜎𝐴
2)(𝑇−𝑡)

𝜎𝐴√𝑇−𝑡
, 𝑑2 = 𝑑1 − 𝜎𝐴√𝑇 − 𝑡 (Eq. VIII.34) 

 

𝑡 is the time of the valuation, 𝜎𝐸 is the volatility of the equity, 𝑟 is the risk-free rate prevailing at time 𝑇. The 

value of the debt today is 𝑉𝐴(0) − 𝑉𝐸(0) and, in accordance with the BSM (Black-Scholes-Merton) theory, the 

risk-neutral probability that the company will default on the debt is 𝜙(−𝑑2). 
Unfortunately, in order to estimate the probability of default from 𝜙(−𝑑2), a further relation is needed, in fact 

there are two unknowns: the value and the volatility of the assets, 𝑉𝐴 and 𝜎𝐴. 
 

The other variables can be directly observed or computed: the risk free rate, 𝑟, from the Libor swap curve or 

from the treasury bond yields; the debt, 𝐷, from the last available firm statement or from the financial bond 

markets; 𝑉𝐸 can be computed multiplying the current outstanding shares by the spot value of the traded stock; 

𝜎𝐸 can be estimated using the implied volatilities from actively traded options (if any) or, more likely, using a 
traditional econometric backward looking approach such as close-to-close volatility or a GARCH. 
 

The second equation can be found applying Itô’s lemma. Thanks to it, we can rewrite the stochastic differential 

equation followed by 𝑉𝐸  : 𝑑𝑉𝐸 = 𝜇𝐸𝑉𝐸𝑑𝑡 + 𝜎𝐸𝑉𝐸𝑑𝑊𝑡 in this other useful term: 
 

𝑑𝑉𝐸 = (
1

2
𝜎𝐴
2𝑉𝐴

2 𝜕
2𝑉𝐸

𝜕𝑉𝐴
2 + 𝜇𝐴𝑉𝐴

𝜕𝑉𝐸

𝜕𝑉𝐴
+
𝜕𝑉𝐸

𝜕𝑡
)𝑑𝑡 + 𝜎𝐴𝑉𝐴

𝜕𝑉𝐸

𝜕𝑉𝐴
𝑑𝑊𝑡 (Eq. VIII.35) 

 

Comparing the diffusion term of the two latest stochastic differential equations, we can derive that: 
 

𝜎𝐸𝑉𝐸 = 𝜎𝐴𝑉𝐴
𝜕𝑉𝐸

𝜕𝑉𝐴
 (Eq. VIII.36) 

 

In accordance with the BSM option theory, the term 
𝜕𝑉𝐸

𝜕𝑉𝐴
 is the Delta Greek of a European Call Option, Δ𝐸, 

and it is equal to 𝜙(𝑑1). 
 

Thus, to find the unobservable value and volatility of the asset, the following nonlinear system of equations 
should be solved: 
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{
𝑓1(𝑉𝐸 , 𝜎𝐸) = 𝑉𝐴𝜙(𝑑1) − exp[−𝑟(𝑇 − 𝑡)]𝐷𝜙(𝑑2) − 𝑉𝐸 = 0

𝑓2(𝑉𝐸 , 𝜎𝐸) =
𝑉𝐴

𝑉𝐵
𝜙(𝑑1)𝜎𝐴 − 𝜎𝐸 = 0

 (Eq. VIII.37) 

 

𝜕𝑓1

𝜕𝑉𝐴
= 𝜙(𝑑1) > 0, like the Delta Greek in the BSM framework, 𝑓1 is an increasing function of 𝑉𝐴 that implies 

that 𝑓1(𝑉𝐴) has a unique solution. For the same reason, 𝑓2 has a unique solution as well. This consideration 
about the solution of the system allows to code a routine based on a traditional steepest-descent algorithm. 
Once the system has been solved, we have all the data for finding the probability of default through the 

𝜙(−𝑑2). 
It is worth noting that 𝑑2 is also called Distance-to-Default in the KMV (Kealhofer-Merton-Vasicek) model: 
 

𝐷𝐷 = 𝑑2 = 𝑑1 − 𝜎𝐴√𝑇 =
ln(

𝑉𝐴
𝐷
)+(𝑟−

1

2
𝜎𝐴
2)𝑇

𝜎𝐴√𝑇
 (Eq. VIII.38) 

 

Considering that the assets follow a Geometric Brownian Motion and, consequently, 𝑉𝐴(𝑡) is log-normal 
distributed with expected value at time t, such that: 
 

𝑉𝐴(𝑇) = 𝑉𝐴(𝑡) exp {(𝑟 −
1

2
𝜎𝐴
2) (𝑇 − 𝑡) + 𝜎𝐴𝑊𝑇−𝑡} (Eq. VIII.39) 

 

The probability of default, 𝑃𝐷(𝑇 − 𝑡), for 𝑡 = 0 can now be computed as follows: 
 

𝑃𝐷(𝑇) = 𝑃𝑟[𝑉𝐴(𝑇) < 𝐷] = 𝑃𝑟 [𝑉𝐴 exp {(𝑟 −
1

2
𝜎𝐴
2) (𝑇 − 𝑡) + 𝜎𝐴𝑊𝑇} < 𝐷] = 
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= 𝑃𝑟[𝑍 < −𝐷𝐷] = 𝜙(−𝐷𝐷) (Eq. VIII.40) 
 

Where 𝑍~𝑁𝐼𝐷(0,1). 
 

A real-market application of the methodology is now presented. The example consists in estimating the 
probability of default of one of the most important Italian telecommunication companies using the KMV model 
starting from its latest statements and the price of its traded stock. For the equity value, the last price of the 
stock quoted on 30th June 2020 is considered, i.e., 0.0172, which is to be multiplied by the current number of 

shares, 5380.61 million. As a result, 𝑉𝐸  = EUR 92.55 million. The value of debt, 𝑉𝐷, can be taken from the 
latest end-of-year (EOY) balance sheet and is equal to EUR 78.83 million. The historical volatility for the equity 

on 30th June 2020 is estimated as 𝜎𝐸 = 90%. 
 

Considering a forecasting time window for the probability of default equal to one year, 𝑇 = 1, and a risk-free 
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rate equal to 𝑟 = 0.482% (see the IR term structure in the previous example), we can use a script for computing 
the Distance to Default (1.2437) and, consequently, the Probability of Default (10.68%). 
 

The 1-year probability of Default estimated for the company on 30th June 2020 is rather critical. Considering 
that this firm has been suspended by the Exchange on June 2022, we can deduce that the goodness of this 
estimation made with the EOY-2020 statement together with the market data two years before the suspension 
can be considered a good proxy of the creditworthiness of the firm considered for the analysis. 
 

Let us now consider another case, and estimate the Probability of Default of a wealthy firm. Following the 
KMV model, the parameters necessary for the calculation of the default probability using this method are: the 

value of the equity (𝑉𝐸), the value of the debt (𝐷), the risk-free rate (𝑟), the volatility of the equity (𝜎𝐸), the 

value of the assets (𝑉𝐴) and the volatility of the assets (𝜎𝐴). 
 

The value of the equity was calculated multiplying the stock price of “Eni Gas e Luce” as of 31st December 
2020 by the number of shares of the company. As shown in the following figures, the value of the shares as of 
31st December 2020 was 8.548, the number of shares of the company was 3,572,550,000 and, consequently, the 

value of the equity was equal to: 𝑉𝐸=8.548× 3,572,550,000= EUR 30,538,157,400. As  regards the amount of 

the debt (𝐷), this was selected from the balance sheet of the company itself and is equal to EUR 31,704,000,000. 
As for the value for the risk-free rate, the term structure of the risk-free rate was used with a tenor equal to 6 

months (i.e. EURIBOR6M) and the value of the one-year zero rate is equal to 𝑟 =  -0.533%. The last parameter 

needed to set up the system of equations for 𝑉𝐴 and 𝜎𝐴 is the volatility of the equity. It was estimated using the 

Bloomberg® HVT (Historical Volatility) module and it is equal to 𝜎𝐸 = 53.58%.  
 

The most popular methodology with which Bloomberg estimates historical volatility is the close-to-close 
technique, i.e. the standard deviation of the daily returns of the stock, which are annualized with the factor 260. 
 

 
 

Figure VIII.7 Euro Swap Curve. Source: Bloomberg® 
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Figure VIII.8 Historical Volatility Table (HVT). Source: Bloomberg® 
 

 
 

Figure VIII.9 Financial Analysis (FA). Source: Bloomberg® 
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Figure VIII.10 Historical Prices (HP). Source: Bloomberg® 
 

 
 

Figure VIII.11 Financial Analysis (FA). Source: Bloomberg® 
 

Once all the necessary inputs are available, the nonlinear system of equations for 𝑉𝐴 and 𝜎𝐴 can be numerically 

solved and consequentially we can compute the 1-year probability of default, 𝑃𝐷. In this case, in accordance 
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with the KMV model, the result is about 0.77%. This value is very close to the one provided by the Bloomberg® 
Default Risk (DRSK) module, only about 1 basis point of gap. 

 

 
 

Figure VIII.12 Default Risk (DRSK) module. Source: Bloomberg® 
 

The models discussed in this chapter are able to satisfy the measurements related to counterparty risk and they 
can also be applied for answering the needs of the credit risk mitigation intended in accordance with the more 
traditional conception. Credit risk, as per traditional definition, is understood as the risk that a debtor does not 
fulfill the contractual obligations assumed or that this occurs at different (and usually subsequent) deadlines 
compared to the pre-established deadlines. This setting of the definition of credit risk has a major limitation: it 
leads to consider only the negative event (default), while any unexpected changes in the quality of debtors also 
assume importance in the management of credit risk. The traditional definition tends to transform the decision 
of lending into a dichotomous choice: to trust or not to trust the applicant. 
We will see that in the management of loans and credit risk management, other aspects are also relevant: which 
technical form, which commercial pricing, which guarantee or form of risk mitigation, which effect of the single 
loan on the overall portfolio (concentration, diversification,…). 
 

The analysis of loan management requires a broader definition of credit risk that considers both the degree of 
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risk before the decision to lend and the changes in credit quality - and, therefore, in the riskiness of a subject - 
that occur during the life of the loan, while not leading to the negative event. Based on this concept, it is possible 
to complete the definition of credit risk and the effects suffered by the bank as a set of three dimensions: 
financial, economic and income. 
 

The financial dimension determines a cost linked to the delayed payment, partial or total, of the sums due, 
because of the liquidity or treasury costs that the bank incurs, which are not always offset by interests on arrears. 
Examples in this respect could be the cost of funding not remunerated by any use, or the costs of recourse 
bank to find liquidity due to non-repayment. 
 

The economic dimension causes a cost linked to the failure to repay the due sums. Examples could be the 
losses suffered by the bank and the loss of profit from an alternative investment. 
 

Lastly, the income dimension should be added which causes an (opportunity) cost linked to the unpaid risk 
variation. At the loan portfolio level, the change in risk translates into a higher loss against which there is an 
inadequate risk premium and, therefore, into a lower value produced for the bank shareholders. 
 

The definition of credit risk is not yet exhaustive though. It must be defined along its components, which 
translate what has been said previously into elements that, operationally, the bank must measure and monitor, 
in order to measure the credit risk and minimize the losses caused by credit activity. It is precisely the translation 
of credit risk into economic loss that forms the foundation of loan management in a bank. What is the loss that 
a credit portfolio can suffer? In practical terms, it is customary to distinguish between expected loss and 
unexpected loss. One component of credit risk is the expected loss, that is the measure of the loss that a bank 
expects on a loan granted or on a pool of exposures, with reference to a given time horizon, usually one year 
(holding period). 
 

The expected loss (EL) is calculated as a product of the Probability of Default (PD), the Loss Given Default 
(LGD) and the Exposure At Default (EAD) as follows: 
 

𝐸𝐿 = 𝑃𝐷 ⋅ 𝐸𝐴𝐷 ⋅ 𝐿𝐺𝐷 (Eq. VIII.41) 
 

The probability of default (PD) measures the probability that the debtor will default on the assumed 
obligations, i.e., that it will default. Default is defined as the state of non-fulfillment of the obligations, which 
the legislation has set at 90 days from the contractual expiry. The PD depends on the creditworthiness of the 
borrower and being referred only to the borrower, it is not affected by the technical form of the loan or the 
existence of guarantees. It can be measured ex ante through the use of rating systems or other assessment 
methods based on analyst judgments. 
 

Let us analyze the concept through an example. A company that has a PD of 2% means that it has a 2% 
probability of running into a situation of default during the year (or over a different time horizon). In other 
words, in a portfolio of 1,000 loans made to 1,000 individuals with PD = 2%, at the end of the period there 
should be 980 borrowers who will repay the loan and 20 borrowers who will not meet their obligations. 
 

The loss given default (i.e. the non-recoverable credit portion) measures the portion of credit which, in the 
event of default, could not be recovered either by using the credit protections acquired or through the credit 
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recovery process itself. Measuring an LGD of 30% on a loan means that, in the event of insolvency, 30% of 
the credit will not be protected by any form of guarantee or other instrument that can reduce the effects of the 
debtor’s inability to fulfill his obligations. 
 

For example, in the case of a loan of EUR 100,000 with collateral (for example, a mortgage), if the LGD is 
valued at 25% it means that in the event of default, the portion of the loan that will not be recovered is equal 
to EUR 25,000. Unlike the PD which refers to the debtor, the LGD refers only to the transaction in question. 
It should also consider the time required for the enforcement of the guarantees, the legal and administrative 
costs that may be incurred and, last but not least, the opportunity cost of non-repayment of the loan. In this 
sense, the LGD can be calculated by difference with respect to the recovery rate of a credit (RR - Recovery 
Rate), equal to the value of the flows expected from the recovery action and therefore equal to:  
 

𝑅𝑅 = 1 − 𝐿𝐺𝐷 (Eq. VIII.42) 
 

The estimate of LGD (or recovery rate) is based on internal bank data capable of capturing all the specific 
elements of the operation, guarantee, geographical area, judicial efficiency, costs and administrative times, the 
quality of the recovery process of impaired loans and, finally, the socio-economic-cultural characteristics of the 
environment, which modify the effectiveness of the different forms of risk mitigation. 
 

This methodology must therefore derive estimates from the insolvencies that have actually reached the end of 
the dispute and for which all the necessary information is available. The variables on which the recovery rate 
therefore depends are: 
 

- percentage of recovered credit. 
- discount rate capable of considering the financial cost of recovery time. 
- opportunity costs. 
- internal operating costs. 
-  external legal and administrative costs incurred to manage the recovery process. 
- recovery time. 
 

In general, LGD can be calculated as: 
 

𝐿𝐺𝐷 = 1 −

𝑅𝑉−𝐴𝐶

(1+𝑖)𝑡

𝐸𝐴𝐷
 (Eq. VIII.43) 

 

where: 
 

𝑅𝑉 is the estimated recovery value to be obtained thanks to the forms of risk mitigation. 
 

𝐴𝐶 is the administrative and legal costs necessary for managing the recovery process. 
 

𝑖 is the discount rate, which considers the financial cost of time, opportunity costs and the risk of the operation. 
Certain banks use the internal rate of transfer of funds for the bank. 
 

𝑡 is the estimated time for recovery, in years. 
 

𝐸𝐴𝐷 is the expected exposure at the time of default. 
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Let us make an example and assume a loan of EUR 100,000 against which a bank obtains a real guarantee worth 
EUR 50,000. Against the default of the debtor, the bank has recovered an amount of EUR 50,000 in five years, 
incurring costs of EUR 20,000. Considering a discount rate of 6%, the LGD is equal to: 
 

𝐿𝐺𝐷 = 1 −

50,000 − 20,000
(1 + 0.06)5

100,000
= 77.582% 

 

The exposure at default (EAD) measures the amount of residual capital still to be repaid when the debtor 
defaults. To affirm that the EAD of a loan of EUR 100,000 is equal to EUR 60,000 means that when default 
becomes likely, the amount of capital still to be repaid will be EUR 60,000. This information is essential to 
calculate the expected loss, since it is important to evaluate the amount still to be repaid at the time the 
insolvency occurs rather than the original amount. The concept of EAD is closely linked to the technical form 
of the loan. In the case of loans with a predefined amortization plan, this tends to coincide with the residual 
capital plus the interest due at the time the default occurs. 
 

On the other hand, there are numerous forms of financing in which it is not possible to know ex ante what the 
exposure will be since it depends on the method of use of the debtor (for example a credit line) or endorsement 
credits which use is not even known. For all these technical forms, the EAD is typically estimated by adding 
the amount of available credit to the current utilized, multiplied by an appropriate credit conversion factor 
(CCF). The CCF represents the ratio between the unused part of the credit line that is estimated to be used in 
the event of default, and the part currently unused and it depends on the right to intervene, block unused sums 
and withdrawal possessed by the bank in the event of default and/or in the event of a significant change in the 
debtor’s riskiness. It is worth noting that the three components of the expected loss can be referred to three 
elements that have always been at the center of loan management: the riskiness of the debtor, the existence of 
guarantees and the technical form of the loan. Using the examples given in the definitions, the expected loss is: 
 

𝐸𝐿 = 𝑃𝐷 ⋅ 𝐸𝐴𝐷 ⋅ 𝐿𝐺𝐷 = 2% ⋅ 60,000 ⋅ 77.582% = 930.984 
 

The Unexpected Loss (UL) is defined as the difference between the loss actually incurred by the bank, 
measured ex post, and the expected loss measured ex ante. Clearly, when the bank has an effective model for 
estimating expected losses, the true concept of credit risk concerns precisely the unexpected loss. It is obviously 
not possible to predict the unexpected loss since any existing information is inserted into the measurement of 
the components of the expected loss. The expected loss, measured ex ante, is to be considered as a cost 
component and it is included in the pricing of each loan, like the other costs necessary for the disbursement 
and management. Given its nature, the expected loss management takes place at the level of the single 
transaction and of the single applicant, through the selection and pricing process. The expected loss of the loan 
portfolio is therefore given by the sum of the expected loss of the individual loans disbursed and, therefore, 
cannot be managed at the aggregate level. 
 

The unexpected loss, on the other hand, is managed at the level of the loan portfolio through the diversification 
and composition of the loan portfolio, which are actions aimed at minimizing the unexpected loss. In any case, 
the unexpected loss is covered “of last resort” in the bank’s assets. In fact, it is necessary to specify that the 
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reference to own assets must not be interpreted in a static perspective, and referring exclusively to the level of 
the assets existing in a given period. The credit management process, in fact, monitors and progressively 
identifies the credits that have a lower recovery value compared to the value recorded in the financial statements 
(impairment), determining progressive adjustments and provisions (provisioning) equal to the non-recoverable 
value. This process constitutes a method through which the bank allocates portions of its revenues on an 
ongoing basis, to cover loans that will not be repaid. In other words, all this means allocating resources, 
generated by the banking activity, to cover the unexpected loss (and not to the result for the year) and, where 
these resources are not sufficient, a loss is determined and, therefore, the use of the bank’s own capital. 
 

We try to associate a probability to every possible loss value, to obtain a continuous function of all possible 
eventualities. It is therefore a question of identifying a plausible distribution of the bank’s losses in order to 
quantify the amount of equity that allows to cope with the worst eventualities (unexpected loss). 
 

The concept of unexpected loss is linked to VaR (Value at Risk), i.e. the maximum value of losses that a bank 
can incur with a certain probability, obviously with reference to a given time horizon and to a given portfolio 
of loans (or of another nature). 
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VIII.3 PROBABILITY OF DEFAULT 
 
 

The forecasting activity influences strategic decisions, therefore making credit risk forecasts means, among 

other purposes, estimating the expected loss, 𝐸𝐿. The estimation of the 𝐸𝐿 passes through the estimation of 

the risk factors that determine it, namely 𝑃𝐷, 𝐿𝐺𝐷 and 𝐸𝐴𝐷. 
 

The moment of classification of the debtor in default plays a fundamental role in defining the risk factors, 
representing a sort of watershed, changing the relationship between the bank and the debtor: before the default, 
the exposure is an investment towards a counterparty in operations, while after the default, it is an investment 

to be recovered. The definition of default should be the same when estimating the risk factors (𝑃𝐷, 𝐿𝐺𝐷, 

𝐸𝐴𝐷), otherwise there is a risk of overlaps which lead to biased 𝐸𝐿 estimates. 
 

The principles for the definition of default are: 
 

- certainty: the credit analyst is interested in knowing whether the debtor is in a state of insolvency without 
incurring errors of assessment. 
 

- prudence: the credit analyst is interested in promptly grasping the symptoms of insolvency to recover the 
exposure and avoid capital losses. 
 

Depending on the prevailing principle, the possible definitions of default can range over a very broad spectrum: 
 

𝑡1: exposures past due for more than 60 days. 

𝑡2: relevant overdue exposures for over 90 days (regulatory perspective). 

𝑡3: the bank returning the exposure. 

𝑡4: transfers to losses and specific value adjustments. 

𝑡5: the bank selling the exposure and realizing a significant loss. 

𝑡6: restructuring of the exposure with realization of losses. 

𝑡7: bankruptcy filed by the bank or an equivalent action. 

𝑡8: bankruptcy or similar situation. 
 

The definitions of default can be very different: the definitions that pursue a high level of prudence are those 
based on the behavior of the debtor in monitoring performance, firmly anchored to the observation of overdue 
amounts. At the other extreme, we find the definitions based on the judicial assessment of the state of default, 
and in fact, the bankruptcy laws define the debtor in state of insolvency regardless of the analyst’s purposes. As 

a result, from 𝑡1 to 𝑡8 the level of prudence in the default definition decreases and the level of certainty increases. 
The regulatory perspective bases the definition of default on past due to evaluate a company. In fact, according 
to the supervisory regulations of the Bank of Italy (Accounting Matrix, Circular n. 272, 2008), which incorporate 
Basel 2, past due plays a crucial role in the classification of a loan as non-performing. In addition, starting from 
the end of 2014, the classification of loans has been revised to take into account the harmonization at European 
level, promoted by the EBA, of non-performing exposures and those subject to concessions.
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 The granting of the creditor takes the form of the renunciation to some contractually defined rights, which 
result in an immediate or deferred benefit for the debtor, who benefits from this renunciation, which may 
correspond to a possible loss for the creditor. Following the review, impaired loans (non-performing exposures 
of the EBA standard) are classified into: 
 

- bad debts: On-balance sheet and off-balance sheet exposures to a party in a state of insolvency (even if not 
legally ascertained) or in substantially comparable situations, regardless of any loss forecasts made by the bank. 
Therefore, regardless of the existence of any guarantees (real or personal) on the exposures. Exposures whose 
anomalous situation is attributable to profiles relating to country risk are excluded. 
 

- unlikely to pay: Credit exposures, for which the bank considers it unlikely that, without recourse to actions 
such as the enforcement of guarantees, the debtor will fulfill all of its credit obligations, in principal and/or 
interest. 
 

- impaired past due and/or overdue exposures: For the purposes of classifying exposure in this category, 
two qualifying aspects are relevant: 
 

a) the continuity of the past due, since the exposure must have expired continuously for at least 90 days to 
detect a non-temporary attitude of the debtor. 
 

b) the threshold of relevance, as exposures overdue by more than 90 days are relevant only if they represent at 
least 5% of the debtor’s total exposure. 
 

- exposures subject to forbearance: which are divided into: 
 

a) exposures subject to impaired concessions, which correspond to the non-performing exposures with 
forbearance measures of the EBA standard. 
 

b) other exposures subject to concessions, which correspond to the “Forborne performing exposures” of the 
EBA standard. 
 

As previously highlighted, the selection of the definition of default depends on the objectives that the analyst 
intends to achieve. For example, the rating agencies, professional operators in producing risk assessments for 
the market, do not provide for definitions on automatism in the detection of the past due. Here are the 
definitions provided by the rating agencies: 
 

Standard and Poor’s: “An obligor rated “SD” (selective default) or “D” is in payment default on one or more 
of its financial obligations (rated or unrated) unless Standard & Poor’s believes that such payments will be made 
within five business days, irrespective of any grace period. The “D” rating will also be used upon the filing of 
a bankruptcy petition or the taking of similar action if payments on a financial obligation are jeopardized. A 
“D” rating is assigned when Standard & Poor’s believes that the default will be a general default and that the 
obligor will fail to pay all or substantially all of its obligations as they come due. An “SD” rating is assigned 
when Standard & Poor’s believes that the obligor has selectively defaulted on a specific issue or class of 
obligations, but it will continue to meet its payment obligations on other issues or classes of obligations in a 
timely manner. A selective default includes the completion of a distressed exchange offer, whereby one or more 
financial obligation is either repurchased for an amount of cash or replaced by other instruments having a total 
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value that is less than par”. 
 

Moody’s: “Issuers assessed as “C” are typically in default, with little prospect for recovery of principal or 
interest; or these issuers are benefiting from a government or affiliate support but are likely to be liquidated 
over time; without support there would be little prospect for recovery of principal or interest”. 
 

Fitch: “RD: Restricted default “RD” ratings indicate an issuer that in Fitch Ratings’ opinion has experienced 
an uncured payment default on a bond, loan or other material financial obligation but which has not entered 
into bankruptcy filings, administration, receivership, liquidation or other formal winding-up procedure, and 
which has not otherwise ceased operating. This would include: 
 

a) the selective payment default on a specific class or currency of debt. 
 

b) the uncured expiry of any applicable grace period, cure period or default forbearance period following a 
payment default on a bank loan, capital markets security or other material financial obligation. 
 

c) the extension of multiple waivers or forbearance periods upon a payment default on one or more material 
financial obligations, either in series or in parallel; or 
 

d) the execution of a distressed debt exchange on one or more material financial obligations. 
 

“D” ratings indicate an issuer that in Fitch Ratings’ opinion has entered into bankruptcy filings, administration, 
receivership, liquidation or other formal winding-up procedure, or which has otherwise ceased business”. 
 

In addition to the selection of the definition of default, the forecast of the risk factors is influenced by the time 
horizon chosen to predict the classification of the debtor as insolvent. In fact, the result is different when 
assessing the risk factors by predicting that the debtor will turn out to be insolvent within one year, 3 years and 
10 years. The following approaches can be adopted in the selection of the time horizon: 
 

- maturity approach: the time horizon corresponds to the expiry of the exposure. For overruns it will be 
necessary to consider a very short-term deadline. 
 

- liquidation approach: the time horizon corresponds to the deadline for the liquidation of the exposure, i.e. 
the time needed to recover or realize the exposure. In this perspective, the bank does not break down the 
expected loss into its components (PD, LGD, EAD) but makes an aggregate forecast. 
 

- common horizon approach: the bank selects a common standardized time horizon for all exposures. 
Generally, banks choose an annual time horizon because: 
 

a) the review of credit lines is carried out annually. 
 

b) key information, such as financial statements, are made available at least annually. 
 

It is relevant to specify that PD can be estimated using quantitative rather than qualitative approaches. 
 

- Quantitative approaches require that the PD is estimated using a statistical model that processes information 
of a standardized nature. With the same type of debtor, any information used in the forecast of default will 
contribute to the estimate of the PD with the same intensity. 
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- Qualitative approaches envisage that the PD is estimated using information that can vary in type, relevance 
and level of standardization, with the same debtor. 
 

The quantitative approach is chosen to assess the risk of insolvency arising from exposures of a limited amount 
(small and medium-sized enterprises, small economic operators and consumers). In fact, this approach, based 
on automated procedures, is much less expensive and much faster than the qualitative approach. On the other 
hand, the qualitative approach is chosen for companies that represent a significant exposure for the bank or for 
innovative projects for which the use of standardized models is inadequate. 
 

Therefore, on an overall level, it can be considered that: 
 

- The probabilities of default estimation related to small economic operators and consumers mainly come from 
quantitative approaches. 
 

- The probabilities of default estimation related to small and medium-sized enterprises mainly come from quali-
quantitative approaches. 
 

- The probabilities of default estimation related to medium and big-sized enterprises mainly come from 
qualitative approaches. 
 

The use of the quantitative approach has grown significantly in recent years. In the past, the goal was to predict 
business failure a few years in advance, nowadays the immediate goal is both to use the information available 
to attribute the PD to customers, and also to provide decision support. The most widely used quantitative-
statistical technique provides for the attribution to each evaluated company of a score which represents a 
synthetic and numerical measure of the debtor’s state of health. The essential phases for the construction of a 
scoring model are represented first of all by the building of a sample of customers who have proven to be 
reliable in the past and a comparable sample of insolvent counterparties. Subsequently, a combination of 
variables that is considered to have a discriminating function must be identified and the aggregation function 
of such data must be defined. Then, the last step is represented by the calculation of the probability of default 
and/or score to be attributed to the individual customer. 
 

The construction of a sample with reliable and insolvent customers allows to use the bank’s internal data and 
is aimed at making it possible to verify whether there are some variables that have characterized the behavior 
of reliable companies compared to insolvent ones. The second key moment is represented by the selection of 
information that can help to predict the default and the selection of the formula for their combination. The 
information on which the scoring models have found frequent application are the accounting information 
coming from the financial statements. In fact, one of the best known models that has inspired and still inspires 
the construction of the following models, such as the recent application for unlisted companies or to predict 
the entry of Italian manufacturing companies into the procedure of extraordinary administration is the model 
called Z-score due to Altman. It is an easy and straightforward basic approach based on a linear combination 
of variables with fixed coefficients. 
 

𝑍 = 1.2𝑋1 + 1.4𝑋2 + 3.3𝑋3 + 0.4𝑋4 + 1.0𝑋5 (Eq. VIII.44) 
 

Where: 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

512 

𝑋1: Working capital/Total assets. This variable expresses the value of the company’s liquid assets with 
respect to the total capitalization. It is clear that a company that is experiencing substantial operating losses will 
have a strong reduction in current assets in relation to total assets. 
 

𝑋2 : Retained profits/Total assets. This index expresses the ability to reinvest profits. A young company will 
certainly have a lower index than an older company. 
 

𝑋3 : Income before interest expense and taxes/Total assets. This index measures the true productivity of 
a company’s activities, purified of any financial or fiscal leverage factor. 
 

𝑋4 : Equity market value/Book value of liabilities. This index shows how much the assets of a company 
can be reduced before the total liabilities exceed the assets and the conditions for bankruptcy are created. 
 

𝑋5 : Sales/Total assets. This index highlights the ability of a company to generate revenues with a certain 
value of the assets. It measures the entrepreneurial ability to relate to the competitiveness of the company’s 
reference market. 
 

This model typically identifies a threshold value, the so-called cut off, equal to 1.81: if the company totals a 
value greater than 1.81 it is to be considered potentially healthy, otherwise insolvent. As an example, let us 
consider the balance sheet data of one of the most important Italian companies in the beverage sector. The 
data are retrieved from the Bloomberg® FA (Financial Analysis) module and are reported in Table VIII.17. 
 

Statement Data 12/31/2020 Value [Euro (Millions)] 

Tangible Assets 2201.3 

Working Capital 801.5 

Retained Earnings 2297.2 

Earnings Before Interests and Taxes 231.8 

Market Value of Equity 11355.8 

Total Liabilities 2558.3 

Sales 1772.0 

Total Shareholders’ Equity 1998.4 
 

Table VIII.17 Altman’s Z-Score 
 

𝑍 = 1.2 ⋅
801.5

2201.3
+ 1.4 ⋅

2297.2

2201.3
+ 3.3 ⋅

231.8

2201.3
+ 0.6 ⋅

11355.8

2558.3
+ 1.0 ⋅

1772

2201.3
= 5.71  

 
 

Given that the score is far higher than the threshold, we can conclude that the analyzed company is definitely 
healthy. 
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Figure VIII.13 Altman’s Z-Score model (AZS). Source: Bloomberg® 
 
Altman’s model uses information taken from the balance sheet to forecast insolvency; regarding the formula 
used, the Z-score is obtained as a linear combination of the variables: since the coefficients are obtained by 
imposing the constraint that they are able to discriminate between healthy and risky firms, in accordance with 
the traditional statistical technique called linear discriminant analysis. In fact, two threshold values are often 
identified and called lower threshold and upper threshold. A company that has a score below the lower 
threshold is certainly too risky, while a company with a score above the upper threshold is certainly to be 
considered solvent. The area between the two thresholds is called the gray area: for companies that are located 
within this area, the model does not provide a unique indication, therefore it is the analyst who has to complete 
his analysis using qualitative judgement or implementing a more complex statistical model. 
 

Starting from the Altman model, conceived for listed companies, banks have also developed scoring models 
for unlisted companies and, furthermore, variables that go beyond the balance sheet area have also been taken 
into consideration: in particular, the scoring models are also applied to the area of information concerning the 
company’s relations with the financial system, using information from the Central Credit Register/private credit 
bureaux, and the performance relationship with the financial system. A further advancement of the scoring 
models is represented by the ways in which the solvency of the company is expressed: instead of the score seen 
in the Altman model, the most recent models, characterized by greater complexity from the point of view of 
formalization, express the solvency of the company directly in terms of probability. In order to generalize the 
concept of score, which is a measure summarizing the information contained in factors able to affect the default 
probability, we need to define the mathematical concepts underlying a credit score model in a more formal way. 
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As we have discussed, standard scoring models take the most straightforward approach by linearly combining 
those factors. 
 

Let 𝑥 denote the factors (their number is 𝐾) and 𝑏 the weights (or coefficients) associated to them, we can 

represent the score that we obtain in scoring instance 𝑖 as: 
 

Score𝑖 = 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 +⋯+ 𝑏𝐾𝑥𝑖𝐾 = 𝒃
′𝒙𝒊,  𝒙𝒊 = [

𝑥𝑖1
𝑥𝑖2
…
𝑥𝑖𝐾

] ,  𝒃 = [

𝑏1
𝑏2
…
𝑏𝐾

] (Eq. VIII.45) 

 

If the model is to include a constant 𝑏1, we set 𝑥𝑖1 = 1 for each 𝑖. 
 

For our example, we use the dataset provided by the book “Credit Risk Modeling” written by Löffler and 

Posch. The data are stored in a csv file with a total of observations 𝑁 = 4,000 having the following fields: 
 

- ID: the identifier associated to a corporate. 
 

- Year: the year corresponding to the values reported in the following fields, ID+Year can be considered a 
primary key for our database. 
 

- Default: it is the default indicator for year + 1. It is a boolean value that is equal to 1 if the firm has defaulted 

or 0 if it has not defaulted. In the described model, it is represented by the variable 𝑦𝑖 . 
 

- WC/TA: Working Capital/Total Assets. This ratio captures the short-term liquidity of a firm. In the described 

model it is represented by the variable 𝑥𝑖1, 𝑖 = 1,… ,𝑁.  
 

- RE/TA: Retained Earnings/Total Assets. This ratio measures the historical profitability. In the described 

model, it is represented by the variable 𝑥𝑖2, 𝑖 = 1,… ,𝑁. 
 

- EBIT/TA: Earnings before interest and taxes/Total Assets. This ratio measures the current profitability. In 

the described model, it is represented by the variable 𝑥𝑖3, 𝑖 = 1,… ,𝑁. 
 

- ME/TL: Market Value of Equity/Total Liabilities. It is a market-based measure of leverage. In the described 

model, it is represented by the variable 𝑥𝑖4, 𝑖 = 1,… ,𝑁. 
 

- S/TA: Sales/Total Assets. This ratio is a proxy for the competitive situation of the company. In the described 

model, it is represented by the variable 𝑥𝑖5, 𝑖 = 1,… ,𝑁. 
 

These 𝐾 = 5 factors constitute the 𝒙𝒊. Except for the market value, all these variables are found in the balance 
sheet and income statement of the company. The market value is given by the number of shares outstanding 
multiplied by the stock price. 
 

Of course, an analyst could consider other variables as well, such as cash flows over debt service, earnings 
volatility, stock price volatility, ESG (Environment-Social-Governance) indicators… In this case, the most 
common method is used, i.e. the widely known Z-score ratios, consistently with the previous example. 
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The scoring model should predict a high default probability for those observations that defaulted and a low 

default probability for those that did not. To choose the appropriate weights 𝒃, we first need to link scores to 

default probabilities. This can be done by representing default probabilities as a function 𝐹 of scores: 
 

Prob(Default𝑖) = Prob(𝑦𝑖 = 1) = 𝐹(Score𝑖) (Eq. VIII.46) 
 

Like default probabilities, function 𝐹 should be constrained to the interval from zero to one; it should also yield 
a default probability for each possible score. Those requirements can be fulfilled by a cumulative probability 
distribution function, and a distribution often considered for this purpose is the logistic distribution.  
 

The logistic distribution function Λ(𝑧) is defined as Λ(𝑧) =
exp(𝑧)

1+exp(𝑧)
 . Applied to the previous equation, we 

have: 
 

Prob(Default𝑖) = Λ(Score𝑖) =
exp(𝒃′𝒙𝒊)

1+exp(𝒃′𝒙𝒊)
=

1

1+exp(−𝒃′𝒙𝒊)
 (Eq. VIII.47) 

 

 
Models that link information to probabilities using the logistic distribution function are called logit models. 
 

Having collected the factors 𝑥 and chosen the distribution function 𝐹, a natural way of estimating the weights 

𝑏 is the maximum likelihood (ML) method. According to the ML principle, the weights are chosen so that the 
probability (that is the likelihood) of observing the given default behaviour is maximized. 
 

The first step in maximum likelihood estimation is to set up the likelihood function. 
 

For a borrower that defaulted, the likelihood of observing this is: 
 

Prob(Default𝑖) = Prob(𝑦𝑖 = 1) = Λ(𝒃
′𝒙𝒊) (Eq. VIII.48) 

 

For a borrower that did not default, we obtain the likelihood: 
 

Prob(No Default𝑖) = Prob(𝑦𝑖 = 0) = 1 − Λ(𝒃
′𝒙𝒊) (Eq. VIII.49) 

 

These two formulas can be combined for defining the correct likelihood for an observation 𝑖, 𝐿𝑖: 
 

𝐿𝑖 = [Λ(𝒃
′𝒙𝒊)]

𝑦𝑖[1 − Λ(𝒃′𝒙𝒊)]
1−𝑦𝑖 (Eq. VIII.50) 

 

Assuming that the defaults are independent, the likelihood of a set of observations is the product of the 
individual likelihoods: 
 

𝐿 = ∏ 𝐿𝑖
𝑁
𝑖=1 = ∏ [Λ(𝒃′𝒙𝒊)]

𝑦𝑖[1 − Λ(𝒃′𝒙𝒊)]
1−𝑦𝑖𝑁

𝑖=1  (Eq. VIII.51) 
 

For the purpose of maximization, it is more convenient to examine the logarithm of likelihood (in fact it does 
not change the point of maximum). 
 

ln 𝐿 = ∑ 𝑦𝑖
𝑁
𝑖=1 ln[Λ(𝒃′𝒙𝒊)] + (1 − 𝑦𝑖) ln[1 − Λ(𝒃

′𝒙𝒊)] (Eq. VIII.52) 
 

It can be maximized by setting its first derivative with respect to 𝒃 to zero. 
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𝜕𝐿

𝜕𝒃
= ∑ [𝑦𝑖 − Λ(𝒃

′𝒙𝒊)]𝒙𝒊
𝑁
𝑖=1  (Eq. VIII.53) 

 

A numerical routine for optimization like the Newton method is able to solve the previous equation with 

respect to 𝒃. In order to apply this algorithm, we also need to estimate the second derivative, which is obtained 
as: 

𝜕2𝐿

𝜕𝒃𝜕𝒃′
= −∑ Λ(𝒃′𝒙𝒊)[𝟏 − Λ(𝒃

′𝒙𝒊)]𝒙𝒊𝒙𝒊′
𝑁
𝑖=1  (Eq. VIII.54) 

 

The function logit(Dataset,constant,stats) allows to estimate the 𝒃 in accordance with the previous formulas. 
To do that, the function requires the following input arguments: 
 

- Dataset is a numpy matrix which can be imported in the Python environment calling the importdata(Filepath) 
function, where Filepath is the place in which the csv file has been stored. In the first column, the Default 

indicator for the following year is stored, 𝑦, and in the other five columns, the factors (𝑥) are stored. 
 

- constant is a logic value that assumes the value True if the model includes a constant, otherwise it is False. 
 

- stats is a logic value. If it is True, the routine returns the coefficients 𝒃 as well as the statistics associated to 

the model, otherwise only 𝒃. 
 

Substantially, the core of the code lies in the while loop that allows to estimate the coefficients of the model 
using the ML principle. 
 

The variable Lambda is the prediction, dlnl is the gradient, hesse is the Hessian and lnl is the log likelihood.  
 

Once the gradient and the Hessian have been computed, the Newton rule can be applied. We take the inverse 
of the Hessian, hinv and multiply it with the gradient hinvg. 
 

𝑏1 = 𝑏0 − [
𝜕2 ln 𝐿

𝜕𝑏0𝜕𝑏0′
]
−1

𝜕 ln𝐿

𝜕𝑏0
= 𝑏0 − 𝐻(𝑏0)

−1𝛻(𝑏0) (Eq. VIII.55) 
 

The logit model has the convenient feature that the log-likelihood function is globally concave, as a result a 
gradient-based numerical routine is enough for being sure to reach the global optimum. The while loop ends 

to update the coefficient vector 𝒃 when the change in the likelihood is sufficiently small or when the maximum 
number of iterations is reached, then the function returns the coefficients. 
 

The output of the logit routine can be shaped based on the value assumed by stats. If it is False, the function 

returns a numeric array in which the coefficients of the regression (𝒃) are stored, otherwise a numeric matrix 
having the form reported in the Table VIII.18. 
 
Statistics are fundamental for understanding the goodness of the model. To assess whether a variable helps to 

explain the default event or not, we can examine a 𝑡-ratio for the hypothesis that the variable’s coefficient is 

zero. For the 𝑗-th coefficient, such a 𝑡-ratio is constructed so that: 
 

𝑡𝑗 =
𝑏𝑗

𝑆𝐸(𝑏𝑗)
 (Eq. VIII.56) 
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Where 𝑆𝐸 is the estimated standard error of the coefficient. 
 

𝑏1 𝑏2 … 𝑏𝐾 
𝑆𝐸(𝑏1) 𝑆𝐸(𝑏2) … 𝑆𝐸(𝑏𝐾) 

𝑡1 = 𝑏1/𝑆𝐸(𝑏1) 𝑡2 = 𝑏2/𝑆𝐸(𝑏2) … 𝑡𝐾 = 𝑏𝐾/𝑆𝐸(𝑏𝐾) 
𝑝 − value(𝑡1) 𝑝 − value(𝑡2) … 𝑝 − value(𝑡𝐾) 
Pseudo − 𝑅2 # iterations 0 0 
𝐿𝑅 − test 𝑝 − value(𝐿𝑅) 0 0 

Log − likelihood(model) Log − likelihood(restricted) 0 0 
 

Table VIII.18 Output of the logit function 
 

We take 𝑏 from the last iteration of the Newton scheme and the standard errors of estimated parameters are 
derived from the Hessian matrix. Specifically, the variance of the parameter vector is the main diagonal of the 
negative inverse of the Hessian at the last iteration step. In the logit function, we have already computed the 
Hessian hinv for the Newton iteration, so we can quickly calculate the standard errors. We set the standard 

error of the 𝑗 -th coefficient to sqrt(-hinv[j,j]). The 𝑡-ratios are then computed using the previous formula. In 

the logit model, the 𝑡-ratio does not follow a 𝑡-distribution as in the classical linear regression. Rather, it is 

compared to a standard normal distribution. Then, to obtain the 𝑝-value of a two-sided test, we exploit the 
symmetry of the normal distribution: 
 

𝑝 − value = 2 ⋅ (1 − 𝜙(|𝑡|)) (Eq. VIII.57) 
 

Where 𝜙 is the cumulative standard normal distribution. 
 

The logit function returns standard errors, t-ratios and p-values in lines two to four of the output if the logical 

value stats is set to True. In a linear regression, an 𝑅2 is usually reported as a measure of the overall goodness 

of fit. In nonlinear models estimated with maximum likelihood, the Pseudo- 𝑅2 suggested by McFadden (1974) 

is typically reported. It is calculated as 1 minus the ratio of the likelihood of the estimated model (ln 𝐿) and the 

one of a restricted model that only has a constant (ln 𝐿0): 
 

Pseudo − 𝑅2 = 1 −
ln 𝐿

ln 𝐿0
 (Eq. VIII.58) 

 

Like the standard 𝑅2, this measure is bounded by zero and one. Higher values indicate a better fit. The log-

likelihood ln 𝐿   is given by the log-likelihood function of the last iteration of the Newton procedure,and is thus 
already available. The loglikelihood of the restricted model is then left to be determined. With a constant only, 

the likelihood is maximized if the predicted default probability is equal to the mean default rate, �̅�. This can be 

achieved by setting the constant equal to the logit of the default, that is 𝑏1 = ln [
�̂�

1−�̂�
]. 

For the restricted log-likelihood, we then obtain: 
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ln 𝐿0 =∑𝑦𝑖 ln[Λ(𝒃
′𝒙𝒊)] + (1 − 𝑦𝑖)

𝑁

𝑖=1

ln[1 − Λ(𝒃′𝒙𝒊)] = 

 

= ∑ 𝑦𝑖 ln(�̅�) + (1 − 𝑦𝑖) ln(1 − �̅�) =
𝑁
𝑖=1  (Eq. VIII.59) 

 

= 𝑁 ⋅ [�̅� ln(�̅�) + (1 − 𝑦𝑖) ln(1 − �̅�)]  
 

The two likelihoods used for the Pseudo-𝑅2 can also be used to conduct a statistical test of the entire model, 
that is, test the null hypothesis that all coefficients except for the constant are zero. The test is structured as a 

likelihood ratio test: 𝐿𝑅 = 2(ln 𝐿 − ln 𝐿0). 
 

The more likelihood is lost by imposing the restriction, the larger the 𝐿𝑅-statistic will be. The test statistic is 

distributed asymptotically 𝜒2 with the degrees of freedom equal to the number of restrictions imposed.  
 

When testing the significance of the entire regression, the number of restrictions equals the number of variables 

𝐾 minus one. The chi2.sf(2*(lnL[Iter]-lnL0),K-1) gives the 𝑝-value of the 𝐿𝑅 test. Both 𝐿𝑅 and its 𝑝-value have 

been returned by the full output structure. The likelihoods ln 𝐿 and ln 𝐿0 are also reported as well as the number 
of iterations needed to achieve the convergence. Running the function logit(Dataset, constant=True, 
stats=True), we obtain the results reported in the next figure. The arrangement of the numbers follows exactly 
the output template shown previously. 
 

Regarding the overall fitting model statistics, we can look at the 𝐿𝑅 test (160.148) and its 𝑝-value (10−33): the 
logistic regression is highly significant. The hypotheses “the five ratios add nothing to the prediction” can be 
rejected with high confidence and the regression model helps to explain the default events. Knowing that the 
model does predict defaults, we would like to know how well it does so. 
 

An analyst usually turns to the 𝑅2 for answering this question, but as in linear regression, setting up general 

quality standards in terms of a Pseudo- 𝑅2 is difficult. 
 

 
 

Figure VIII.14 Full output of the logit function applied on the original credit dataset using all five ratios 
 

A simple but often effective way of assessing this measure is to compare it with ones from other models 
estimated on similar data sets. From the literature, we know that scoring for listed US companies can achieve a 
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Pseudo- 𝑅2 of about 35%-40%. This unfortunately indicates that the way we have set up the model may not 

be ideal given that our Pseudo- 𝑅2 is equal to 22.21%: after this statistical analysis we focus on how to improve 
the performance of the model. 
 

Turning to the regression coefficients, we can summarize that three out of five ratios have 𝑏 that are significant 

on the 1% level or better because their 𝑝-value is below 0.01. If we reject the hypothesis that one of these 
coefficients is zero, we can expect to err with a probability of less than 1%. Each of the three variables (RE/TA, 
EBIT/TA and ME/TL) has a negative coefficient, meaning that increasing values of the variables reduce 
default probability. This is coherent, by economic reasoning, as retained earnings, EBIT and market value of 
equity over liabilities should be inversely related to default probabilities. The constant is also highly significant 

(𝑝-value ~ 0) and the coefficient on working capital over total assets (WC/TA) and sales over total assets 
(S/TA), by contrast, exhibit a significance of only 46.92% and 7.59%, respectively. By conventional standards 
of statistical significance (5% traditionally is the most common choice) we would conclude that these two 
variables are not or only marginally significant and we would probably consider not using them for prediction. 

If on the other hand we simultaneously remove two or more variables based on their 𝑡-ratios, we should be 
aware of the possibility that variables might jointly explain defaults even though they are insignificant 
individually. To statistically test this possibility, we can perform a second regression in which we exclude 
variables that were insignificant in the first run and then conduct a likelihood ratio test. Running 
logit(CreditDataset[:,[0,2,3,4]],True,True), we reach the results shown in Figure VIII.15. 
 

The likelihood test for the hypothesis 𝑏𝑊𝐶/𝑇𝐴 = 𝑏𝑆/𝑇𝐴 = 0 is based on the comparison of the log-likelihoods 

ln 𝐿  of the two models. It is constructed as: 
 

𝐿𝑅 = 2 ⋅ [ln 𝐿 (model 1) − ln 𝐿 (model 2)] (Eq. VIII.60) 
 

In this case it is referred to a 𝜒2 distribution with two degrees of freedom because we impose two restrictions. 
chi2.sf(2*(-280.526-(-282.219)),2) gives 0.1840. This means that if we add the two variables WC/TA and S/TA 
to model 2, there is a probability of 18.40% that we do not add any explanatory power. 

 

 
 

Figure VIII.15 Full output of the logit function applied on the original credit dataset using the most 
significant financial ratios 
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The 𝐿𝑅 test thus confirms the results of the individual tests: both individually and jointly, the two variables 
would be considered only marginally significant. However, it is important to highlight that a common best 
practice is to also perform out-of-sample tests of predictive performance before dropping variables from the 
model. Having specified a scoring model, we want to use it for predicting probabilities of default. In order to 
do so, we calculate the score and then translate it into a default probability in accordance with: 
 

Prob(Default𝑖) = Λ(Score𝑖) =
exp(𝒃′𝒙𝒊)

1+exp(𝒃′𝒙𝒊)
=

1

1+exp(−𝒃′𝒙𝒊)
 (Eq. VIII.61) 

 

The getPDfromLogit(CreditDataset,constant) is able to perform this task for the 𝑁 observations in the 
database. 
 

Even the sensitivity to the change of a factor is considered as very important to properly manage the logit 
model. The getPDsensitivityfromLogit(CreditDataset,constant,bump) absolves this necessity. It takes a further 
compulsory input argument, that is the bump to be applied to the variable to get the sensitivity of the model 
compared to the analyzed variable. The sensitivity of the model has been estimated like a Greek for all the 

available observations, using a two-sided finite difference: 
𝑓(𝑥𝑖+ℎ)−𝑓(𝑥𝑖−ℎ)

2ℎ
, where ℎ is the bump applied to the 

factors and 𝑖 = 1,… ,𝑁.   
 

The output of the function is a matrix made of 𝐾 columns. In the first column, the sensitivity of the model to 

a bump applied to all the 𝐾 factors simultaneously has been reported, the other columns contain the partial 
sensitivity of the logit model obtained by individually applying the shock to each factor. Hence the second 
column contains the sensitivity of the model to the first factor (i.e. WC/TA) leaving the other variables 
unchanged; the third column contains the sensitivity of the model to the second factor (i.e. RE/TA) leaving 

the other 𝐾 − 1 variables unchanged and so on. The final output is a matrix of a dimension equal to 𝑁 ×𝐾 +
1. 

 

 
 

Figure VIII.16 Model sensitivity 
 

Having set the scoring models, the Probability of Default and their sensitivities respect to factors, it is worth 

wondering if the global performance of the regression can be improved in terms of Pseudo- 𝑅2. 
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In general terms, it can be considered a good result to obtain an overall performance of the model which can 
be compared to the literature benchmarks for the US listed firms. One of the most popular techniques is to 
treat outliers in input variables. Explanatory variables in scoring models often contain a few extreme values. 
They can reflect truly exceptional situations of borrowers, but they can also be due to data errors, conceptual 
problems in defining a variable or accounting discretion. In any case, extreme values can have a large influence 
on coefficient estimates, which could impair the overall quality of the scoring model. 
 

A first step in approaching the problem is to examine the distribution of the variables. With this aim, the 
function getDatasetDescriptiveStats(Dataset) allows to compute the main descriptive statistics for the five 
analyzed ratios. The output is an object of the DescriptiveStatistics class which contains the fields reported in 

the first column of Table VIII.19, together with the values assumed for each factor 𝑥𝑖. 
 

Field WC/TA RE/TA EBIT/TA ME/TL S/TA 

Average 0.14 0.21 0.05 1.95 0.30 

Median 0.12 0.22 0.05 1.14 0.26 

Standard Deviation 0.17 0.33 0.03 2.99 0.21 

Skewness -1.01 -2.55 -4.84 7.75 4.48 

Kurtosis 17.68 17.44 86.00 103.13 71.22 

Minimum -2.24 -3.31 -0.59 0.02 0.04 

Percentiles[0]=0.50 -0.33 -1.72 -0.05 0.05 0.06 

Percentiles[1]=1 -0.17 -0.92 -0.02 0.08 0.07 

Percentiles[2]=5 -0.06 -0.25 0.02 0.22 0.10 

Percentiles[3]=95 0.44 0.65 0.09 5.60 0.68 

Percentiles[4]=99 0.58 0.90 0.12 14.44 1.05 

Percentiles[5]=99.5 0.63 0.94 0.13 18.94 1.13 

Maximum 0.77 1.64 0.20 60.61 5.01 

 
Table VIII.19 Descriptive Statistics 

 

A common benchmark for assessing an empirical distribution is the normal distribution. The reason is not that 
there is a priori a reason why the variables should follow a gaussian distribution, but rather that the normal 
serves as a good reference point because it describes a distribution in which extreme events have been averaged 
out. 
 

We remind that the relevant theorem from statistics is the central limit theorem, which says that if we sample 
from any probability distribution with finite mean and finite variance, the sample mean will tend to the normal 
distribution as we increase the number of observations to infinity. A good indicator for the existence of outliers 
is the excess kurtosis (that is defined as kurtosis minus 3). The normal distribution has excess kurtosis of zero, 
but the variables used in the example have very high values ranging from 17.4 to 103.1. 
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In this context, a positive excess kurtosis indicates that there are relatively more observations far away from the 
mean, compared to the normal. 
 

The variables are also skewed, meaning that extreme observations are concentrated on the left (if the skewness 
is negative) or on the right (if skewness is positive) of the distribution. In addition, we can look at the percentiles. 
 

For example, a normal distribution has the property that 99% of all observations are within ±2.58 standard 
deviations of the mean. For the variable ME/TL, this would lead to the interval [-5.77, 9.68]. The empirical 
99% confidence interval, however, is [0.05, 18.94] that is wider and shifted to the right, confirming the 
information we acquired by observing the skewness and kurtosis of ME/TL. 
 

Considering WC/TA, we see that 99% of all values are in the interval [-0.33, 0.63], which is roughly in line with 
what we would expect under a normal distribution, namely [-0.30, 0.58]. In the case of WC/TA, the outlier 
problem is thus confined to a small subset of observations. This is most evident by looking at the minimum 
value of WC/TA: it is -2.24, which is very far away from the bulk of the observations, as it is 14 standard 
deviations away from the mean, and 11.2 standard deviations away from the 0.5% percentile. 
 

Having identified the existence of extreme observations, a rigorous inspection of the data is advisable because 
it can lead to the discovery of correctable data errors. In many applications, however, this will not lead to a 
complete elimination of outliers; even data sets that are 100% correct can exhibit bizarre distributions. 
Accordingly, it is useful to have a procedure that controls the influence of outliers in an automated and objective 
way. A commonly used technique applied for this purpose is the so-called winsorization, which means that 
extreme values are pulled to less extreme ones. 
 

Saying that the analyst specifies a certain winsorization level 𝛼 means that values below the 𝛼 -percentile of the 

variable distribution are set equal to the 𝛼 -percentile, values above the 1 − 𝛼 a percentile are set equal to 1 −
𝛼. Common values for 𝛼 are 0.5%, 1%, 2% or 5%. The winsorization level can be set separately for each 
variable in accordance with its distributional characteristics, providing a flexible and easy way of dealing with 

outliers without discarding observations. Running the function for 𝛼 = 1% for each 𝑥𝑖 we obtain the third and 
fourth moments shown in Table VIII.20: 
 

Measure WC/TA RE/TA EBIT/TA ME/TL S/TA 

Skewness 0.63 -0.95 0.14 3.30 1.68 

Kurtosis 0.01 3.20 1.10 13.48 3.42 
 

Table VIII.20 Skewness and Kurtosis 
 

Both skewness and kurtosis are now much closer to zero. Let us note that both statistical characteristics are 
still unusually high for ME/TL. This might explain a higher winsorization level for this factor, but there is a 
smarter alternative. Given that ME/TL has many extreme values to the right of the distribution, a good idea 
can be to take the logarithm with the aim of pulling them to the left without blurring the differences between 
those beyond a certain threshold, as we do applying the Winsor method. The logarithm of ME/TL (after 
winsorization at the 1% level) has a skewness of -0.11 and a kurtosis of 0.18, suggesting that the logarithmic 
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transformation works for ME/TL in terms of outliers. 

This transformation leads to an important benefit in terms of Pseudo- 𝑅2: running the logit(WinsorDataset, 
True, True) we obtain a value of 25.48% and launching the same command with the log of ME/TL we reach 
33.97%. Figure VIII.17 shows the full output of the logit function applied on the original credit dataset using 
winsorized variables at 1%:  
 

 
 

Figure VIII.17 Full output of the logit function applied on the original credit dataset using winsorized 
variables at 1%  

 

Figure VIII.18 shows the full output of the logit function applied on the original credit dataset using winsorized 

variables at 1% and the ln𝑀𝐸/𝑇𝐿: 
 

 
 

Figure VIII.18 Full output of the logit function applied on the original credit dataset using winsorized 
variables at 1% and the ln ME/TL 

 

The examination of univariate relationships between default rates and explanatory variables can give valuable 
hints as to which transformation is appropriate. In the case of ME/TL, it supports the logarithmic one, but in 
many other cases, it may support a polynomial representation like in the case of sales growth. Often, however, 
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which transformation to choose may not be clear, and an automatic procedure can be very useful especially 
when there is a huge number of factors. To such end, we can employ the procedure coded in the XTransform 
function. The main idea is to use the default rate of the range to which they are assigned instead of entering the 
original values of the variable into logit analysis. In this way we use a data-driven, nonparametric transformation 

of the input data. Running the function with a number of range equal to 20, we obtain a Pseudo-𝑅2 very close 
to that reported in the literature (46.001%). In this example we have described the estimation of a scoring model 
with logit. 

 

A common alternative is the probit model, which replaces the logistic distribution in Λ(Score) with the 
standard normal distribution. Experience and literature suggest that the choice of the distribution is not so 
crucial in most settings; predicted default probabilities and performance are fairly close. 
 

probit(Dataset, constant, stats) implements this alternative and the Pseudo-𝑅2 is very close to the previous 
model (45.1%). 
 

 
 

Figure VIII.19 Full output of the probit function 
 

Scoring models have advantages and limitations. Among the first ones we can identify: 
 

- objectivity: the choice of variables and the weights to be attributed to each of them depend on a statistical 
model and on the database used to calibrate the model. 
 

- strength: once the model has been defined, the bank is able to implement the investigation by minimizing 
the time and costs of the procedure and can also implement adequate monitoring procedures. 
 

- uniformity: the adoption of a standardized model for the evaluation of the counterparty allows the calculation 
of average scores by geographical area and branch. 
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Among the limits, we can identify the following: 
 

- instability: structural changes in the economic cycle, in the bank’s internal procedures or in the regulations 
may affect the validity of the model. 
 

- costs of incorrect classification: in the construction of the model, the intermediary must choose the optimal 
solution in the trade-off between precision of the model and costs for its creation and maintenance.  
 

- quality of the input data: a reliable valuation model must include balance sheet data, performance data and 
internal data updated with respect to the time horizon of the valuation. 
 

In addition to the credit scoring techniques which, from time to time, provide for the identification of the 
relevant indicators, the estimate of the PD through the quantitative approach, has brought the creation of 
models based on the use of market data as input for the estimation of the risk of debtors whose capital is listed 
on the financial markets. 
 

Among the different families of models, the structural models are particularly interesting. They estimate the PD 
based on structural characteristics of the firm: the value of the assets, the value of the debt and the variability 
of the asset value over time. One of the most common estimation methods is the option-theoretic Merton 
approach. It is similar to the counterparty risk, and we have already discussed it in the dedicated module. 
Therefore we will now discuss a widely used alternative structural modeling approach called CreditGrades 
(CG). 
 

In this model, default occurs if the asset value of the firm drops below a random barrier. The randomness of 
the barrier is the main difference to the KMV model. It captures the fact that typically, the level of a firm’s 
liabilities is not known until the firm defaults. Balance sheet information is only available quarterly and unluckily 
it does not always represent the current company situation so accurately. In addition, the CG model assumes 
that default can occur at any time, whereas default in the classical Merton model occurs only at maturity. 
 

Let us express the relevant firm variables on a per-share basis. We thus indicate today’s asset value per-share 

with 𝐴. We assume that asset values follow a lognormal distribution. The random default barrier is: 
 

Default Barrier = Λ𝐷 (Eq. VIII.62) 
 

Where 𝐷 is today’s debt-per-share. Λ represents the uncertainty in recovery values and is a random variable, 

which is assumed to follow a lognormal distribution with mean Λ̅ and standard deviation 𝜆, independent of the 
asset value process. As in the classical Merton model, we need to estimate today’s asset value, its volatility and 
its drift rate. In the CG model, they are determined as follows: the drift rate is set to zero. This is justified if 
firms tend to maintain a constant leverage over time. Assets may rise at a certain rate but if debt rises at the 
same rate, the distance to the default barrier remains constant and we describe the situation by assuming a zero 
drift for both assets and debt. 
 

For the initial asset value, the CG model suggests the approximation 𝐴 = 𝑆 + Λ̅𝐷 where 𝑆 is the firm’s stock 
price. This choice is based on an inspection of boundary cases. 
 

The asset volatility is set to: 
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𝜎 = 𝜎𝐸
𝑆

𝑆+Λ̅𝐷
 (Eq. VIII.63) 

 

Where 𝜎𝐸 is the equity volatility. This expression is an approximation of the theoretical relationship between 
asset volatility and equity volatility. Using these assumptions, the approximation for the probability that the 

firm survives at time t, as seen from today (𝑡 = 0) is: 
 

Prob(Survival at 𝑡) = Φ(−
𝛼𝑡

2
+
ln(𝑑)

𝛼𝑡
) − 𝑑Φ(−

𝛼𝑡

2
−
ln(𝑑)

𝛼𝑡
) (Eq. VIII.64) 

 

With 𝑑 =
𝑆+Λ̅𝐷

Λ̅𝐷
exp(𝜆2) and 𝛼𝑡

2 = (𝜎𝐸
𝑆

𝑆+Λ̅𝐷
) 𝑡 + 𝜆2. 

 

Date Adj Share Price Debt-per-Share Hist.90D Volatility CG 1 yr [%] 

Q4-2003 36.11 69.96 25.26 0.0014 

Q1-2004 43.36 78.28 24.74 0.0006 

Q2-2004 37.83 81.23 27.92 0.0941 

Q3-2004 36.95 94.93 25.11 0.0108 

Q4-2004 41.89 94.40 22.01 0.0010 

Q1-2005 45.59 110.30 18.82 0.0004 

Q2-2005 46.10 113.76 23.69 0.0047 

Q3-2005 52.83 121.73 20.17 0.0005 

Q4-2005 63.00 106.06 25.22 0.0004 

Q1-2006 72.98 126.86 23.03 0.0001 

Q2-2006 66.61 156.97 29.04 0.0244 

Q3-2006 63.81 121.61 27.90 0.0043 

Q4-2006 73.67 137.89 29.01 0.0062 

Q1-2007 73.31 179.41 30.82 0.0514 

Q2-2007 73.38 194.81 27.60 0.0304 

Q3-2007 54.83 235.01 34.89 1.0364 

Q4-2007 62.63 239.90 54.48 5.239 

Q1-2008 50.99 219.77 78.40 17.429 

Q2-2008 36.81 127.80 99.93 27.409 

 
Table VIII.21 CreditGrades Probability of Default model – Case study on Lehman Brothers 

 

Now let us introduce an example based on the calculation of a time series of CreditGrade survival probabilities 
for the well-known Lehman Brothers case. The dataset used comes from Bloomberg® and from the “Credit 
risk modeling” milestone written by Löffler and Posch. Clearly, the necessary adjustments when dealing with 
financial companies are not standard. The estimation of the debt-per share variable should be adjusted in order 
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not to overweight short-term borrowings. Furthermore, the volatility of the barrier is usually set to a lower level 
i.e. 10% as proposed by the literature. 
 

Here we show that these adjustments are enough to perform a timely reasonable credit assessment using the 
previous Equation. Table VIII.21 summarizes the main inputs for the CG approach from the quarterly report 
from Q4 2003 to Q2 2008. The debt-per-share ratios (third column) can be computed from the company 
statements or implied from CDS data, as will be shown later. Using end-of-quarter stock prices (second column) 
and historical volatility over 90 days (fourth column), we are able to estimate the one-year probabilities of 
default (fifth column) using one minus the results obtained from the previous equation of the survival volatility. 

These results are computed setting the volatility of the barrier 𝜆 = 10% and the global recovery Λ̅ = 50%. 
 
In accordance with the CreditGrades theory, the CDS premium and the debt-to-ratio are closely linked. The 

objective is to estimate the implied CDS premium, 𝑠, from 𝐷 through a formula. 
Let us start by considering the pricing formula of a European put option under the CG framework (Finger et 
al., 2002): 
 

𝑃(𝑆, 𝑡, 𝐵) = 𝑋 ⋅ exp(−𝑟(𝑇 − 𝑡))𝛷(𝑎1, 𝑎2) − 𝑆 ⋅ 𝛷(𝑎5 ) + 𝐼(𝐵, 𝜎, 𝑆, 𝑋)   (Eq. VIII.65) 

 

where 𝑋 is the strike, 𝑇 is the maturity of the option, 𝐵 the random default barrier, Φ(𝑥, 𝑦) the integral over 

the normal distribution density from 𝑥 to 𝑦, and Φ(𝑥) is the corresponding integral over (−∞, 𝑥) and 𝑟 the 
risk-free rate. 
 

𝐼(𝐵, 𝜎, 𝑆, 𝑋) = −𝑋 ⋅ exp(−𝑟(𝑇 − 𝑡)Φ(𝑎3, 𝑎4)) + 𝑆(1 −Φ(𝑎4)) + 
 

+𝐵 ⋅ exp(𝑟𝑡) (Φ(𝑎2) − Φ(𝑎4) − Φ(𝑎5) + Φ(𝑎6)) + 
 

−
𝑆

𝐵
⋅ 𝑋 ⋅ exp(−𝑟𝑡)Φ(𝑎3, 𝑎4) + 2 ⋅ 𝑋 ⋅ exp(

𝑧

2
− 𝑟(𝑇 − 𝑡)) ⋅ 

 

⋅ ∫ √2𝜋
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exp (−

𝑆2

2
) exp (−

𝑧2

8𝑠2
) 𝑑𝑠

∞
𝑧

√2(𝑇−𝑡)

  (Eq. VIII.66) 

 
Where: 
 

𝑎1,3 = ±

1
2
𝜎2(𝑇 − 𝑡) − 𝜎𝜂

𝜎√𝑇 − 𝑡
,  𝑎2,5 = −

𝜎(𝜂 − 𝜂𝑋) ∓
1
2
𝜎2(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
,  𝑎4,6 = −

𝜎(𝜂 + 𝜂𝑋) ±
1
2
𝜎2(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

 
Which depend on the distance to default measures: 
 

𝜂 =
1

𝜎
ln (1 +

𝑆

𝐵⋅exp(𝑟𝑡) 
) ,  𝜂𝑋 =

1

𝜎
ln (1 +

𝑋

𝐵⋅exp(𝑟𝑡) 
) (Eq. VIII.67) 
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With two at-the-money put prices, 𝑃1,2, we can use the expression 𝑃(𝑆, 𝑡, 𝐵) to solve for the implied asset 

volatility and the implied barrier. 
 

Converting the survival probability into a credit spread we specify 𝑅 as the recovery rate of the underlying 
credit and obtain: 
 

𝑠 = 𝑟(1 − 𝑅)
1−𝑃𝑆0+exp(𝑟

𝜎2Λ

𝜎2
)(𝐺(𝑇+

𝜎2Λ

𝜎2
)−𝐺(

𝜎2Λ

𝜎2
))

𝑃𝑆0−𝑃𝑆𝑇 exp(−𝑟𝑇)−exp(𝑟
𝜎2Λ

𝜎2
)(𝐺(𝑇+

𝜎2Λ

𝜎2
)−𝐺(

𝜎2Λ

𝜎2
))

 (Eq. VIII.68) 

 

Where the function 𝐺 is given as: 
 

𝐺(𝑥) = 𝑑
(𝑧+

1

2
)
Φ(−

ln(𝐷)

𝜎√𝑥
− 𝑧𝜎√𝑥) + 𝑑

(−𝑧+
1

2
)
Φ(−

ln(𝐷)

𝜎√𝑥
+ 𝑧𝜎√𝑥) (Eq. VIII.69) 

 

With 𝑧 = √
1

4
+
2𝑟

𝜎2
  and 𝑃𝑆𝑡 is the survival probability. 

 

The following functions implement all the equations needed to find the relationship between the debt-per-

share ratio (𝐷) and the spread 𝑠: 
 

CreditGrades_PS(S,sigma_E,D,Lambda,sigma_B,t) computes 𝑃𝑆𝑡 implementing the Prob(Survival at 𝑡) 
equation. 
 

CreditGrades_G(x,d1,r,sigma) computes 𝐺(𝑥). 
 

CreditGrades_CDS(S,sigma_E,d,Lambda,sigma_B,t,Rec,r) computes 𝑠. 
 

As an example, we can run CreditGrades_CDS using the market and statement data of Lehman Brothers on 

Q3 2007: 𝑆 = 54.83, 𝜎𝐸 = 34.89%, 𝐷 = 235.01, Λ = 50%, 𝜎𝐵 = 10%, 𝑇 = 1, 𝑅 = 40% (the standard 

percentage for an officially listed CDS) and 𝑟 = 4.90125% (USD Libor with 1-year tenor). We reach a 

theoretical implied 1-year spread of 61.87 bps which is quite close to the one observed on the market (= ~70 
bps). 
 

The green dotted line shows the term structure of the listed spreads at the early beginning of the problems 
(30th September 2007 - Q3 2007). One year senior spread is about 70 basis points. The yellow dotted line 
shows the term structure of the listed senior spreads at the end of June 2008 (30th June 2008 - Q2 2008). One 
year spread is about 400 basis points. On the morning of the default, the one year senior CDS was over 1,300 
basis points. 
 

The use of a qualitative approach for the prediction of the PD is based on the determination of a score, like 
the quantitative one. However, in this case, the information used and the weight attributed to them is not 
determined in an automated manner but it is left to the credit analyst. This approach is implemented by the 
rating agencies in the evaluation of issuers: in fact, the agencies themselves underline the nature of the rating 
opinion and the relevance of the qualitative-quantitative dimension. 
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Figure VIII.20 Lehman Brothers CDS premium on Q3 2007, Q2 2008 and on the day of bankruptcy 
 

Here are a few examples of statements and dislosures from the main and well-known rating agencies: 
 

- “A credit rating is Standard & Poor’s opinion of the general creditworthiness of an obligor, or the 
creditworthiness of an obligor with respect to a particular debt security or other financial obligation, based on 
relevant risk factors” (Standard and Poor’s, 2012). 
 

- “Fitch’s corporate ratings make use of both qualitative and quantitative analyses to assess the business and 
financial risks of fixed-income issuers. Ratings are an assessment of the issuer’s ability to service debt in a timely 
manner and are intended to be comparable across industry groups and countries” (Fitch, 2013). 
 

- “Issuer ratings are opinions of the ability of entities to honor senior unsecured financial obligations and 
contracts. 
 

Because it involves a look into the future, credit rating is by nature subjective. Moreover, because long-term 
credit judgments involve so many factors unique to particular industries, issuers, and countries, we believe that 
any attempt to reduce credit rating to a formulaic methodology would be misleading and would lead to serious 
mistakes. That is why Moody’s uses a multidisciplinary or ’universal’ approach to risk analysis, which aims to 
bring an understanding of all relevant risk factors and viewpoints to every rating analysis” (Moody’s, 2009). 
 

Banks can also adopt a qualitative approach to predicting the risk of default; this solution is adopted to evaluate 
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large corporate, and to evaluate the contribution of aspects that are difficult to standardize and evaluate within 
a quantitative approach. In the latter case, the qualitative approach is particularly suitable for investigating: the 
context in which the company operates, the distinctive features of the company, the relations with the 
environment, the markets, the human resources, as well as processes and production. Within the area of the 
distinctive characteristics of the company, internal processes and human resources, it is important to evaluate 
the control structures, organization and quality of the documentation. As part of the assessment of the context 
in which the company operates, relations with the external environment and the markets, the bank evaluates 
the characteristics of the sector and the competitive positioning. A weight will thus be assigned to each of the 
evaluated elements that allows to determine its score. In recent times, much attention has been paid to the 
integration of qualitative variables of an ordinal character (i.e. the categories that can be ordered from best to 
worst such as, for example, the intensity of competition in the sector) with quantitative variables in the scope 
of models for the attribution of the score. The scientific literature and the indications of the supervisory 
authorities however indicate that the direction to be taken is to integrate the use of quantitative and qualitative 
information, improving the culture of risk management. 
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VIII.4 LOSS GIVEN DEFAULT 
 
 

The Loss Given Default (LGD) is the percentage of the exposure classified in default that the bank is unable 
to recover at the end of the recovery process. The Basel 2 framework has introduced a definition of LGD that 
takes into account a plurality of factors: “The definition of loss to be applied to the LGD estimate is that of 
economic loss, to measure which among all relevant factors must be taken into account. 
 

These include significant discounts on the nominal value and the relevant direct and indirect costs associated 
with credit recovery” (Basel Committee on Banking Supervision, 2006). 
 

First of all, to estimate the LGD, the bank must define the source of the data to be used. The approaches that 
can be adopted by the bank can be distinguished in relation to the use of internal data compared to the use of 
external data. If the bank uses external data, the LGD is estimated using: 
 

- the price of corporate bonds after the declaration of insolvency. This solution can be considered suitable for 
estimating the LGD for credit exposures to large corporates, banks, sovereign states. It requires verifying the 
consistency with the definition of the default state chosen. 
 

- implicit credit spreads in yields on corporate bonds and/or credit derivatives. 
 

The most frequent approach used by banks is the one based on internal data. As part of this approach, the 
LGD is estimated according to the following formula: 
 

𝐿𝐺𝐷 = 1 −
∑

𝑅𝐹𝑡
(1+𝑖)𝜏𝑡

𝑁
𝑡=1 −∑

𝐸𝐹𝑡
(1+𝑖)𝜏𝑡

𝑁
𝑡=1

𝐸𝐴𝐷
 (Eq. VIII.70) 

 

Where: 
 

- 𝑅𝐹𝑡 is the recovery cash flow at time 𝜏𝑡. 
 

- 𝐸𝐹𝑡 is the cost flow at time 𝜏𝑡. 
 

- 𝑖 is the discount rate to determine the present value at the time of default. 
 

Therefore, to estimate the LGD it is necessary to define the state of default, the incoming cash flows, and the 
discount rate. The definition of the state of default coincides with that introduced for the estimate of the PD: 
certainly, the more prudent the definition of default, the greater is the number of debtors classified in state of 
insolvency, but the higher are the amounts recovered. 
 

Technically, debtors classified in a state of default who are performing or for which no losses are recorded are 
defined as “treated debtors”: banks must take into account the cure rate, i.e. the incidence rate of treated debtors 
compared to those classified in default. A high incidence of the cure rate shows that the definition of default 
adopted is unsuitable for capturing the risk of insolvency and can lead to distortion in the development of 
models. Moving on to the definition of financial cash flows, they are distinguished in incoming and outgoing. 
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The cash inflows are determined by: 
 

- the enforcement of collateral. 
- the enforcement of personal guarantees. 
- any debt restructuring agreements. 
- the liquidation of the debtor’s assets. 
 

The contribution of guarantees in mitigating the LGD differs between personal guarantees (function of the 
guarantor’s PD) compared to collateral. Within the collateral, it is possible to identify the contribution of the 
different types. Table VIII.22 reports the average LGDs by type of collateral in accordance with the studies of 
Carty et al. (1998) and Araten and Jacobs (2004). 
 

Type of Guarantee Carty et al. Arten & Jacobs 

Money and traded securities 

10.13% 

35.80% 

Non-tradable securities 44.90% 

Commercial credits 35.10% 

Stock 40.90% 

Commercial credits and stocks 41.60% 

Fixed Capital 
14.57% 

42.30% 

Real Estate 39.40% 

General guarantee on the debtor’s property - 47.20% 

Other 11.22% 41.80% 
 

Table VIII.22 Average LGDs by type of collateral  
 

The second column of Table VIII.22 shows the statistics of Carty based on 200 large corporate loans using 
LGDs on external data, and the third column shows the statistics studied by Araten and Jacobs based on 3,761 
retail loans using LGD on internal data. It should be noted that higher-value loans are, on average, characterized 
by a lessened LGD: collateral, money and similar guarantees and real estate allow to mitigate the LGD. 
 

The financial outflows are mainly determined by the costs of the recovery process 
 

 In-house Costs Outsourced Costs 

Specific Costs 

Problematic credit management External lawyers 

Back Office processes Debt collection agencies 

Out-of-court recovery procedures  

Common Costs Legal department costs - 
 

Table VIII.23 Costs of the recovery process 
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Table VIII.24 shows the results of the credit recovery survey carried out by the Bank of Italy in 2001 within 
the Italian banking system. A more recent analysis shows that in 2014 the incidence of recovery costs for the 
system was on average 2.8%, therefore an increase compared to the previous survey characterized by an average 
value of 2.3%. 
 

Geographic Area Incidence of the recovery activity [% operating costs] 

Noth-West 1.80% 

North-East 1.80% 

Center 2.70% 

South 5.30% 

Islands 3.10% 

Italy 2.30% 

 
Table VIII.24 Average costs of bankruptcy procedures in Italy 

 

The credit recovery processes can last for a long time, therefore, banks should discount the financial flows, 
both incoming and outgoing. In theory and in practice, a wide debate has developed on the most suitable type 
of discount rate. In fact, the viable solutions are represented by: 
 

- the contractual rate applied to the debtor before classification in the state of default. The approach 
provides that the flows recovered by the intermediary after the display of the state of insolvency are discounted 
at the contractual rate defined at the beginning of the relationship or at the last contractual rate renegotiated 
with the customer. The discounting to the contractual rate can be considered reasonable only if it is considered 
that the opportunity cost of the failure to recover the amounts at the expiry of the contract is correctly identified 
by this rate and it is therefore assumed that the intermediary has the possibility to choose between investment 
alternatives that guarantee the same return. 
 

- the historical or the implied risk-free rate. The difficulties related to the identification of the possible return 
on the investment of the available resources released in the event of the debtor’s fulfillment of the obligations 
assumed can lead to the choice of using the minimum opportunity cost for the temporal deferral of revenue, 
i.e., the risk free rate. The applicability of the approach is, therefore, subject only to the identification of the 
reference market and the best proxy (approximation) available for the return of the risk-free asset. 
 

- the risk-adjusted rate of the recovery process. The hypothesis of using a risk-free rate can lead to 
underestimating the loss in the event of insolvency, since it is unlikely that the investments made by a financial 
intermediary guarantee a return not exceeding the risk-free rate, being characterized by a non-zero risk of loss. 
Since the investment risk is different compared to the time before the default, as the bank’s capital is now 
invested in the activities that can generate revenue in the recovery process, this solution is more robust than 
the contractual rate. 
 

The LGDestimation(T,i,EAD,RF,EF) function implements the previous LGD formula.  
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In the proposed example, let us suppose that, after the default, the time necessary for the bankruptcy procedure 

is 24 months. Every month the credit institution has to pay a fixed amount of money equal to EUR 1,000 (𝐸𝐹𝑡) 
for legal fees. The Exposure at default (𝐸𝐴𝐷) is EUR 100,000 and there is a positive expectation for the bank 
that it will be able to recover a total amount of EUR 60,000 divided into tranches: 10,000 at the end of the 21st 

month and 50,000 at the end of the second year. Changing variable 𝑖 in the script, the code can be run under 
different scenarios of the rates adopted for discounting. 
 

- Setting i=RiskFree, the risk-free interest rate is used for discounting the future cash flows. The market interest 
rates term structure, which we have already used in the counterparty module, section “PD via bond spread”, 
was implemented. In this case the LGD is equal to 63.58%. 
 

- Setting i=AdjRate, a spread of 350 bps has been added over the risk free curve. In this second scenario the 
LGD is equal to 66.69%. 
 

- Running the code with a hypothetical contractual rate of 4% used for the discounting process, we obtain an 
LGD equal to 67.48%. 
 

The output of the code is a tuple of two elements: the first is the estimated LGD and the second is a Numpy 
array with the details of the future cash flows. The Tableau automatically generated from the LGDestimation 

function has in the first column the year fractions (𝑡), in the second column the discount rates (𝑖), the third 

column contains the recovery cash flows (𝑅𝐹𝑡), cost flows are displayed in the fourth column (𝐸𝐹𝑡) and the 
discounted cash flows are reported in the last two columns. So far we have discussed the issues related to the 
estimation of LGD. Now let us proceed and consider the most important factors for performing predictions. 
With this aim, it is useful to classify the variables used for LGD forecasting into four categories: 
 

- Instrument-related variables. Debt instruments can differ in several aspects that are relevant for LGD 
estimation. In the event of default, not all borrowers are equal. They are divided in function of the priority of 
repayment in a liquidation or restructuring (i.e. the seniority). Furthermore, some debt instruments are secured, 
giving the debt holders the right to claim specific assets connected with the instrument. For instance in a 
mortgage loan, in case of default, the bank has the right to seize the building and use the sale proceeds to 
partially recover the debt. There may also be differences between the LGD of bank loans and public bonds 
because the quality of the security is typically higher for bank loans than for bonds.  
 

Debt Type Average LGD 

Bank loans 0.262 

Senior secured bonds 0.428 

Senior unsecured bonds 0.57 

Senior subordinated bonds 0.717 

Subordinated bonds 0.806 

 
Table VIII.25 Average LGD, 1987-2009 (Source: Standard & Poor’s, 2010) 
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In a regression model, we can capture such average differences in two alternative ways: 
 

a) Create one variable that contains the historical average LGD of the respective debt type. For a senior secured 
bond, this variable would record the average LGD of a senior secured bond; for a subordinated bond, the same 
variable would record the average LGD of subordinated bonds, and so forth. 
 

b) Introduce dummy variables for debt types. The senior secured bond dummy, for example, would take the 
value 1 for senior secured bonds, and 0 otherwise. 
 

In the second approach, we estimate average LGD differences across debt types with our data. Any differences 
not explained by other variables will be reflected in the regression coefficients of the dummy variables. With 
the first approach, we can bring in information from other sources. This can help to increase the precision of 
the estimates, particularly if the size of the data set is small. When using the dummy variable approach to model 

differences among 𝐾 debt types, we would only include dummy variables for 𝐾 − 1 debt types. The coefficients 
of the dummy variables then reflect how LGDs differ from the LGD of the type that is not represented in the 
regression. Unluckily, modeling average differences across debt types is typically not sufficient to capture the 
effects of seniority and security. Let us consider a firm whose outstanding debt consists only of subordinated 
bonds. In this case, the subordinated are the most senior bonds. We can capture such effects by ordering the 
claims according to their seniority and security. We can summarize the priority standing of an instrument in 
different ways. One of the most well-established techniques is to define it through the ratio: 
 

𝐹𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑒𝑏𝑡 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦−𝐹𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑒𝑏𝑡 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑒𝑏𝑡
 (Eq. VIII.71) 

 

The higher this measure, the higher is the expected LGD. 
 

- Firm-specific variables. The overall losses incurred by creditors will equal the value of liabilities minus the 
value of the firm’s assets after bankruptcy costs. We can therefore hope to increase predictive accuracy if we 
find variables that contain information about the post-default asset value or bankruptcy costs. Among the most 
considered variables in the literature are the following: 
 

Tangibility: For several reasons, tangible assets (usually defined as property, plant and equipment) could on 
average lead to lower LGD. For instance, they can be used to generate revenue during restructuring, or they 
may tend to lose less value than intangible assets. 
 

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑃𝑙𝑎𝑛𝑡, 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
 (Eq. VIII.72) 

 

Market-to-book ratio: For firms with traded equity, the market-to-book ratio, which is often referred to as 
Tobin’s Q, is usually computed as: 
 

𝑀𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦+𝑏𝑜𝑜𝑘 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
 (Eq. VIII.73) 

 

where the total of assets is the book value of assets. The higher the ratio, the higher is the market valuation of 
the firm’s assets. If the valuation continues to be relatively high after default, the LGD will be relatively low. 
On the other hand, firms with a high market-to-book ratio are typically growth firms, which are highly valued 



NOTES ON QUANTITATIVE FINANCIAL ANALYSIS 

536 

because they promise high profits in the future. As such promises can dissipate quickly in the case of default, a 
high market-to-book ratio could also indicate high LGDs. 
 

Leverage: It is typically measured as: 
 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
 (Eq. VIII.74) 

 

This ratio is usually expected to be positively correlated with the LGD. One possible reason for such 
relationship is that debt structure is typically more complex for highly leveraged firms. This can complicate 
bankruptcy procedures, leading to larger bankruptcy costs and a higher LGD. 
 

- Macroeconomic variables. Macroeconomic conditions can be useful for predicting LGD because they can 
help to estimate the value of the assets in case of default. In many cases, we would use figures for the country 
in which the borrower is domiciled or where he generates the largest part of its income. In other cases, regional 
or global aggregates can be more suitable. Variables that could be considered include the following: 
 

Capacity utilization: If capacity utilization is low, demand for the firm’s assets will tend to be low because 
competitors do not need additional production capacities. This depresses prices and leads to a high LGD. 
 

GDP growth: The explanation is similar to the capacity utilization. A negative economic environment is 
expected to go along with high LGDs. 
 

Corporate bond spreads: Generally, the value of an asset is obtained as the present value of cash flows that can 
be generated with the asset. Ceteris paribus, the asset value will therefore fall with increasing discount rates. To 
capture variation in discount rates we can use a yield spread, for instance defined through: Corporate bonds 
yield or Treasury bonds yield. The higher the spread, the higher is the expected LGD. 
 

Default rates: High default rates indicate a negative economic environment. The mechanism leading to high 
LGDs would therefore be similar to the ones described above. Default rates may measure the relevant valuation 
factors in a more specific way. High default rates imply a high supply of defaulted debt, which tends to depress 
prices of such debt. 
 

- Industry-specific variables. It can also be a good idea to replace the suggested variables above with variables 
defined on the level of the industry to which the observed firm belongs. For instance: 
 

Capacity utilization: At a given point in time, the economic environment can differ substantially between 
industries. Using industry capacity utilization instead of (or in addition to) economy-wide capacity utilization 
can help to better capture the economic environment that is relevant for the valuation of a bankrupt firm’s 
assets. 
 

Market-to-book ratio: If a firm does not have traded equity, we cannot compute the firm-specific market-to-
book ratio. In such cases, we can use the average market-to-book ratio of traded firms in an industry. 
 

Let us now examine an example of LGD prediction based on a database provided in the "Credit Risk Modeling" 
book by Löffler & Posch. In this yearly dataset, we have three explanatory variables: 
 

a) the historical average LGD of the respective debt type, computed with data ending the year before default. 
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b) the industry default rate in the year before the default. 
 

c) the leverage. 
 

The LGD is the response variable of the model. Let us start the analysis by applying an ordinary least squares 
(OLS) regression to the data. Thus, the equation for the model is: 
 

𝐿𝐺𝐷𝑖𝑗𝑡 = 𝑏1 + 𝑏2𝐿𝐸𝑉𝑖,𝑡−1 + 𝑏3𝐿𝐺𝐷𝐴𝑗,𝑡−1 + 𝑏4𝐼𝐷𝐸𝐹𝑖,𝑡−1 + 𝑢𝑖𝑗𝑡 (Eq. VIII.75) 
 

where 𝐿𝐺𝐷𝑖𝑗𝑡 is the LGD on instrument 𝑗 of firm 𝑖, observed in year 𝑡. 
 

𝐿𝐺𝐷𝐴𝑗,𝑡−1 is the average LGD of instruments with the same type as 𝑗, computed with data ending in 𝑡 − 1. 

𝐼𝐷𝐸𝐹𝑖,𝑡−1 is the default rate that was observed in year 𝑡 − 1 for the industry to which borrower 𝑖 belongs.  
 

𝐿𝐸𝑉𝑖,𝑡−1 is firm 𝑖’s leverage in 𝑡 − 1. 
 

Unlike a traditional Ordinary Least Square (OLS), it should be noted in the database that one firm can 
contribute several observations to a data set because the study is at instrument-level. In our data, the firm with 
ID 1, for instance, enters with LGD values for both senior unsecured and subordinated bonds. This is likely to 

lead to correlations in the error terms 𝑢. If the assets of a defaulted firm have lost significantly in value or if its 
bankruptcy costs are high, the instruments issued by the firm will have a relatively high LGD. 
 

If the reasons behind such a high loss rate are not adequately captured through our explanatory variables, the 
error terms will be correlated. In the presence of such correlations, OLS coefficient estimates are still reliable, 
but the standard errors are no longer so. Depending on the nature of the correlation, OLS standard errors can 

be too low or too high, leading to inflated or deflated 𝑡-statistics. For this reason, we should not use the standard 
built-in Python function for the OLS regression, but we should instead code a version able to take into account 
these biases caused by clusters. The structure of the OLS cluster-robust estimator is represented by the 
following regression relationship: 
 

𝑦𝑖𝑗 = 𝛽1 + 𝛽2𝑥𝑖𝑗2 + 𝛽3𝑥𝑖𝑗3 +⋯+ 𝛽𝐾𝑥𝑖𝑗𝐾 + 𝜖𝑖𝑗 (Eq. VIII.76) 
 

where observations with the same 𝑖 belong to the same cluster. Let the overall number of observations be 

denoted by 𝑁. It is more convenient to formulate the regression in a vectorized form: 
 

𝒚 = 𝑿𝛽 + 𝜖 (Eq. VIII.77) 
 

where 𝒚 collects the values of dependent variable in a 𝑁 × 1 column vector; 𝑿 collects the values of the 

explanatory variables in a 𝑁 × 𝐾 matrix. The coefficient vector 𝛽 is 𝐾 × 1, while 𝜖 is 𝑁 × 1. 
 

Let us denote the vector containing the OLS coefficient estimates by 𝒃 = (𝑿′𝑿)−1𝑿′𝒚. 
 

The estimates are unbiased: 𝐸[𝒃] = 𝛽. For the variance of the coefficient estimates, it then follows that: 
 

Var(𝑏) = 𝐸[(𝒃 − 𝛽)(𝒃 − 𝛽)′] = 𝐸[((𝑿′𝑿)−1𝑿′𝒚 − 𝛽)((𝑿′𝑿)−1𝑿′𝒚 − 𝛽)′] =  
 

= 𝐸[(𝛽 + (𝑿′𝑿)−1𝑿′𝜖 − 𝛽)(𝛽 + (𝑿′𝑿)−1𝑿′𝜖 − 𝛽)′] = 𝐸[((𝑿′𝑿)−1𝑿′𝜖𝜖′𝑿(𝑿′𝑿)−𝟏)] =  
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= (𝑿′𝑿)−1𝑿′𝐸[𝜖𝜖′]𝑿(𝑿′𝑿)−1  (Eq. VIII.78) 
 

In standard OLS, it can be assumed that the covariance of error terms, 𝐸[𝜖𝜖′], takes a simple form: all off-
diagonal elements are zero (i.e. errors are independent) and elements on the diagonal take an identical value, 

𝜎2. In this situation, unluckily, this assumption is likely to be inappropriate. However, we can hope to estimate 

𝑿′𝐸[𝜖𝜖′]𝑿. This is the intuition behind the cluster-robust estimator. Each cluster gives an estimate of 

𝑿′𝐸[𝜖𝜖′]𝑿 and by averaging across the clusters, we are likely to reach a reliable estimator. To implement this 

new approach, we estimate the error terms through the regression residuals 𝑢𝑖𝑗, obtained through 𝑦𝑖𝑗 −

(𝛽1 + 𝛽2𝑥𝑖𝑗2 + 𝛽3𝑥𝑖𝑗3 +⋯+ 𝛽𝐾𝑥𝑖𝑗𝐾). By collecting the 𝑥-values pertaining to a cluster 𝑖 in the matrix 𝑋𝑖 

and collecting the residuals of cluster 𝑖 in a vector 𝑢𝑖, we obtain: 
 

𝑋𝑖 = [

1 𝑥𝑖11 … 𝑥𝑖1𝐾
1 𝑥𝑖21 … 𝑥𝑖2𝐾
… … … …
1 𝑥𝑖𝐽1 … 𝑥𝑖𝐽𝐾

] ,  𝑢𝑖 = [

𝑢𝑖1
𝑢𝑖2
⋮
𝑢𝑖𝑗

] (Eq. VIII.79) 

 

where 𝐽 is the number of observations in cluster 𝑖, meaning that 𝐽 can differ across the clusters. 
 

We then determine: 
 

Θ = ∑ 𝑿𝒊
′𝑢𝑖𝑢𝑖′

𝑀
𝑖=1 𝑿𝑖 (Eq. VIII.80) 

 

Where 𝑀 is the number of clusters. 
 

The estimate of the variance-covariance matrix of coefficients is then obtained through: 
 

𝑁−1

𝑁−𝐾

𝑀

𝑀−1
(𝑋′𝑋)−1Θ(𝑋′𝑋)−1 (Eq. VIII.81) 

 

Where 
𝑁−1

𝑁−𝐾

𝑀

𝑀−1
 is the small-sample adjustment that is commonly made. 

 

The LGDRegressionAnalysis function implements this estimator of the coefficients’ standard errors that is 
robust to correlation within cluster on the LGDDataset provided by the Löffler & Posch book. 
 

The output of the LGDRegressionAnalysis function is an object of the LGDRegressionOutput class. It 
contains all the statistics associated to the model: 
 

- The OLS Coefficients (attribute: coeff). 
- The cluster-robust standard errors (attribute: SEcoeff). 

- The 𝑡-statistics (attribute: tstat). 

- The 𝑅2 of the model (attribute: R2). 

- The in-sample 𝑅𝑀𝑆𝐸 (root mean squared error) of the model (attribute: RMSE). 
- The out-of-sample RMSE of the model if the input for the out-of-sample batch has been explicitly setted 
(attribute: outofsampleRMSE), otherwise it is NaN. 
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Coefficients are correctly estimated on the entire sample, and they are 𝑏1 = 0.195879,  𝑏2 = 0.182673 ,  

𝑏3 = 0.505693 and 𝑏4 = 0.028936. The in-sample RMSE is equal to 0.277 but unluckily if we test the model 
on an out-of-sample, this measure increases to 0.4. One of the possible problems to this lack of performance 
in the model is that the relationship between variables in the regression cannot be explained using a linear 
model. In this case it is rather challenging to guess about a possible function that is able to link the independent 

variables (i.e. 𝐿𝐸𝑉,   𝐿𝐺𝐷𝐴,   𝐼𝐷𝐸𝐹) with the response (𝐿𝐺𝐷). Given that it is hard to define an a-priori regression 
model, Machine Learning can help to capture the non-linearities between the variables. 
  

 

 
Figure VIII.21 Google Colab platform 
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A feed-forward shallow neural network with 30 neurons is able to noticeably reduce the out-of-sample error. 
 

We train a feed-forward neural network with a hidden layer of 30 neurons on a data set constituted by 90% of 
the available data using sigmoids as activation functions. 10% of the sample will be used for testing the out-of-
sample performance of the Machine Learning model.  
 

Without using a deep-learning network (i.e. an architecture with more than one hidden layers or with a single 
layer but with specific features) we are able to reach performances on the test sample which are aligned with 
the in-sample training data set. The in-sample RMSE (Root Mean Squared Error) is 0.24 and the error remains 
constant even in the test on the out-of-sample data set. 
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VIII.5 EXPOSURE AT DEFAULT 
 

 
The Exposure at Default (EAD) represents the bank’s exposure at the time of default. There can be certain 
or uncertain amount exposures. In the context of exposures with an uncertain amount, the EAD forecast differs 
according to the different technical forms. From a regulatory point of view, banks generally estimate this 
quantity applying this formula: 
 

𝐸𝐴𝐷 = 𝑈0 + 𝐶𝐶𝐹 ⋅ 𝑀0 (Eq. VIII.82) 
 

Where 𝑈0 is the current usage, 𝑀0 is the currently available margin, i.e. the difference between the agreed and 

the current usage; 𝐶𝐶𝐹 (Credit Conversion Factor) is the rate according to which 𝑀0 can be transformed into 
cash exposure. 
 

Considering the above formula, it is clear that 𝐶𝐶𝐹 plays a crucial role in forecasting the 𝐸𝐴𝐷. Araten and 

Jacobs (2001) show that the 𝐶𝐶𝐹 is a decreasing function of the time between the reference date and the time 
to default in years (see Table VIII.26). 
 

In other words, reading Table VIII.26 from right to left, as the default approaches, it is more likely to observe 

a reduction in exposure rather than an increase; this translates into a value of the 𝐶𝐶𝐹 equal to 72% five years 
before default, which is reduced by up to 32% one year before default. This evidence is to be interpreted in the 
light of the increase in the use of available margins upon approaching the default. The two authors also identify 

an inverse relationship between the value of the 𝐶𝐶𝐹 and the creditworthiness of the transaction (facility risk 

grade): a worse rating is generally associated with a lower 𝐶𝐶𝐹 value and vice versa. This result could be 
interpreted with a view to reducing credit lines or imposing stricter covenants. Finally, the authors conclude 
that certain indicators such as the type and extent of the transaction or the sector to which the debtor belongs 

do not have any relationship with the 𝐶𝐶𝐹. 
 

According to the 𝐸𝐴𝐷 equation and using the historical data in Table VIII.26, the 𝐸𝐴𝐷 for an exposure with 
a credit line of 20,000, an available margin of 5,000, a rating equal to B- one year before default would be: 
 

𝐸𝐴𝐷 = 𝑈0 + 𝐶𝐶𝐹 ⋅ 𝑀0 = 15,000 + 26.5% ⋅ 5,000 = 16,325  
 

The EADprediction(Credit_Line,CCF,Available_Margin) automatically performs this calculation taking into 
account the proper interpolation of the values in the historical Table VIII.26. Once the characteristics of the 

𝐶𝐶𝐹 have been defined for forecasting purposes, it is necessary to question how it can be estimated. As required 
by Basel 2, the database must be segmented by size, rating and technical form. In the case of a current account 

credit overdraft, the 𝐶𝐶𝐹 can be estimated as follows: 
 

𝐶𝐶𝐹 =
𝑈𝑡−𝑈0

𝑀0
 (Eq. VIII.83) 

 

Where 𝑈𝑡 is the use at the time of default, 𝑈0 is the current usage and 𝑀0 is the available current margin. 
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Risk Class 1Y 2Y 3Y 4Y 5/6 Y 

1. AAA/AA-  12.10%    

2. A+/A- 78.70% 75.50% 84.00%   

3. BBB+/BBB 93.90% 47.20% 41.70% 100%  

4.BBB/BBB- 54.80% 52.10% 41.50% 37.50% 100% 

5. BB 32.00% 44.90% 62.10% 76.00% 68.30% 

6. BB-/B+ 39.60% 49.80% 62.10% 62.60% 100% 

7. B/B- 26.50% 39.70% 37.30% 97.80%  

8. CCC 24.50% 26.70% 9.40%   
 

Table VIII.26 Average of CCFs for revolving credit transactions 
 

From a mathematical perspective, it is not an easy task to estimate the expected exposure of a generic asset at 
a future time. The example proposed above is based on cash amounts of a revolving credit, as a result, the NPV 
is the available quantity at the moment of default, which can be estimated using the described methodology. A 
more complicated case can be represented by a loan with fixed or floating installments. In this case the asset 
can be modelized like a bond and, consequently, an analyst should compute its NPV at the time of default. For 
the case of a straight bullet bond, the future cash flows are pre-determined, but the discount rates seen in 

today’s markets are not the same as the zero rates at time of default 𝑡. A Monte Carlo method that numerically 
integrates an SDE (Stochastic Differential Equation) has thus to be implemented. A motion is usually chosen 
which embeds a mean-reverting effect to this aim like Vasicek or Hull-White dynamics depending on available 
data. Obviously, the same reasoning can be applied for floaters: in this case we use the information of the 
projected rates not only for discounting purposes, but also for the determination of the expected future cash 
flows through the forward rates. This kind of approach can be used in the case of optionality such as cap/floor 
instruments on the loan using a numeric technique (Monte Carlo with the direct application of the pay-off on 
the paths) or the closed formulas, being careful to project all the market input data at the time of default. 
 

The problem of the Expected Exposure estimation is also present in the Credit Valuation Adjustment (CVA). 

According to financial literature, the 𝐶𝑉𝐴 is the difference between the risk free and its price including the risk 
of default. In other words, it is the cost that must be incurred to cover the risk of counterparty bankruptcy: it 
is necessary for derivatives whose fair value is positive. It is considered a financial risk measure and it is mainly 

applied to derivatives which are not collateralized. From a conceptual point of view, the 𝐶𝑉𝐴 can be considered 
as the cost of hedging the counterparty risk. Observing the mathematical formula that defines this credit 
valuation adjustment, the direct relationship with the modern definition of credit risk is clear. 
 

𝐶𝑉𝐴 = (1 − 𝑅)∫ 𝐸𝐸(𝑡)𝑑𝑃𝐷(0, 𝑡)
𝑇

0
 (Eq. VIII.84) 

 

Where 𝑅 is the recovery rate, 𝐸𝐸 is the expected exposure and 𝑃𝐷 is the probability of default. The recovery 
rate is out of the integral because it is constant in financial markets and usually set equal to 40% in accordance 

with the standardized CDS premium. This choice is reasonable especially if the 𝑃𝐷 is estimated from Credit 
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Default Swaps. Surely, the most difficult part is the estimation of 𝐸𝐸. Considering that a financial portfolio can 
be made of complex derivatives, a general approach to this problem is required, able to generalize the 
methodology discussed previously in the pure credit risk field.  In this context, let us examine the main 
procedural steps for the CVA engine implemented by the Financial Engineering Office in Banca CARIGE 
(now merged into the BPER Group) focusing on the Expected Exposure term. The fundamental steps for the 
implementation of the CVA measurement can be summarized as follows: 
 

- Definition of the IT architecture able to host the calculation. 
- Bootstrap of market data aimed at a correct determination of the fair value of derivatives. 
- Implementation of the most appropriate stochastic differential equation (SDE) for the representation of the 
dynamics followed by the input market data. 
- SDE parameter calibration using listed market quotes. 
- Probability of default estimation based on a market approach. 
- CVA computation in accordance with the previous equation. 
 

Following an accurate analysis, based both on the size of the non-collateralized derivatives, and on the required 
computational time, it was decided to develop the pricing engine in-house using Matlab. These libraries have 
been compiled in order to be first tested and validated in an Excel-VBA environment (bas modules) and then 
released in production as dynamic libraries for DOT NET (dll file). Using an integrated interface, developed in 
C#, the computation engine can be iteratively called from the official pricing system of the Bank, also providing 

the CVA or DVA measurement (if 𝑁𝑃𝑉 ≤ 0) in addition to the fair-value of the financial instrument. The role 
of the IT system is crucial at this level, in fact, depending on the number of financial instruments to be 
processed, the computational time for an engine based on the Monte Carlo technique may require the use of 
parallel computing and a server dedicated exclusively to this task. The next step was to develop the set of 
mathematical models needed to the valuation of all kinds of derivatives subjected to this adjustment. These 
codes were tested and integrated in production in a short time. Once the pricing functions have been validated, 
both theoretically by comparison with the technical-scientific literature, and experimentally with the 
Bloomberg® modules, the goal is to estimate the reasonable evolution of the current price over time. In 
accordance with financial best practice, the same pricing engine has to be used at different future dates and the 
input market data has to be simulated using a suitable Monte Carlo engine. 

Table VIII.27 shows the stochastic dynamics implemented for the simulation of the term structures. 
 

Financial Instruments Model Dynamics 

Interest Rate Swap Hull & White 𝑑𝑟 = [𝜃(𝑡) − 𝛼𝑟]𝑑𝑡 + 𝜎𝑑𝑊𝑡 
Interest Rate Cap/Floor/Collar Hull & White 𝑑𝑟 = [𝜃(𝑡) − 𝛼𝑟]𝑑𝑡 + 𝜎𝑑𝑊𝑡 

Currency Option Ho & Lee 𝑑𝑟 = 𝜃(𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 
Inflation Indexed Swap Hull & White 𝑑𝑟 = [𝜃(𝑡) − 𝛼𝑟]𝑑𝑡 + 𝜎𝑑𝑊𝑡 

Inflation Cap/Floor/Collar Hull & White 𝑑𝑟 = [𝜃(𝑡) − 𝛼𝑟]𝑑𝑡 + 𝜎𝑑𝑊𝑡 
Exchange Rate Derivatives Rendleman 𝑑𝑟 = 𝜇𝑟𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑡 

 

Table VIII.27 Stochastic Differential Equations implemented for the simulation of term structures 
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𝑟 is the rate of the term structure to be projected. 
 

𝜇 = 𝑟 − 𝑟𝑓 is the spread between the domestic and the foreign rate. 
 

𝛼 is the speed of mean reversion. 
 

𝜎 is the volatility of the underlyings. 
 

𝜃(𝑡) is the starting slope of the term structure. 
 

𝑑𝑊𝑡 is the stochastic Wiener process (mean zero and unitary variance). 

Depending on the model for the projection of 𝑟(𝑡), different calibration techniques have been used and they 
are summarized in Table VIII.28. For the Ho & Lee model and the Rendleman & Bartter model, the only 
parameter to be calibrated is volatility, which can be observed directly from the market, because it is directly 
contributed or implicitly derived from the premiums of the options actively traded on the trading platforms.  
 

Financial Instruments Model MKT Data for calibration 

Interest Rate Swap Hull & White ATM Interest Rate Cap Vol. 

Interest Rate Cap/Floor/Collar Hull & White ATM Interest Rate Option Vol. 

Currency Option Ho & Lee ATM Currency Vol. 

Inflation Indexed Swap Hull & White ATM Inflation Floor Premium 

Inflation Cap/Floor/Collar Hull & White ATM Inflation Option Premium 

Exchange Rate Derivatives Rendleman ATM Forex Vol. 

 

Table VIII.28 Calibration techniques for the simulation of the term structures 

In the Hull & White model there is an additional parameter which is 𝛼: in fact, the dynamics of the underlying 
is represented by the Stochastic Differential Equation (SDE): 

𝑑𝑟 = [𝜃(𝑡) − 𝛼𝑟]𝑑𝑡 + 𝜎𝑑𝑊𝑡 (Eq. VIII.85) 

𝜃(𝑡) =
𝜕𝑓𝑀(0,𝑡)

𝜕𝑇
+ 𝛼𝑓𝑀(0, 𝑡) +

𝜎2

2𝛼
[1 − exp(−2𝛼𝑡)] (Eq. VIII.86) 

Where 𝑓𝑀(0, 𝑡) is the instantaneous forward rate at time 0 and maturity 𝑡. 

This SDE can be discretized using a trinomial stochastic Hull-White tree, which is characterized by the same 

parameters as the Monte Carlo method. The main advantage of using this last model for evaluating 𝛼 and 𝜎 to 
be used in the SDE integration is that it is deterministic. This is an extremely nice feature for setting a 
minimization problem over all the known market quotes able to solve our estimation problem: 
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min
𝒙
𝑓[𝑀𝑜𝑑𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 (𝒙) − 𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒] (Eq. VIII.87) 

 

With 𝒙𝐿 < 𝒙 < 𝒙𝑈 and 𝒙 = [𝛼, 𝜎]. 

𝒙 is the array of the parameters to be estimated, 𝒙𝐿 and 𝒙𝑈 are respectively the lower-bound and upper-bound 

that define the search domain of the feasible solutions and 𝑓 normally assumes a quadratic form (in analogy to 

the traditional minimization of the sum of the squared errors, 𝑆𝑆𝐸). Therefore, in order to compute the optimal 
values of mean-reversion and volatility, i.e. those values which minimize the discrepancy between the model 
and the market value, it is necessary to implement an optimization algorithm, such as a quasi-newton method, 
like L-BFGS or a direct search methodology such as the Nelder-Mead simplex. This routine will iteratively 

recall the trinomial stochastic tree, compare the theoretical value obtained from it, 𝑀𝑜𝑑𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 (𝒙), with the 

target, 𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒, until the desired accuracy has been reached. 

It is worth to say that the plain-vanilla Caps and Floors are characterized by an analytical tractability in the Hull 
& White pricing framework. The existence of a pricing formula is definitely an interesting property, as it allows 
a greater convergence speed of the optimization problem. Besides, the routine does not require the time-
consuming recalculation of the entire tree structure, but only the evaluation of the following cap/floor formulas: 

Cap(𝑡, 𝜏, 𝑁, 𝑋) = 𝑁∑ 𝑃(𝑡, 𝑡𝑖−1)Φ(−ℎ𝑖 + 𝜎𝑃
𝑖 ) − (1 + 𝑋𝜏𝑖)𝑃(𝑡, 𝑡𝑖)Φ(−ℎ𝑖)

𝑛
𝑖=1  (Eq. VIII.88) 

Floor(𝑡, 𝜏, 𝑁, 𝑋) = 𝑁∑ (1 + 𝑋𝜏𝑖)𝑃(𝑡, 𝑡𝑖)Φ(ℎ𝑖) − 𝑃(𝑡, 𝑡𝑖−1)Φ(ℎ𝑖 − 𝜎𝑃
𝑖 )𝑛

𝑖=1  (Eq. VIII.89) 
 

With 

𝜎𝑃
𝑖 = 𝜎√

1−exp[−2𝛼(𝑡𝑖−1−𝑡)]

2𝛼
⋅
1−exp[−𝛼(𝑡𝑖−𝑡𝑖−1)]

𝛼
; ℎ𝑖 =

1

𝜎𝑃
𝑖 ln

𝑃(𝑡,𝑡𝑖)(1+𝑋𝜏𝑖)

𝑃(𝑡,𝑡𝑖−1)
+
𝜎𝑃
𝑖

2
 

𝑋 is the strike price of the option,  𝑁 is the notional of the option, 𝜏 is the year fraction between two subsequent 

caplets (/floorlets), 𝑃(𝑡, 𝑡𝑖) is the discount factor, Φ(∙) is the cumulative standard normal distribution. 𝛼 and 

𝜎 are the mean reversion and volatility of the Hull & White tree. Once the parameters of the simulators have 

been tuned in accordance with the observed market data, 𝑁𝑟𝑢𝑛𝑠 simulations are performed of all the inputs 

necessary for pricing the derivative in the future dates. For each simulation date, 𝑇𝑠𝑖𝑚, three curves computed 

in correspondence of the percentiles 40% (𝑟𝑇𝑠𝑖𝑚
𝐷𝑂𝑊𝑁), 50% (𝑟𝑇𝑠𝑖𝑚

𝑀𝐼𝐷 ) and 60% (𝑟𝑇𝑠𝑖𝑚
𝑈𝑃 ) are stored in a database. The 

percentile values are parameterized and therefore customizable by the user, who is able to estimate the statistical 

reliability of the simulation conducted, by comparing 𝑟𝑇𝑠𝑖𝑚
𝑀𝐼𝐷  with the initial term structure, 𝑟(𝑡 = 0), in fact, for 

𝑁𝑟𝑢𝑛𝑠 → ∞ it has to converge to these expected values. We now have all terms for solving the initial equation 
and estimating the Credit Valuation Adjustment: 

𝐶𝑉𝐴 = (1 − 𝑅)∫ 𝐸𝐸(𝑡)𝑑𝑃𝐷(0, 𝑡)
𝑇

0
 (Eq. VIII.90) 

 

The described procedures have been published on professional magazines (ASSIOM FOREX Letters and 
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MathWorks User-Story Journal) and presented in several academic and professional conferences in 2014-2015. 
Readers interested in this topic can find further details in the reference section. 
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VIII.6 RATING SYSTEMS 
 

 
A credit rating system uses a limited number of rating grades to rank borrowers according to their probability 
of default. Rating assignments can be based on a qualitative process or on default probabilities estimated with 
a scoring model, a structural model or other means. To translate default probability estimates into ratings, an 
analyst defines a set of rating grades and their rules: grade AAA is assigned to borrowers with a probability of 
default lower than 0.02%, grade AA is assigned to borrowers with a probability of default between 0.02% and 
0.05% and so on. The most relevant example of these structured analysis applications is given by rating 
agencies. Their aim is to run a systemic survey on all determinants of default risk. There are several national 
and international rating agencies operating in all developed countries. The rating agencies’ approach is very 
interesting because model-based and judgmental-based analyses are integrated, and it can be considered a state-
of-the-art approach in this field. They thus have the possibility to overcome the information asymmetry 
problem through a direct expert valuation, supported by information which is not accessible to other external 
valuators. Rating agencies’ revenues derive for the most part from counterparties’ fees; only a small amount is 
derived from the direct selling of economic information to investors and market participants. This business 
model is apparently very peculiar because of the obvious conflict of interests between the two parties. If the 
cost of the rating assignment is charged to companies that have the most benefit from it, how can it possibly 
be fair? 
Nevertheless, this business model is considered as solid, as the Nobel Laureate George Ackerloff and the 
“lemon principle” can help to understand. If there is a collective conviction among market participants and 
exchanged goods are generally of bad quality, the seller of better quality goods will encounter many difficulties 
in selling them, because he will have trouble in convincing people of the quality of his offer. In such 
circumstances, the seller of better quality goods: either tries to adapt, and switch to low quality goods in order 
to be aligned with market judgement or he has to find a third party, a highly reputable expert, that could try to 
convince market participants that the offer is of really good quality and it is worth paying a higher price. In the 
first case, the market will experience a suboptimal situation, because part of the potential offer (good quality 
products) will not be traded. In the second case, the market will benefit from the reliable external judgement, 
because of the opportunity to segment the demand to gain a wider number of negotiated goods. Generally 
speaking, when there is information asymmetry among market participants (i.e. inability for market participants 
to have a complete and transparent evaluation of the quality of the offered goods) only high reputation external 
appraisers can assure the quality of goods, overcoming the so-called “lemon” problem. 
Traders, investors, and buyers can lean on the expert judgment. Therefore, issuers are interested in 
demonstrating the credit quality of their issues, and rating agencies are interested in maintaining their reputation. 
The disruption in the evaluator’s reputation is something that could induce a much wider market disruption, 
and this observation is very important in the light of the recent financial crisis, where rating agencies’ structured 
products judgements have been strongly criticized. Consequently, the possibility to obtain privileged 
information on the counterparty’s management visions, strategies and budgeting is essential to a reliable rating 
agencies’ business model; as a result, the structure of the rating process becomes a key part of the rating 
assignment process because it determines the possibility to reach independent, objective and sufficient insider 
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information. 
 
The decision making process for rating assignment at Standard & Poor’s can be summarized in eight steps: 
 

a. Ratings request from issuer. 
b. Initial evaluation. 
c. Meeting with issuer management. 
d. Analysis. 
e. Rating committee review and vote. 
f. Notification to issuer. 
g. Publication and Dissemination of rating opinion. 
h. Surveillance of rated issuers and issues - and back to step e). 
 

Rating agencies’ assignment methodologies are differentiated according to the counterparty’s nature 
(corporations, countries, public entities, …) and/or according to the nature of products (structured finance, 
bonds, …). Focusing on corporate borrowers, the final rating derives from two analytical areas: 
 

- Business risk which depends on Country risk, Industry characteristics, Company position, Profitability and 
peer group comparison. 
 

- Financial risk which is impacted by Accounting, Governance, Cash flow adequacy, Capital structure and 
Liquidity. 
 

The main financial ratios used by S&P’s rating agency are: 
 

- profitability ratios from historical and projected operations, gross and net of taxes. 
 

- coverage ratios such as cash flow from operations divided into interest and principal to be paid. 
 

- quick and current liquidity ratios. 
 

Typically, the larger the cash flow margins from operations, the safer the financial structure; and, therefore, the 
better the borrower’s credit rating. This general rule is integrated with considerations regarding the country of 
incorporation (the so-called “sovereign risk”), the industry profile, the competitive environment and the 
business sector. Other traditional analytical areas include: management reputation, reliability, experience, and 
past performance; coherence and consistency in the firm’s strategy; organization adequacy to competitive needs; 
diversification in profit and cash flow sources; firm’s resilience to business volatility and uncertainty. 
Recently, new analytical areas were introduced to take new sources of risk into account. The new analytical 
areas can be summarized as follows: 
 

- internal governance quality (competence and integrity of board members and management, distribution and 
concentration of internal decision powers and layers, . . . ). 
 

- environmental risks, technology and production processes, compliance and sustainability. 
 

- potential exposure to legal or institutional risks, and to main political events. 
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Over time, aspects like internal governance, environmental compliance and liquidity have become crucial. 
Despite the effort in creating an objective basis for rating assignment, the rating agency, in the end, gives an 
opinion that is expressed using a categorical variable (i.e. the credit risk rating). 
 
It is worth to highlight that the creation of a rating process is very complex and is typically structured as follows: 
a preliminary analysis, meetings with the counterparty under scrutiny, the preparation of a rating dossier 
submitted by the Analytical Team to the Rating Committee (usually composed of 5-7 voting members), a new 
detailed analysis if needed, the final approval by Rating Committee, the official communication to and 
subsequent meeting with the counterparty, and, if necessary, another approval process and rating submission 
to the Rating Committee. 
Moreover, the rating is not directly determined by ratios; for instance, the more favourable the business risk, 
the higher the financial leverage compatible with a given rating class. 
 

 AAA AA A BBB BB 

Excellent 30 40 50 60 70 

Above Average 20 25 40 50 60 

Average  15 30 40 55 

Below Average   25 35 45 

Vulnerable    25 33 

 
Table VIII.29 Financial leverage (debt/capital, in percentage), business risk levels and ratings 

 

In general, favorable positions in certain areas could be counterbalanced by less favorable positions in others, 
with some transformation criteria: financial ratios are not intended to be hurdle rates or prerequisites that should 
be achieved to attain specific debt rating. Average ratios per rating class are ex-post observations and not ex 
ante guidelines for rating assignment.  
Over time, the rating industry has changed, mostly due to consolidation processes that have left only three big 
international players. It is worth noting that the three competitors have different rating definitions. Moody’s 
releases mainly issues ratings and far less issuer’s ratings. On the contrary, S&P focuses on providing a credit 
quality valuation referred to the issuer, despite the fact that the counterparty could be selectively insolvent on 
public listed bonds or on private liabilities. Lastly, Fitch adopts an intermediate solution, offering an issuer 
rating, limited to the potential insolvency on publicly listed bonds, without considering the counterparty’s 
private and commercial bank borrowing. 
Therefore, ratings released by the three international rating agencies are not directly comparable. This was 
clearly seen when British Railways defaulted in the United Kingdom and was privatized, while the outstanding 
debt was immediately covered by state guarantee. British Railways issues were set in “selective default” by S&P 
while (coherently) having remained “investment grade” for Moody’s and “speculative grade” for Fitch. In 
recent years, nonetheless, market pressure urged agencies to produce more comparable ratings, increasingly 
built on quantitative analyses, beyond qualitative ones, adopting a wider range of criteria. Particularly, after the 
“Corporate America scandals” (ENRON is probably the most renowned), new criteria were introduced, such 
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as the so called “Core earnings methodology on treatment of stock options, multi annual revenues, derivatives 
and off-balance sheet exposure and so on”. Liquidity profiles were also adopted to assess the short term liquidity 
position of firms, as well as the possibility to dismantle certain investments or activities in case of severe 
recession, and so forth. New corporate governance rules were also established with reference to conflict of 
interests, transparency, the quality of board members, investor’s relations, minorities’ rights protection and so 
on. Monitoring was enhanced and market signals (such as market prices on listed bonds and stocks) were taken 
into further consideration. 
 

 
 

Figure VIII.22 Long-Term Rating Scale Comparison. Source: Bloomberg® RATD function 
 
Thanks to the increased comparability, an Info-provider like Bloomberg® provides dedicated functions like 
RATD (Ratings definitions and unique individual scales for available agencies on the Terminal) to enable traders 
and analysts to simplify their analyses (see Figure VIII.22). 
 
Let us conclude this part dedicated to Rating Agencies quoting a definition found in a Standard & Poor’s report: 
 

“The rating experience is as much an art as it is a science”. 
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In this section, a few methods for answering fundamental questions are provided, such as “With what 
probability will the credit risk rating of a borrower decrease by a given level?”. In credit risk management, the 
probabilities of rating transition or rating migration are usually presented in transition matrices. 
Let us consider a rating system with three classes A, B, C and a default category D. The transition matrix for 
this rating system is a table listing the probabilities that a borrower rated A at the start of a period, has rating 
A, B, C or D at the end of the same period; likewise for B-rated and C-rated companies. 
Table VIII.30 illustrates this matrix representation for this simple rating system. 
 

Rating A B C D 

A Prob(𝐴 → 𝐴) Prob(𝐴 → 𝐵) Prob(𝐴 → 𝐶) Prob(𝐴 → 𝐷) 
B Prob(𝐵 → 𝐴) Prob(𝐵 → 𝐵) Prob(𝐵 → 𝐶) Prob(𝐵 → 𝐷) 
C Prob(𝐶 → 𝐴) Prob(𝐶 → 𝐵) Prob(𝐶 → 𝐶) Prob(𝐶 → 𝐷) 

 

Table VIII.30 Structure of a transition matrix 
 

Row headers give the rating at the beginning of the time period, column headers the rating at the end of the 
period. The period length is often set to one year, but other choices are possible as well. The default category 
does not have a row of its own because only performing positions are analyzed in statistical samples. It should 
also be specified that the default is treated as an absorbing category i.e. probabilities of migrating from D to A, 
B and C are set to zero. A borrower that moves from B to D and back to B within the analyzed period is 
counted as a defaulter in this model. The data are usually estimated from observed historical rating transitions. 
For agency ratings, there is practically no alternative to using historical transitions because agencies do not 
associate their grades with probabilities of default or transition. 
In this context, let us examine two estimation procedures built on historical transitions: the cohort approach 
and the hazard approach. The former approach is the traditional technique, which estimates transition 
probabilities through historical transition frequency. Though widely established, the cohort approach does not 
make full use of the available data. The estimates are not affected by the timing and the sequencing of transitions 
within a year. One consequence hereof is that transition rates to low grades are often zero for high-quality 
issuers. Such events are so rare that they are seldom observed empirically. Still,  there is indirect evidence that 
they can nevertheless happen. A fact that an analyst does observe is that high-grades issuers are downgraded 
within a year, say to BBB and that BBB issuers can default within a few months. An approach that circumvents 
such problems and makes efficient use of the data would be to estimate transition rates using the hazard rate 
approach. It is a similar technique adopted by both industrial engineers in plants maintenance and by medical 
scientists for their survival studies. 
A cohort comprises all obligors holding a given rating at the start of a given period. In the cohort approach, 
the transition matrix is filled with empirical transition frequencies that are computed as follows. 

Let 𝑁𝑖,𝑡 denote the number of obligors in category 𝑖 at the beginning of period 𝑡 (𝑁𝑖,𝑡 is therefore the size of 

the cohort 𝑖, 𝑡). Let 𝑁𝑖𝑗,𝑡 denote the number of obligors from the cohort 𝑖, 𝑗 that have obtained grade 𝑗 at the 

end of period 𝑡.  
The transition frequencies in period 𝑡 are computed as: 
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�̂�𝑖𝑗,𝑡 =
𝑁𝑖𝑗,𝑡

𝑁𝑖,𝑡
 (Eq. VIII.91) 

 

Usually, a transition matrix is estimated with data from several periods. A common way of averaging the period 
transition frequencies is the obligor-weighted average, which uses the number of obligors in a cohort as weights: 
 

�̂�𝑖𝑗 =
∑ 𝑁𝑖,𝑡𝑝𝑖𝑗,𝑡𝑡

∑ 𝑁𝑖,𝑡𝑡
 (Eq. VIII.92) 

 

Inserting the definition of �̂�𝑖𝑗,𝑡 in the previous equation, we obtain: 
 

�̂�𝑖𝑗 =
∑ 𝑁𝑖,𝑡𝑝𝑖𝑗,𝑡𝑡

∑ 𝑁𝑖,𝑡𝑡
=
∑ 𝑁𝑖,𝑡

𝑁𝑖𝑗,𝑡

𝑁𝑖,𝑡
𝑡

∑ 𝑁𝑖,𝑡𝑡
=
∑ 𝑁𝑖𝑗,𝑡𝑡

∑ 𝑁𝑖,𝑡𝑡
=
𝑁𝑖𝑗

𝑁𝑖
 (Eq. VIII.93) 

 

Therefore, the obligor-weighted average can be directly obtained by dividing the overall sum of transitions from 

𝑖 to 𝑗 by the overall number of obligors that were in grade 𝑖 at the start of the considered periods. The rating 
transition dataset “RatingTransitionsDataset.csv” considered for the analysis has three fields: the corporate ID, 
the date in which the transition has been recorded and the grade. All three components have a numeric mode: 
the ID is a progressive counter, the date has been expressed using the Excel serial date number identification 
(for instance: 36676 corresponds to 30th May 2000) and the grade has been codified using categorical variables: 
1 - AAA; 2 - AA; 3 - A; 4 - BBB; 5 - BB; 6 - B; 7 - CCC, CC and C; 8 - D. A rating withdrawal, i.e. NR (not 
rated), has been coded with 0. 
The dataset used for the analyses comes from the “Credit risk modeling” book written by Löffler and Posch. 
It has been provided by the two authors only for illustrative purposes (the data inside are not real, but they 
emulate a market case). Furthermore, the data contained in the data set are arranged using the standard metric 
adopted by the main info providers. 
In the Figure, a screenshot is shown from the Bloomberg® Credit profile - CRPR module and the transition 
ratings associated to a firm have been reported exactly in the same format as our example. 
The cohort(RatingDataset,periods=1) function implements the single period cohort approach described above. 
The compulsory input is the Rating dataset to be expressed in the standard format. 
 

 
 

Figure VIII.23 Example of Fitch rating transition. Source: Bloomberg® CRPR function 
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The output returned by the routine is a bi-dimensional numpy array in which the data has been conformed to 
the way in which Rating Agencies publish transition matrices. Transition from default and not rated are not 
shown while transitions to not-rated are shown in the column on the right. The output of the function applied 
to the “Rating-TransitionsDataset.csv” is shown in the Figure. 
From left to right and from top to bottom, the grades are reported from the best to the lowest one (from 1 to 
7). The latest two columns are reserved to default (8) and not-rated (0) probabilities, as described previously. 
 
 

 
 

Figure VIII.24 One-year transition matrix with the Cohort approach 
 
The matrix mirrors the empirical findings common to matrices published by rating agencies. First, on diagonal 
entries are the highest values; they are in the range of 61% to over 90%. This means that the rating system is 
relatively stable. Second, default frequencies for the two best classes are zero. Since the possibility of an obligor 
defaulting cannot be ruled out, we would expect the true default probability of the best grades to be nonzero, 
albeit very small. But with a very small default probability, the default events are so rare that it is typical to 
observe no defaults. 
For example, for a rating class with 100 obligors and a default probability of 0.01%, the expected number of 
defaults over 20 years is 0.2. If we want to estimate probabilities for transitions over a single period (i.e. one 
year in the example), we can do it specifying an integer value for the parameter periods. Assuming that 

transitions are independent across the years, a 𝑇-period transition matrix can be obtained by multiplying the 

one-period matrix with itself (𝑇 − 1) times. 

Let 𝑃𝑇 denote the transition matrix over 𝑇 periods, then: 
 

𝑃𝑇 = 𝑃1
𝑇 = 𝑃1𝑃1…𝑃1⏟      

𝑇 𝑡𝑖𝑚𝑒𝑠

 (Eq. VIII.94) 

 

The problem here is that the matrices should be symmetric, but the output has a size of 7 × 9. To fix this 
problem, the trick is to add two rows for the default and not-rated category. For the default category, which we 
assumed to be absorbing, the natural way of filling the row is to put zeros off-diagonal and ones on-diagonal. 
For the NR category, we could have estimated the transition rates. In the previous section we did not include 
migrations to NR in our calculations. We could thus perform an NR-adjustment and work with the NR-adjusted 
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matrix. In this context we assume that the NR status is absorbing as well. Supposing our aim is to generate a 
three-year matrix, we run the function using cohort(RatingDataset,periods=3). Before returning the transition 
probabilities, the function removes the two added auxiliary rows necessary for the multiplication, given that 
they are not important and this helps to improve the readability of the table. 
 

 
 

Figure VIII.25 The three-years transition matrix with the Cohort approach 
 
Like any estimate, numbers are affected by sampling errors. It is thus necessary to also provide confidence 
intervals for having a trustable outcome. We show how to use the binomial distribution for obtaining 
confidence bounds within the cohort approach. 
 

Let 𝑃𝐷𝑖 denote the true probability of default for rating class 𝑖. The estimated probability is: 
 

�̂�𝑖𝑘 =
𝑁𝑖,𝑘

𝑁𝑖
 (Eq. VIII.95) 

 

Assuming that defaults are independent across time and across obligors (and unluckily it is a rather strong 

hypothesis), the number of defaults is binomially distributed with 𝑁𝑖 successes and success probability 𝑃𝐷𝑖. 

If we are seeking a two-sided, 1 − 𝛼 confidence interval where 𝛼 is a value such as 5%, the lower bound 𝑃𝐷𝑖
min 

must be such that the probability of observing 𝑁𝑖 defaults or more is 𝛼/2. 

𝑃𝐷𝑖
min therefore solves the condition: 

 

1 − BINOM(𝑁𝑖𝑘 − 1,𝑁𝑖 , 𝑃𝐷𝑖
min) = 𝛼/2 (Eq. VIII.96) 

 

Where BINOM(𝑥,𝑁, 𝑞) denotes the cumulative binomial distribution for observing 𝑥 or less successes out of 

𝑁 trials with success probability 𝑞. 
 

The upper bound 𝑃𝐷𝑖
max must be such that the probability of observing 𝑁𝑖 or less defaults is 𝛼/2: 

 

BINOM(𝑁𝑖𝑘 , 𝑁𝑖 , 𝑃𝐷𝑖
max) = 𝛼/2 (Eq. VIII.97) 

 

CohortConfidenceIntervals(RatingDataset,alpha=0.05) allows to estimate the confidence interval for the 
Rating data set in accordance with the model previously described. 
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If the estimated default probability is zero, it is not necessary to code a solver for the upper bound that can be 

obtained solving the equation (1 − 𝑃𝐷𝑖)
𝑁𝑖 = 𝛼. 

Obviously, the lower bound for the probability is zero. On the contrary, if the estimated PD is a non-null value, 
the goal seeking problem can be numerically solved through a minimization problem which involves a lambda 
expression. The code for the estimation of the Lower Bound for a non-degenerate case has been shown below: 
minimize(lambda PDmin:BinomialLowerBound(PDmin,Ni,Prob,alpha) 
 
The BinomialLowerBound is the cost function defined as: 
 

def BinomialLowerBound(PDmin,Ni,Prob,alpha): 
       if ((PDmin<0) | (PDmin>1)): 
            return +99999999 
       else: 
            return ((1-binom.cdf(Ni*Prob-1,Ni,PDmin)-(alpha/2)))**2 
 

Before returning the output, a check on the feasibility of the independent variable PDmin has been done (𝑃𝐷 ∈
[0,1]). A similar optimization problem has been set for the Upper Bound case. It is worth to say that in both 
routines, a direct search heuristic such as Nelder-Mead simplex worked better than a quasi-newton method 

such as the L-BFGS. The confidence sets for the transition probabilities to move from a grade 𝑖 to the default 
has been displayed in Table VIII.31: 
 

Grade i → Default 1 2 3 4 5 6 7 

Lower Bound 0 0 0.0016 0.0875 0.3625 0.7937 6.3687 

Estimation 0 0 0.0696 0.3127 0.9868 1.7308 10.3825 

Upper Bound 3.0724 0.4164 0.3875 0.8000 2.1375 3.2625 15.7375 
 

Table VIII.31 Confidence sets for PD using the cohort approach 
 

The resulting confidence bounds are relatively wide. In most cases, they overlap with the ones of adjacent rating 
classes. What may seem surprising is that the upper bound for the best rating category 1 is higher than the ones 
for rating 2 to 5. The reason is that the number of observations in class 1 is relatively low (96), which increases 
the confidence intervals. The cohort approach does not make full use of the available data. Specifically, the 
estimates of the cohort approach are not affected by the timing and sequencing of transitions within the period. 
As an example, an obligor that moves in the same year from AA to A and in the following one returns to AA, 
is not tracked by the previous methodology: for the statistics produced with the cohort approach it remains 
stable across the two considered years. An alternative approach that captures transitions within a period is called 
the duration or hazard rate approach. 
This methodology is more sophisticated than the previous one and it relies on the Markov chain theory. The 

first step is to estimate the so-called generator matrix Λ, which provides a general description of the transition 

behavior. The off-diagonal entries of Λ estimated over the period [t0,t] are given as: 
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𝜆𝑖𝑗 =
𝑁𝑖𝑗

∫ 𝛶𝑖(𝑠)𝑑𝑠
𝑡

𝑡0

 for 𝑖 ≠ 𝑗 (Eq. VIII.98) 

 

Where 𝑁𝑖𝑗 is the observed number of transitions from 𝑖 to 𝑗 during the time period considered in the analysis, 

and 𝛶𝑖(𝑠) is the number of firms rated 𝑖 at time 𝑠. The denominator therefore contains the number of obligor-

years spent in rating class 𝑖. Let us note the similarity to the cohort approach. In both cases, we divide the 
number of transitions by a measure of how many obligors are at risk of experiencing the transition. In the 
cohort approach though, we count the obligors at discrete points in time, while in the hazard approach we 
count the obligors at any point in time, thanks to the integral operator. 

The on-diagonal entries are constructed as the negative value of the sum of the 𝜆𝑖𝑗 per row: 
 

𝜆𝑖𝑗 = −∑ 𝜆𝑖𝑗𝑖≠𝑗  (Eq. VIII.99) 

This new formulation is able to take into account cases similar to the ones described above and, consequently, 

it improves the outcome statistics. From Markov chain mechanics, a 𝑇-year transition matrix 𝑃(𝑇) is the one 
derived from the generator matrix, as follows: 
 

𝑃(𝑇) = exp(Λ𝑇) = ∑
Λ𝑘𝑇𝑘

𝑘!
∞
𝑘=0  (Eq. VIII.100) 

 

where Λ𝑇 is the generator matrix multiplied by the scalar 𝑇 and exp(∙)  is the matrix exponential function. 
 

HazardRate( RatingDataset , periods = 1) is able to compute the Λ matrix and perform the exponential function 
to the generator. It is worth to note that the exponentiation of a matrix is not an easy task in geometry. Let us 
assume for a moment that we only have four categories including default and NR. The matrix exponential 

exp(Λ𝑇) would then be the following: 
 

exp(Λ𝑇) = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] + 𝑇 [

𝜆11 𝜆12 𝜆13 𝜆14
𝜆21 𝜆22 𝜆23 𝜆24
𝜆31 𝜆32 𝜆33 𝜆34
𝜆41 𝜆42 𝜆43 𝜆44

] +
𝑇2

2!
[

𝜆11 𝜆12 𝜆13 𝜆14
𝜆21 𝜆22 𝜆23 𝜆24
𝜆31 𝜆32 𝜆33 𝜆34
𝜆41 𝜆42 𝜆43 𝜆44

]

2

+ ∑
(Λ𝑇)𝑘

𝑘!

∝
𝑘=2  (Eq. VIII.101) 

 

This can approximately be evaluated by truncating the infinite sum at some suitable point. 
 

 
 

Figure VIII.26 Credit Profile (CRPR) module. Source: Bloomberg® 
 

In the auxiliary functions MexpGenerator, the stop criteria have been given by an error threshold of 10−320 
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or the reaching of 170 iterations of 𝑘. 𝑇 is defined by default equal to 1 by the input periods, but the user can 
change this technical specification, setting the desired time horizon. 

 

 
 

Figure VIII.27 One-year transition with the hazard approach 
 

 
 

Figure VIII.28 Three-years transition with the hazard approach 
 

 
 

Figure VIII.29 The generator matrix obtained from Rating data set 
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The matrices have a size of 9 × 9  because they include default and not-rated classes. The matrix generator Λ 
used by the Markov chain has also been reported in the Figure VIII.29. 
At this point, we wonder: when it is not possible to have detailed information about the historical rating 

transitions (dates and grades), is it possible to obtain a valid generator Λ? The answer is positive, it is possible, 
but not all transition matrices have a generator and for those that do, the generator may not be unique. 
Conditions for a valid generator include the underlying Markov chain to be stochastically monotonic. 
To construct an approximation of the generator, we can assume that there is only one transition per obligor 
and period. 

Let 𝑝𝑖𝑗 denote the entries of the transition matrix 𝑃, then the generator is given by: 
 

𝜆𝑖𝑗 = ln(𝑝𝑖𝑗) (Eq. VIII.102) 
 

𝜆𝑖𝑗 = 𝑝𝑖𝑗
𝜆𝑖𝑖

(𝑝𝑖𝑖−1)
 𝑤𝑖𝑡ℎ 𝑖 ≠ 𝑗 (Eq. VIII.103) 

 

This approximated (but useful) methodology for synthesizing generator, ΛAPPROX has been coded in a function 
called Transition2Generator(ProbTransitionMatrix) . This function can convert a probability transition matrix 
into a generator for Markov chains. In order to understand the magnitude of this approximation in the 
considered data set, we can run the function passing the one-year transition matrix. The output is the 

approximated generator, ΛAPPROX and we can call the MexpGenerator to perform the inverse operation. The 
gap can easily be measured by the difference between the recomputed synthesized transition matrix and the 
original one. The approximated error is reported in the Figure below. 
 

 
 

Figure VIII.30 Gap between the transition matrix computed using the whole Rating transition data set and 

the one estimated using the approximated Markov chain generator ΛAPPROX 
 

Comparing this approximate generator to the transition matrix, we notice that they are similar but not identical. 
In our data, the assumption that there is only one transition per year is not fulfilled, leading to a discrepancy 
between the approximate generator and the one estimated with the detailed data. 
 

Regarding the confidence intervals, it is no longer a reasonable choice to use a binomial distribution because 
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there is no direct counterpart to the 𝑁𝑖 of the cohort approach. As a result, we employ bootstrap simulations. 
In a bootstrap analysis, the statistician re-samples from the data used for estimation and re-estimates the 
statistics with the re-sampled data. Having done this many times, the analyst can then derive a distribution of 
the statistic of interest. 
HazardConfidenceIntervals(RatingDataset,M=100,toclass=8,alpha=0.05) implements the following logical 
steps which help to perform the statistical bootstrap: 
 

1. Randomly draw with replacement an obligor’s complete rating history. Repeat as many times as the obligors 
in the original rating data set. 

2. Calculate the generator Λ and the 1-year transition matrix exp (Λ) for the sample generated in step 1. 

3. Repeat steps 1 and 2 𝑀 times. 
4. Determine percentiles of the transition probabilities from step 3. 
 

The choice made in step 1 is not the only possible one. In a simple setting with 𝑁 independent observations, 

we would re-sample 𝑁 times with replacement to maintain the size of the original data set. Our rating data set, 
by contrast, has several dimensions: the number of obligors, the number of rating actions, the number of 
obligor-years for which data is available, the calendar-time spanned by the first and last rating action, and several 
more. Among the one-dimensional bootstrap strategies, drawing obligors appears to be the most "natural" one. 
The function returns an array with two columns, where each row corresponds to a rating class and the columns 
contain the lower and upper confidence bounds. We run the function on our rating data set with the default 

input parameter. In this way, we draw 𝑀 = 100 bootstrap samples and we calculate the confidence for the 
probability of default (toclass=8) with a 5% confidence. The results are summarized in Table VIII.32. 

 

Bound 1 2 3 4 5 6 7 8 NR 

Lower 0.0032 0.0042 0.0054 0.0302 0.1938 1.5379 7.0288 100 0.16 

Upper 0.0149 0.0156 0.0255 0.0705 0.8247 3.3252 12.9404 100 0.76 
 

Table VIII.32 Statistical bootstrapped confidence bounds for default probabilities from the hazard approach 
 

The smaller confidence bands for the top rating classes present a striking difference to the binomial confidence 
bounds obtained for the cohort estimates. The intuition is that the hazard estimate of this grade’s PD is not 
only based on the behaviour of the few obligors within this grade, but also on the behaviour of obligors in 
other grades. 
Default rates are essential to pricing for risk management. For example, based on a forecast for next year’s 
default rate, a bank can set appropriate loan rates for short-term loans. In the previous part, we showed how 
to estimate average transaction rates based on data extending over several years. If such rates are used to 
estimate next year’s transition rates, we would then implicitly assume that next year is a typical or average year. 
Although this may be an appropriate assumption in certain situations, in others we may have good reason to 
believe that the following year will be relatively good or bad for credits. If the economy is moving into a 
recession, we should expect default rates to be relatively high, as a result of this discontinuity compared to the 
past. In this section, we show how to use available information to predict default rates for corporates rated by 
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a major rating agency. 
It is crucial to know that agencies do not aim at assigning ratings in such a way that the one-year default 
probability of a rating category is constant across time. By contrast, ratings are meant to be relative assessments 
of credit quality. If overall economic conditions have deteriorated, affecting all borrowers in a similar way, the 
previous relative ordering would still be correct, even though the default probability of a given rating category 
may substantially deviate from its past average. In the example studied in this section, we predict default rates 

for calendar years, that is from the end of year 𝑡 to the end of year 𝑡 + 1. Therefore, we need information that 

is already known at the end of year 𝑡. Let us consider four different traditional factors, each of which is captured 
by one empirical variable. 
 

Macroeconomic conditions: liquidity and profits of corporates are affected by overall economic conditions. 
We could capture them by a measure of current activity, such as GDP growth over the preceding year. However, 
we can hope to do better if we use a forecast of future economic activity instead of current activity, and if we 
use a measure of activity that is closely associated with corporate conditions. We therefore use forecasts of one-
year changes in corporate profits. To control for effects of inflation, we also deflate the forecasts. We denote 

this variable as 𝑃𝑅𝐹𝑡: 
 

𝑃𝑅𝐹𝑡 =
1+forecasted change in corporate profits(in 𝑡 for 𝑡,  𝑡+1)

1+forecasted change in GDP deflator(in 𝑡 for 𝑡,  𝑡+1)
− 1 (Eq. VIII.104) 

 

Corporate bond spreads: yields of corporate bonds should be set so that the expected return from holding a 
bond is at least as high as the return from holding a risk-free government bond. Otherwise, there would be 
little incentive to buy risky corporate bonds. Roughly speaking, the expected return on a corporate bond is its 
yield minus the loss rate. The corporate bond spread, which is the difference between the yield of a corporate 
bond and a comparable government bond, should therefore vary with the loss rates expected by the market. 

The variable 𝑆𝑃𝑅 is defined as: 
 

𝑆𝑃𝑅𝑡 = yield of corporate bonds(in 𝑡) − yield of sovereign bonds(in 𝑡) (Eq. VIII.105) 
 

Aging effect: it has been documented in the literature that issuers who first entered the bond market three to 
four years ago are relatively likely to default. This empirical phenomenon is called the aging effect. There are 
several possible explanations, one being that the debt issue provides firms with cash - enough cash to survive 
for several years even if the business plan envisaged at the time of the bond issue did not work out. So, if new 
issuers run into difficulties, liquidity problems will only appear with a certain delay.  

Let us define the variable 𝐴𝐺𝐸 as the fraction of current issuers that had their first-time rating three to four 
years ago:  
 

𝐴𝐺𝐸𝑡 =
#newly rated issuers(from 𝑡−4 to 𝑡−3)

#rated issuers(in 𝑡)
 (Eq. VIII.106) 

 

Average risk: when analyzing average default rates of a group comprising several rating categories, we should 
take into account the fact that the composition of the group can change over time. It is considered a good 
practice to capture differences in average risk through the percentage of current investment-grade issuers that 
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are rated BBB: 
 

𝐵𝐵𝐵𝑡 =
#BBB rated issuers(in 𝑡)

#Investment grade issuers(in 𝑡)
 (Eq. VIII.107) 

 

The first step for analyzing data and performing a prediction is to set up a regression model. For this aim, we 
do not use a linear regression for the well-known drawbacks: default rate predictions could be negative. In 
addition, linear regression does not take into account that the realized default rate will vary less around the 
expected default probability if the number of issuers is large. With the Independence assumption, the number 
of defaults observed in a given year follows a binomial distribution. In this context, it is more convenient to 
use the Poisson distribution instead. If the number of issuers is large and the default probability is small, the 
Poisson provides a very good approximation to the binomial. The density function of the Poisson, which 

specifies the probability that the number of defaults is equal to an observed number 𝐷𝑡, is: 
 

Prob(#defaults𝑡 = 𝐷𝑡) =
exp(−𝜆𝑡)𝜆𝑡

𝐷𝑡

𝐷𝑡!
 (Eq. VIII.108) 

 

Where 𝐷𝑡! denotes the factorial of 𝐷𝑡. 
 
The standard way to model the variation of default rates across time using a Poisson model is to assume that 

the expected number of defaults varies in the following way with explanatory variables 𝑥: 
 

𝜆𝑡 = exp[𝛽1 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 +⋯+ 𝛽𝐾𝑥𝐾𝑡] (Eq. VIII.109) 
 

The exponential function makes sure that the expected number of defaults is always non-negative. Equivalently: 
 

ln(𝜆𝑡) = [𝛽1 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 +⋯+ 𝛽𝐾𝑥𝐾𝑡] (Eq. VIII.110) 
 

In vector notation, with 𝛽𝑇 = [𝛽1, 𝛽2, 𝛽3, … , 𝛽𝐾] and 𝑥𝑇 = [1, 𝑥2𝑡 , 𝑥3𝑡, … , 𝑥𝐾𝑡], this can be written as 

follows: ln(𝜆𝑡) = 𝛽
𝑇𝑥𝑡. 

The goal of the estimation is to determine the weights 𝛽 that describe the impact of the variable on the default 

occurrence. To apply the maximum likelihood principle, we need the likelihood 𝐿, which is the probability of 
observing an entire sample. From the independence assumption we obtain: 
 

𝐿 = Prob(#defaults1 = 𝐷1) ⋅ Prob(#defaults2 = 𝐷2) ⋅ … ⋅ Prob(#defaults𝑇 = 𝐷𝑇) = 

=
exp(−𝜆1)𝜆1

𝐷1

𝐷1!
⋅
exp(−𝜆2)𝜆2

𝐷2

𝐷2!
⋅ … ⋅

exp(−𝜆𝑇)𝜆𝑇
𝐷𝑇

𝐷𝑇!
  (Eq. VIII.111) 

 

Considering the logarithms, we obtain: 
 

ln(𝐿) = ∑ [−𝜆𝑡 + 𝐷𝑡 ln(𝜆𝑡) − ln(𝐷𝑡!)]
𝑇
𝑡=1  (Eq. VIII.112) 

 

Inserting equation ln(𝜆𝑡) = 𝛽
𝑇𝑥𝑡, this can be written as: 

 

ln(𝐿) = ∑ [−𝜆𝑡 + 𝐷𝑡𝛽
𝑇𝑥𝑡 − ln(𝐷𝑡!)]

𝑇
𝑡=1  (Eq. VIII.113) 

 

This last equation can be maximized using the Newton method. The test data set DefaultRatesVarsDataset has 
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been provided by the “Credit Risk Modeling” book written by Löffler & Posch, as usual, and it contains seven 
fields: 
 

Year: a descriptive variable, not used in the regression. 
D: the number of investment grade defaulters, i.e., the response variable. 
LNN: the log number of investment-grade issuers at the start of the year. It captures the effect that the expected 
number of defaults increases with the number of issuers (explanatory variable 1). 
PRF: the forecasted change in corporate profits (explanatory variable 2). 
AGE: the fraction of new issuers (explanatory variable 3). 
BBB: the fraction of BBB-rated issuers (explanatory variable 4). 
SPR: the spread on corporate bonds (explanatory variable 5). 
 

PoissonRegression(DefaultDataset) performs the Poisson regression on the considered data set: it  implements 
the mathematical formulas described above and returns the coefficients of the Poisson regression and some 

other useful model statistics such as 𝑡-statistics and 𝑝-values. For a non-linear model such as the Poisson 

regression, we cannot compute an 𝑅2 as we do in a linear model. 

A Pseudo- 𝑅2 that is often reported in the literature is defined by relating the log-likelihood of the model to 
the log-likelihood of a model that only has a constant in it: 
 

Pseudo − 𝑅2 =
ln 𝐿(model)

ln 𝐿(model with all 𝛽 except 𝛽1 set to 0)
 (Eq. VIII.114) 

 

The output of the function has been arranged in a bi-dimensional array with the statistics of the Poisson 
regression organized as displayed: 
 

𝑏1 𝑏2 … 𝑏𝐾 

𝑆𝐸(𝑏1) 𝑆𝐸(𝑏2) … 𝑆𝐸(𝑏𝐾) 

𝑡1 = 𝑏1/𝑆𝐸(𝑏1) 𝑡2 = 𝑏2/𝑆𝐸(𝑏2) … 𝑡𝐾 = 𝑏𝐾/𝑆𝐸(𝑏𝐾) 

𝑝 − value(𝑡1) 𝑝 − value(𝑡2) … 𝑝 − value(𝑡𝐾) 

Pseudo − 𝑅2 ln Likelihood  0 0 
 

Table VIII.33 Output of the logit function with stats=True 
 
Running PoissonRegression(DefaultDataset) on the whole dataset, we obtain the results reported in the below 
Figure. In the first column, the statistics to the constant of the model are reported then followed by the ones 

related to the other explanatory variables considered in the model from 1 to 5. The profit forecast 𝑃𝐹𝑅 and 

the aging variable 𝐴𝐺𝐸 are highly significant in the general model 1 because their 𝑡 statistics are well above 1.96 

in absolute terms. The other variables show little significance. Excluding the spread 𝑆𝑃𝑅 and the fraction of 

𝐵𝐵𝐵 rated issuers, we come to model 2. 

The 𝛽 for such model are:  𝛽𝐶𝑂𝑁𝑆𝑇 = −18.24, 𝛽𝐿𝑁𝑁 = +2.18 , 𝛽𝑃𝑅𝐹 = −0.20 and 𝛽𝐴𝐺𝐸 = +0.29. 

Predictions of the default rate can be based on 𝜆, which is obtained applying 𝜆𝑡 = exp[𝛽1 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 +
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⋯+ 𝛽𝐾𝑥𝐾𝑡]. Dividing 𝜆 by the number of issuers, 𝑁 yields the expected default rate. 
 

The PoissonTrend(DefaultDataset) function provides the prediction. Substantially it calls the previous function, 

takes the regression coefficients and applies the 𝜆𝑡 equation. By doing so, the following year investment grade 
default rate has been estimated equal to 0.051% using the first model or 0.065% using the restricted version 
with only the three explanatory variables (plus the constant term). 
 

 
 

Figure VIII.31 Poisson regression statistics for the prediction of investment-grade default rates – Model 1 
 

The default rates we have analyzed are also recorded in transition matrices, together with transition rates. The 
latter are average frequencies with which ratings migrate from one rating to another. Like default rates, 
transition rates vary over time, and to model this fact, we can consider two equivalent statements: 
- the probability of a migration from A to B is 2.5%. 
- the rating migrates from A to B whenever a standard variable ends up between 1.645 and 1.96. 
Both statements are equivalent because the probability that a standard normal variable ends up between 1.645 
and 1.96 is 2.5%. It is easy to verify norm.cdf(1.96)-norm.cdf(1.645). In fact, we can describe the entire 
transition matrix by the concept that transitions are driven by a standard normally distributed variable x without 
losing any information. 
 

Instead of describing transition behavior through transition rates, we can also describe it through a set of 
thresholds: 1.645 and 1.960 would be a pair of thresholds that describes a bin. This approach helps to perform 
simulations: we can shift the transition matrix into bad or good year. We can illustrate the binning procedure 
for transition from A, considering the transition rates shown in the Table VIII.34. 
 

We can start to define the bins at any of the two extreme transitions, transitions to AAA or transition to default. 
Choosing the second option, if the probability of a migration from A to D is 0.042%, we can define the D bin 

as [Φ−1(0.00042),−∞], where Φ−1 denotes the inverse cumulative standard normal distribution function. 
 

The upper threshold for this D bin becomes the lower threshold for the CCC/C bin. The latter can be achieved 

by setting the upper threshold to Φ−1(0.00042 + 0.00031) = −3.18. 
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 AAA AA A BBB BB B CCC/C D 

AAA 91.386 7.947 0.508 0.093 0.062 0.001 0.001 0.001 

AA 0.603 90.65 7.936 0.603 0.062 0.114 0.021 0.010 

A 0.052 1.991 91.427 5.858 0.44 0.157 0.031 0.042 

BBB 0.021 0.171 4.112 89.508 4.561 0.812 0.182 0.288 

BB 0.033 0.044 0.276 5.799 83.508 8.114 0.992 1.235 

B 0.001 0.057 0.215 0.351 6.249 82.27 4.766 6.091 

CCC/C 0.001 0.001 0.322 0.472 1.426 12.56 54.139 31.079 
 

Table VIII.34 Average Transition rates from 1981. Source: “Credit Risk Modeling” by Löffler & Posch  
 
We can continue in this way. Though we have eight bins, we only need to compute seven thresholds. 
 

  AAA AA A BBB BB B CCC/C D 

A 0.052 1.991 91.427 5.858 0.440 0.157 0.031 0.042 

Bin (+inf,3.28] (3.28,2.04] (2.04,-1.51] (-1.51,-2.47] (-2.47,-2.83] (-2.83,-3.18] (-3.18,-3.34] (-3.34,-inf) 
 

Table VIII.35 Binning procedures for transition from A grade 
 

The getThresholdsMatrix(TransitionDataset) function allows to compute all the thresholds for the bins of the 
distribution for all the rating grades. The input argument is the Transition matrix. The output of the function 
has been reported in the below Figure. 
 

The usual representation of the grades is applied: from top to down and from right to left, the ratings become 
worse and worse. 
 

 
 

Figure VIII.32 Upper thresholds of the bins 
 

As stated above, this representation is more convenient to perform simulations on the transition rates. Let us 
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imagine that the normal density is shifted to the left, i.e. it assumes a negative mean rather than zero. The 
probability of a transition is the probability of ending up in the associated bin. This probability is equal to the 
area enclosed by the boundaries of the bin and the density function. Therefore, a shift to the left would increase 
the probabilities of downgrades as well as the probability of default. 
Importantly, we still have fully specified transition probabilities, albeit ones that are different from those we 
used for the threshold determination. Likewise, we could reduce the probabilities of downgrade and default by 
shifting the distribution to the right. 
 

Transition probabilities that result after the shift can be computed calling the getAdjustedTransitionMatrix 
function which takes as input the transition matrix and the magnitude of the shift that is called “credit index”. 
A negative number of the credit index means that the distribution function is shifted to the left, thus increasing 

the probabilities of downgrade and default. The probability that a normal variable with mean 𝑚 and standard 

deviation 1 ends up to the left of a threshold is given by Φ(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑚). In order to achieve the probability 
of ending up in a bin, we use this formula to obtain the probability of ending up below the upper threshold of 
the bin, and then subtract the probability of ending up below the lower threshold of the bin. We could compute 
the latter with the normal distribution, but we can also sum over the cells in the same row that are located to 
the right of the bin we are in. 
 

For the AAA bins (first column of the tables), we exploit the fact that transition probabilities sum up to 1. 
Using a credit index equal to -0.25, we obtain the adjusted transitions reported in the Figure below. This is a 
useful tool in order to perform what-if analysis on the transition rates or adjusting the historical transitions if 
an unlikely event has occurred, which can cause a discontinuity in the economic scenario, like for example the  
covid-19 pandemic. 
 

 
 

Figure VIII.33 Transitions rates using a credit index equal to -0.25 
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VIII.7 CREDIT PORTFOLIO RISK 
 

 
A credit portfolio risk model produces a probability distribution of losses that can arise from holding a 
portfolio of risky instruments. A financial institution can use such models to compute percentiles on the loss 
distribution (such as Var) and other more meaningful risk measures such as Expected Shortfall and Unexpected 
Loss. On this topic, starting from 1997, four approaches have been published: CreditMetrics, CreditRisk+, 
CreditPortfolioView and KMV PortfolioManager. These models are similar to the underlying structure, as a 
result only one approach is covered here: the asset value approach exemplified by CreditMetrics. 
In this approach, the portfolio loss distribution is obtained through a Monte Carlo simulation. To keep focused 
on the credit issue, we propose a simplified framework in which we only consider losses from default (but not 
from changes in market value). It is a good practice to split portfolio credit risk modeling into four main steps.  
Here after, we describe those steps for a general model and for a specific approach: a default-mode model in 
which we only consider losses from default: 
 

1. Specify probabilities of individual credit events. Default mode: only specify probabilities of default (PDs) 
because other events (changes in credit quality) are ignored in the modeling.  
2. Specify value effects of individual credit events. Default mode: specify the loss given default (LGD), which 
is a percentage of the exposure at default (EAD) that is lost in the case of default. 
3. Specify correlations of individual credit events and value effects. Default mode: specify default correlations 
and (possibly) correlations of LGDs. 
4. Based on steps 1 to 3, obtain the portfolio value distribution (via simulations or analytically). 
 

In previous sections, we explored different ways of obtaining default probabilities: logit/probit scores, 
structural models, historical default rates per rating category or a financial market approach to determine the 
PD as required in step 1. LGD can be measured using historical averages or multivariate prediction models 
(step 2). Since the previous sections focus on the measurement of individual credit events from a portfolio 
perspective, we now model the default correlations. 
With the aim of formalizing default correlation, we use the standard definition of the correlation coefficient of 

two random variables 𝑋1 and 𝑋2: 
 

𝜌𝑋1,𝑋2 =
cov(𝑋1,𝑋2)

𝜎(𝑋1)𝜎(𝑋2)
 (Eq. VIII.115) 

 

Where cov(∙) , denotes the covariance, and 𝜎 is the standard deviation. In our case, the random variable is a 

default indicator 𝑦𝑖 that takes the value 1 if obligor 𝑖 defaults and 0 otherwise.  
The default correlation we are searching is therefore: 
 

𝜌𝑖𝑗 =
cov(𝑦𝑖,𝑦𝑗 )

𝜎(𝑦𝑖)𝜎(𝑦𝑗)
 (Eq. VIII.116) 

 

We then focus on the denominator, and we apply the standard definition of variance: 
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𝜎2(𝑦𝑖) = Prob(𝑦𝑖 = 1)(1 − 𝐸(𝑦𝑖))
2
+ Prob(𝑦𝑖 = 0)(0 − 𝐸(𝑦𝑖))

2
 (Eq. VIII.117) 

 

Denoting the default probability Prob(𝑦𝑖 = 1) with 𝑝𝑖 and exploiting the fact that Prob(𝑦𝑖 = 1) is the same 

as 𝐸(𝑦𝑖) we obtain: 
 

𝜎2(𝑦𝑖) = 𝑝𝑖(1 − 𝑝𝑖)
2 + (1 − 𝑝𝑖)(0 − 𝑝𝑖)

2 = 𝑝𝑖(1 − 𝑝𝑖)
2 + 𝑝𝑖

2(1 − 𝑝𝑖) = 𝑝𝑖(1 − 𝑝𝑖) (Eq. VIII.118) 
 

which is the familiar result for the variance of a Bernoulli variable with a success probability equal to 𝑝𝑖 . 
To express the covariance in terms of default probabilities, we utilize the general result cov(𝑋1, 𝑋2) =
𝐸(𝑋1, 𝑋2) − 𝐸(𝑋1 )𝐸(𝑋2): 
 

cov(𝑦𝑖, 𝑦𝑗) = 𝐸(𝑦𝑖 , 𝑦𝑗) − 𝐸(𝑦𝑖)𝐸(𝑦𝑗) = 𝑝𝑖𝑗 − 𝑝𝑖𝑝𝑗 (Eq. VIII.119) 
 

where 𝑝𝑖𝑗 denotes the joint default probability Prob(𝑦𝑖 = 1, 𝑦𝑗 = 1). Thus, the default correlation is 

completely specified by the individual and joint default probabilities: 
 

𝜌𝑖𝑗 =
𝑝𝑖𝑗

√𝑝𝑖(1−𝑝𝑖)𝑝𝑗(1−𝑝𝑗)

=
𝑝𝑖𝑝𝑗

√𝑝𝑖(1−𝑝𝑖)𝑝𝑗(1−𝑝𝑗)

 (Eq. VIII.120) 

 

Even though the default correlation can be expressed with two intuitive measures - individual and joint default 
probabilities - it would be a daunting task to build a portfolio risk analysis on estimated pair-wise default 
correlations.  

In a portfolio with 1,000 obligors, there are 
(10002−1000)

2
= 499,500 correlations – far too many to specify. 

In practical applications, an analyst sets up a simplifying structure that reduces the number of parameters to be 
estimated. Instead of directly forcing the structure on default correlations themselves, it is more convenient to 
first represent defaults as a function of continuous variables and then set the structure on these variables. 

Let us name these variables 𝐴𝑖 , 𝑖 = 1,… ,𝑁. The default indicator can then be represented as: 
 

Default𝑖 ⇔ 𝑦𝑖 = 1 ⇔ 𝐴𝑖 ≤ 𝑑𝑖 (Eq. VIII.121) 
        

No Default𝑖 ⇔ 𝑦𝑖 = 0 ⇔ 𝐴𝑖 > 𝑑𝑖 (Eq. VIII.122) 
 

where 𝑑𝑖 is the critical value that marks the default of borrower 𝑖 if variable 𝐴𝑖 falls below it. The joint default 
probability between two obligors then is: 
 

Prob(𝑦𝑖 = 1, 𝑦𝑗 = 1) = Prob(𝐴𝑖 ≤ 𝑑𝑖, 𝐴𝑗 = 𝑑𝑗) (Eq. VIII.123) 
 

From an econometrician’s perspective, the variables 𝐴𝑖 are latent, i.e. unobservable variables that determine an 
observed, discrete outcome. In the credit risk literature, the latent variables are usually interpreted as the firms 
asset values. This goes back to the option-theoretic approach of Merton, in which a firm defaults if its asset 
value falls below a critical threshold associated with the value of liabilities. 
In the following, the mechanics of the approach are described for the simplest but widely used case in which 
the asset values are assumed to be normally distributed with correlations that go back to a single common 
factor. 
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Commonly, borrower 𝑖’s asset value 𝐴𝑖 depends on the common factor 𝑍 and an idiosyncratic factor 𝜖𝑖: 

𝐴𝑖 = 𝜔𝑖𝑍 + √1 −𝜔𝑖
2𝜖𝑖,  cov(𝜖𝑖, 𝜖𝑗) = 0,  𝑖 ≠ 𝑗,  cov(𝑍, 𝜖𝑖) = 0,  ∀𝑖 (Eq. VIII.124) 

where 𝑍 and 𝜖𝑖 are standard normal variables. By construction, 𝐴𝑖 is also standard normal. The asset correlation 

is completely determined by the factor sensitivities 𝜔: 
 

𝜌𝑖𝑗
asset =

cov(𝐴𝑖,𝐴𝑗)

𝜎(𝐴𝑖)𝜎(𝐴𝑗)
=
cov(𝜔𝑖𝑍+√1−𝜔𝑖

2𝜖𝑖,𝜔𝑗𝑍+√1−𝜔𝑗
2𝜖𝑗)

1×1
= cov(𝜔𝑖𝑍,𝜔𝑗𝑍) =  

= 𝜔𝑖𝜔𝑗var(𝑍) = 𝜔𝑖𝜔𝑗 (Eq. VIII.125) 
 

Which is the ensuing default correlation? As seen above, we first need the default probability, which is given 
by: 
 

Prob(𝐴𝑖 ≤ 𝑑𝑖) = 𝑝𝑖 = Φ(𝑑𝑖) (Eq. VIII.126) 
 

Where Φ denotes the cumulative standard normal distribution function. The joint default probability is: 
 

Prob(𝐴𝑖 ≤ 𝑑𝑖 , 𝐴𝑗 ≤ 𝑑𝑗) = 𝑝𝑖𝑗 = Φ2(𝑑𝑖, 𝑑𝑗, 𝜌𝑖𝑗
asset) (Eq. VIII.127) 

 

Where Φ2 denotes the cumulative bivariate standard normal distribution function with correlation 𝜌. 
 

There are several ways of parameterizing the asset correlation model, i.e. choosing 𝑑𝑠 and the 𝜔𝑠. We can set 

the default triggers 𝑑 so that they result in the default probabilities that we have estimated with a default 
prediction model like the logit/probit model, a structural model or from an analysis of default rates. 
 

It is common practice to choose the factor sensitivities such that they are in line with observed default 
behaviour. 
 

Let us assume that we have collected default information for a group of obligors over several years. Let 𝐷𝑡 
denote the number of obligors that defaulted in period 𝑡, and 𝑁𝑡 the number of obligors that belonged to the 

group at the start of period 𝑡. We assume that one period corresponds to one year. Data is observed over 𝑇 
years. The essential information for our purpose is the default probability and the joint default probability. 
The average default probability can be estimated by averaging the annual default rates: 
 

�̂� =
1

𝑇
∑

𝐷𝑡

𝑁𝑡

𝑇
𝑖=1  (Eq. VIII.128) 

 

In the absence of other information, we assume that all obligors have the same default probability, i.e. we set 

𝑝𝑖 = 𝑝𝑗 = 𝑝; our default threshold is then 𝑑𝑖 = 𝑑𝑗 = 𝑑 = Φ
−1(𝑝). 

We can estimate the joint default probability in a similar way. In the last equation, we relate the number of 
observed defaults to the possible number of defaults; now we relate the number of observed joint defaults to 

the possible number of joint defaults. If there are 𝐷𝑡 defaults, the number of pairs of defaulters that we can 
form follows from combinatorial analysis: 
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(
𝐷𝑡
2
) =

𝐷𝑡(𝐷𝑡−1)

2
 (Eq. VIII.129) 

 

In fact, the binomial coefficient (
𝑛
𝑘
) yields the number of subsets with 𝑘 elements that can be formed out of a 

set with 𝑛 elements. It is given by 
𝑛!

𝑘!(𝑛−𝑘)!
. If all obligors defaulted, we would obtain the maximum number of 

pairs of defaulters, which is: 
 

(
𝑁𝑡
2
) =

𝑁𝑡(𝑁𝑡−1)

2
 (Eq. VIII.130) 

 

The joint default rate in year 𝑡 is the number of default pairs (
𝐷𝑡
2
) divided by the maximum number of default 

pairs (
𝑁𝑡
2
): 

 

�̂�2𝑡 =
𝐷𝑡(𝐷𝑡−1)

2
𝑁𝑡(𝑁𝑡−1)

2

=
𝐷𝑡(𝐷𝑡−1)

𝑁𝑡(𝑁𝑡−1)
 (Eq. VIII.131) 

 

Using the information from 𝑇 years, the estimator for the joint default probability takes the average from the 
observed annual joint default rates: 
 

�̂�2 =
1

𝑇
∑ �̂�2𝑡
𝑇
𝑡=1 =

1

𝑇
∑

𝐷𝑡(𝐷𝑡−1)

𝑁𝑡(𝑁𝑡−1)
𝑇
𝑡=1  (Eq. VIII.132) 

 

Again, we would assume that the joint default probability is equal for all borrowers. The asset correlation follows 

suit. From Prob(𝐴𝑖 ≤ 𝑑𝑖, 𝐴𝑗 ≤ 𝑑𝑗) we know that: 
 

𝑝𝑖𝑗 = Φ2(𝑑𝑖, 𝑑𝑗, 𝜌𝑖𝑗
asset) (Eq. VIII.133) 

 

We can estimate 𝜌𝑖𝑗 , 𝑑𝑖 and 𝑑𝑗  from the previous relations, so it is an equation with only one unknown: the 

asset correlation. It is not a problem that can be solved analytically but a numerical solver is needed. Specifying 
the default thresholds and the asset correlation in this way, it becomes an application of the method of 
moments. In this method, an analyst calibrates unknown parameters such that the model results match 

empirical estimates of moments. The two moments used in this context are 𝐸(𝑦𝑖) = 𝑝𝑖 and 𝐸(𝑦𝑖𝑦𝑗) = 𝑝𝑖𝑗 . 
As an example, let us consider the Investment Grade Default data set provided with the "Credit Risk 

Management" book written by Löffler and Posch. The table has three fields: the year (𝑡), the number of defaults 

(𝐷𝑡) and the number of obligors (𝑁𝑡). The getAssetCorrelationMomentMatching function allows to estimate 

the asset correlation using the method of moments (𝑝𝑖𝑗 or 𝜔2) as well as the default probability �̂� and the 

factor sensitivity (𝜔). The only compulsory input is the Default data set and the output structure is a tuple of 
three scalars. The goal seeking has been performed using the direct search heuristic of the Nelder-Mead simplex 
through the specification of the objective function in goal_seeking. 

The optimal parameters estimated are 𝑝 = 0.1144%, 𝜔 = 22.094% and 𝜔2 = 4.881%. 
If there are several groups of obligors (for instance investment grade and speculative grade issuers) and we want 
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to calibrate the asset value model, we could do it separately for the individual group. There is a drawback to 
this though. We are implicitly assuming that the defaults are independent across groups. 
In reality it is a rather strong assumption and generalizing the method of moments in an intra-group context is 
not so straightforward. The approach presented in the next paragraph is not only more flexible, but it also 
makes better use of available information. When applied to the asset value approach, the maximum likelihood 
principle can be particularized in this way: determining default probabilities and factor sensitivities so that the 
probability (i.e. the likelihood) of observing the historical default data is maximized. 
First, we need to describe default behaviour through an appropriate distribution function. To derive this 
distribution function, we have to start with the concept of conditional default probability: 
 

𝑝𝑖(𝑍) = Prob(𝐴𝑖 ≤ Φ
−1(𝑝𝑖)|𝑍) (Eq. VIII.134) 

Inserting 𝐴𝑖 = 𝜔𝑖𝑍 +√1 − 𝜔𝑖
2𝜖𝑖 into the last equation, we obtain: 

𝑝𝑖(𝑍) = Prob(𝜔𝑖𝑍 + √1 − 𝜔𝑖
2𝜖𝑖 ≤ Φ

−1(𝑝𝑖)) =  

= Prob(𝜖𝑖 ≤
Φ−1(𝑝𝑖)−𝜔𝑖𝑍

√1−𝜔𝑖
2
) = Φ[

Φ−1(𝑝𝑖)−𝜔𝑖𝑍

√1−𝜔𝑖
2
] (Eq. VIII.135) 

 

If the factor realization is not good (i.e. -2), the conditional default probability is relatively high and there will 

be many defaults. The crucial insight for the following is that once we know 𝑍, the default of borrower 𝑖 
provides no information on the likely default of another borrower. To understand this, we have to acknowledge 

that once we have fixed the value of 𝑍, the randomness in the last equation is entirely due to 𝜖𝑖 but we assume 

that 𝜖𝑖 and 𝜖𝑗 are independent for 𝑖 ≠ 𝑗. Conditional on a factor realization, defaults are thus independent; 

knowing whether borrower 𝑖 has defaulted or not does not help us predict whether borrower 𝑗 defaults or not. 

Each default variable 𝑦𝑖 can then be seen as a 0-1 random variable with success probability 𝑝𝑖(𝑍). If the 

conditional default probability is uniform across issuers at 𝑝(𝑍), the total number of defaults 𝐷 follows a 

binomial distribution with success probability 𝑝(𝑍) and 𝑁 trials. Let us now remember that the binomial density 

for 𝑥 successes out of 𝑛 trials with success probability 𝑞 is (
𝑛
𝑥
) 𝑞𝑥(1 − 𝑞)(𝑛−𝑥). Applying this formula to our 

problem leads to the following likelihood for the number of defaults within sector 𝑘 in a given year 𝑡: 
 

𝐿𝑘𝑡 = ∫ (
𝑁𝑘𝑡
𝐷𝑘𝑡

)𝑝𝑘(𝑍)
𝐷𝑘𝑡(1 − 𝑝𝑘(𝑍))

𝑁𝑘𝑡−𝐷𝑘𝑡
𝑑Φ(𝑍)

+∞

−∞
 (Eq. VIII.136) 

 

We integrate over factor 𝑍 because we do not know which factor has materialized. If we have default data for 

sector 𝑘 that spreads over 𝑇 years, we assume that defaults are independent across time and reach the following 
likelihood: 
 

𝐿𝑘 = ∏ ∫ (
𝑁𝑘𝑡
𝐷𝑘𝑡

) 𝑝𝑘(𝑍)
𝐷𝑘𝑡(1 − 𝑝𝑘(𝑍))

𝑁𝑘𝑡−𝐷𝑘𝑡𝑑Φ(𝑍)
+∞

−∞
𝑇
𝑡=1  (Eq. VIII.137) 
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If we were to apply the maximum likelihood approach to the data of only one sector - for instance to the 
investment grade default as in the previous paragraph – we would maximize the last equation to obtain 

parameters 𝑝𝑘 and 𝜔𝑘. If there are more sectors 𝑘 = 1,… , 𝐾 we have to model the joint distribution of defaults. 
Clearly, we want to allow for the dependence, and the simplest way is to assume that there is only one systematic 
factor that affects each sector. For a single year t, the likelihood can be written as: 
 

𝐿𝑡 = ∫ ∏ ((
𝑁𝑘𝑡
𝐷𝑘𝑡

) 𝑝𝑘(𝑍)
𝐷𝑘𝑡(1 − 𝑝𝑘(𝑍))

𝑁𝑘𝑡−𝐷𝑘𝑡
)𝑑Φ(𝑍)𝐾

𝑘=1
+∞

−∞
 (Eq. VIII.138) 

 

For 𝑇 years, this leads to: 
 

𝐿 = ∏ ∫ ∏ ((
𝑁𝑘𝑡
𝐷𝑘𝑡

)𝑝𝑘(𝑍)
𝐷𝑘𝑡(1 − 𝑝𝑘(𝑍))

𝑁𝑘𝑡−𝐷𝑘𝑡
)𝑑Φ(𝑍)𝐾

𝑘=1
+∞

−∞
𝑇
𝑡=1  (Eq. VIII.139) 

 

Unfortunately, likelihoods which take a similar form to the one in the previous equation, are very difficult to 
maximize. A traditional analytical procedure consisting in setting the first derivative equal to zero is not feasible. 
We need to implement a numerical technique that evaluates the integral in the likelihood function. We thus 
implement the Gauss-Hermite procedure that consists in approximating the integral with a weighted sum. 
The integral is evaluated at a discrete number of points, the abscissas; these values are then weighted with a 

specific weighting function. To integrate over a function 𝑓(𝑥), Gauss-Hermite uses: 
 

∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞
≈ ∑ 𝜔(𝑥𝑖) exp(𝑥𝑖

2)𝑛
𝑖=1 𝑓(𝑥𝑖) (Eq. VIII.140) 

 

The abscissa 𝑥𝑖 and the weights are obtained using the canonical Gauss-Hermite procedure: the abscissas for a 

chosen order 𝑛 are the roots of the 𝑛-th Hermite polynomial. The Hermite polynomials are given by:  
 

𝐻0 = 1,𝐻1 = 2𝑥,𝐻𝑛+1 = 2𝑥𝐻𝑛 − 2𝑛𝐻𝑛−1 (Eq. VIII.141) 
 

The higher the order 𝑛, the higher the number of abscissas in the discrete sum, the more precise the estimated 
integral is. Simulation studies in literature suggest that a good trade-off between precision and computational 

effort is to set the order equal to 𝑛 = 32. 

In order to get the 32 sample points (𝑥) with the related weights (𝜔) we can use the numpy function 
np.polynomial.hermite.hermgauss(order). This function returns a tuple of two arrays that contains the values 
for approaching the Hermite-Gauss quadrature. Since we will integrate over the standard normal distribution, 

the function 𝑓(𝑥) in the previous equation will always be of the form 𝑔(𝑥)𝜙(𝑥), where 𝜙 is the density of the 

standard normal distribution function. To avoid code repetition and time-consuming evaluations of 𝜙 we can 

directly compute 𝜔(𝑥) exp(𝑥2)𝜙(𝑥) and then weight 𝑔(𝑥) with this expression. 
 

order=32 
hermgauss_quadrature=np.polynomial.hermite.hermgauss(order) 
x=hermgauss_quadrature[0] #sample points 
omega_x=hermgauss_quadrature[1] #weights 
hermgauss_approxPhi=omega_x*np.exp(x**2)*norm.pdf(x) 
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Once we have set the Hermite-Gaussian grid with 32 knots, we can handle the maximization problem of our 

likelihood function for 𝑘 = 𝐼, i.e. the investment grade. As usual practice in the econometric field, we consider 
the log-likelihood function, that is: 
 

ln 𝐿𝑘 = ∑ ln∫ (
𝑁𝑘𝑡
𝐷𝑘𝑡

)𝑝𝑘(𝑍)
𝐷𝑘𝑡(1 − 𝑝𝑘(𝑍))

𝑁𝑘𝑡−𝐷𝑘𝑡𝑑Φ(𝑍)
+∞

−∞
𝑇
𝑡=1  (Eq. VIII.142) 

 

getAssetCorrelationLnL allows the user to compute the tuple containing the three variables of interest: the 

probability of default 𝑝, the factor sensitivity 𝜔 and the asset correlation 𝜔2. 

In the data set considered here these parameters are equal to: 𝑝 = 0.121%, 𝜔 = 27.646%  and 𝜔2 =
7.643%. The Python function LnLMaximization(params) calls the minimization routine which optimizes the 

− ln𝐿. 

In this case we have to face a bi-dimensional problem in the two independent variables 𝑝 and 𝜔. As a result we 
have to unpackage the two scalars inside the objective function using pistar,wistar=params. 
Conceptually the other steps of implementation are similar to the previous one-dimensional case. Again, the 

Nelder-Mead heuristic works well in this context, iteratively generating simplexes in the reference 𝑘 = 2-

dimensional vectorial space. As we remember from geometry notions, a 𝑘 -simplex is a 𝑘 -dimensional polytope 

which is the convex hull of its 𝑘 + 1 vertices, and it becomes a tetrahedron in 2-D space. 
One of the reasons for the Maximum Likelihood procedure was that it allows estimation of correlations with 
data from several segments. So, the next step is to also add the information of speculative grade defaults to the 
dataset, allowing different factor sensitivities among groups. We maintain the same structure as the previous 

csv: the year (𝑡), the number of defaults (𝐷𝑡) and the number of obligors (𝑁𝑡). In this context, we have to 
change the calculation of the binomial densities. Since we assume that both grades are driven by the same 
factor, we evaluate the joint probability of observing investment and speculative grade defaults for a given knot 

𝑍. The joint probability of independent events is the product of individual probabilities, so we multiply binomial 

densities of investment and speculative defaults for a given 𝑍. Although it is a quite straightforward 
generalization from a theoretical mathematical perspective, the main difficulties come from the numerical 

perspective. The first problem lies in the estimation of the number of combinations of 𝑁 taken 𝑘 at a time. For 
high values, it can go in overflow.  We can work around this difficulty by doing the calculations for logarithms, 
and by using an approximation for the factorial that is then used to calculate the binomial coefficient. The 
Stirling numerical approximation of the factorial was used when the standard np.comb function arises an 
exception (see lncombin  function). The second kind of problem has its roots in operations research. Now the 
maximization problem of the Log-likelihood function has four independent variables to be found: the default 

probabilities and asset correlations of both investment and speculative grades (𝑝𝑖, 𝑝𝑠, 𝜔𝑖, 𝜔𝑗). 
Calling the routine LnLMaximization2, the analyst is able to find these four optimized values using the Nelder-
Mead search (eventually) with a grid of starting points for the heuristic. A good choice for the initial guesses in 

the parameters is to set 𝑝𝑖 and 𝜔𝑖 equal to the previous computed values using the bidimensional solver. The 
other values belonging to the speculative grades double them. A good solution could also be to code a nature-
inspired algorithm based on a population of agents (such as genetic algorithm or particle swarm optimization) 

in case the routine were not able to reach a satisfactory stop criteria. The values that allow to maximize ln 𝐿 are 
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𝑝𝑖 = 0.115%, 𝑝𝑠 = 3.962%,𝜔𝑖 = 21.950%,𝜔𝑗 = 27.590% with an objective function equal to 185.79. 

Recalling the four steps for measuring a portfolio credit risk reported at the beginning of this section, we are 
now able to set the Monte Carlo engine for our credit portfolio. In particular, the default correlations are 

modelled by linking defaults to a continuous variable: the asset value 𝐴. Borrower 𝑖 defaults if its asset value 

falls below a certain threshold 𝑑1 chosen to match the specified 𝑃𝐷1 in accordance with: 
 

Default𝑖 ⇔ 𝑦𝑖 = 1 ⇔ 𝐴𝑖 ≤ 𝑑𝑖 (Eq. VIII.143) 
 

No Default𝑖 ⇔ 𝑦𝑖 = 0 ⇔ 𝐴𝑖 > 𝑑𝑖 (Eq. VIII.144) 

If the asset values are assumed to be standard normally distributed, we would set 𝑑𝑖 = Φ
−1(𝑃𝐷𝑖), where Φ 

denotes the cumulative standard normal distribution function 
Correlation in asset values can be modeled through factor models. We start with a simple one containing only 

one systematic factor 𝑍: 
 

𝐴𝑖 = 𝜔𝑖𝑍 + √1 −𝜔𝑖
2𝜖𝑖,  cov(𝜖𝑖, 𝜖𝑗) = 0,  𝑖 ≠ 𝑗,  cov(𝑍, 𝜖𝑖) = 0,  ∀𝑖 (Eq. VIII.145) 

 

𝑍~𝑁(0,1),  𝜖𝑖𝑁(0,1), ∀𝑖 (Eq. VIII.146) 
 

In other words, we assume that systematic (𝑍) and idiosyncratic (𝜖) shocks are independent. In the asset value 
approach, the standard way of obtaining the portfolio distribution (i.e., the fourth step in the logical flow 
reported at the beginning of this chapter) is to run a Monte Carlo simulation, which typically has the following 
structure: 
 

1. Randomly draw asset values for each obligor in the portfolio. 

2. For each obligor, check whether it defaulted; if yes, determine the individual loss 𝐿𝐺𝐷𝑖 × 𝐸𝐴𝐷𝑖. 
3. Aggregate the individual losses into a portfolio loss. 
4. Repeat steps 1-3 sufficiently to reach a distribution of credit portfolio losses. 
 

In the proposed example, we have already computed the 𝑃𝐷𝑖, 𝐿𝐺𝐷𝑖, 𝐸𝐴𝐷𝑖 and asset correlations using a model 
discussed previously. We use a one-factor model with normally distributed asset values so the correlations are 

fully specified once we have specified the factor sensitivities 𝜔𝑖. The data set used has been retrieved from the 
"Credit Risk modeling" by Löffler and Posch and it is imported in the IDE through a csv file which consists 
of five fields: the portfolio Identification number (ID), the Probability of Default (PD), the Loss Given Default 
(LGD), the Exposure at Default (EAD) and the asset correlation (W). 
Starting from this information, the logical steps (1-4) have been implemented in the Python function 
MonteCarloSim. This function takes four input arguments: the data set, the number of simulations, the 
confidence at which the risk measures are computed and a Boolean variable which allows to plot the histogram 
of the portfolio losses. The output structure is a tuple with three elements: 

- a (1 × 𝑁𝑆𝑖𝑚) array with the simulated credit portfolio losses. 

- the Value at Risk at a given confidence (common choices are 95% or 99%). Mathematically, 𝑉𝑎𝑅𝛼 is the (1 −
𝛼) quantile of the loss distribution. 
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- the Expected Shortfall at a given confidence (common choices are 95% or 99%). Mathematically, the expected 

shortfall at 𝛼% level is the expected return on the portfolio in the worst 𝛼% of cases. 
Graphics is a Boolean variable and if it is true, the function also returns the empirical distribution of the 
simulated losses on the analysed credit portfolio in the graphical device of the Python IDE. 
Running the function with 100.000 simulations, 95% of confidence on the Credit Portfolio Data set, we obtain 
a VaR = 300 and ES = 381.365. The empirical distribution of losses is shown in the Figure below. 
 

 
Figure VIII.34 Statistical distribution of the simulated losses on the credit portfolio (𝑁𝑆𝑖𝑚 = 100,000) 
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VIII.8 MODEL VALIDATION 
 

 
Having set up a model as a rating system, it is natural to test its quality. Traditionally there are two dimensions 
along which ratings are commonly assessed: discrimination and calibration. When checking the first feature 

we wonder: how well does a rating system rank borrowers according to their true probability of default (𝑃𝐷)? 

When examining calibration we wonder: how well do estimated 𝑃𝐷𝑠 match true 𝑃𝐷𝑠? 
Let us consider the following example that illustrates the two dimensions: 
 

Borrower 
Rating system 1 
(Associated PD) 

PD System 2 [%] True PD [%] 

B1 A(1%) 2.01 1.50 

B2 B(5%) 2.00 2.00 

B3 C(20%) 1.99 2.50 

 
Table VIII.36 Discrimination VS Calibration in a rating system 

 

Rating 1 might represent an agency rating system, with A being the best rating. An agency rating itself is not a 
PD but can be associated with PDs based on average historical default rates per rating class. Rating system 2 
might be based on a statistical credit scoring model which directly produces PD estimates.  The rank ordering 
of system 1 is perfect, but the PDs differ dramatically from the true ones. By contrast, the average PD of system 
2 exactly matches the average true PD, and individual deviations from the average PD are small. However, it 
does not discriminate at all because the system’s PDs are inversely related to the true PDs. 
In the first section, methods are introduced for evaluating discriminatory power (cumulative accuracy profiles 
and receiver operating characteristics), both discrimination and calibration (Brier score) or only calibration 
(Binomial test and a test allowing for default correlation). 
Contrary to what was assumed in the example given above, true default probabilities cannot be observed in 
practice. The presented evaluation methods therefore rest on a comparison of predicted default risk with actual, 
observed default occurrence. The second section focuses on the validation of credit portfolio. Portfolio credit 
risk models produce a probability distribution for portfolio credit losses. To validate the quality of a given 
model, we can examine whether observed losses are consistent with the model’s predictions. Many procedures 
exist for testing the quality of a distribution and here we introduce the Berkowitz test, which is a powerful test 
that has been examined both for credit risk and for market risk models. 
The Cumulative Accuracy Profile (CAP) provides a way of visualizing discriminatory power. The key idea is 
the following: if a rating system discriminates well, defaults should occur mainly among borrowers with a low 
rating. To graph a CAP, the analyst needs historical data on ratings and default behaviour. The latter would, for 
example, record whether a borrower defaulted in the year subsequent to having received a certain rating. 
Observations belonging to a rating category that contains borrowers already in default would be excluded. 
The CAP is constructed by plotting the fraction of all defaults that occurred among borrowers rated x or worse 
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against the fraction of all borrowers that are rated x or worse. Table VIII.37 below shows how to compute the 
points of the CAP curve. 
 

Observation 1 2 3 4 5 6 7 8 9 10 

Rating A A A B B B C C C C 

Has default occurred? 0 0 0 0 1 0 0 1 1 1 
 

Table VIII.37 Illustration of the Cumulative Accuracy Profile - CAP 
 

Let us start with the worst rating, C, wondering what the fraction of all defaults that we cover when we include 
all borrowers rated C is. 40% of all observations are rated C, the three defaults that occurred among C-rated 
borrowers making up 75% of all defaults. This gives the first point of the CAP curve (0.4,0.75). Similarly, 70% 
of all observations are rated B or worse, while borrowers with a rating of B or worse cover 100% of all 
defaulters. This yields the second point (0.7,1.0). The final point is always (1,1) because if we look at all 
observations, by construction, we include all observations and all defaults. Obviously, the starting point is the 
origin. 
 

The Accuracy Ratio (AR) condenses all the information contained in CAP curves into a single number. It can 
be obtained by relating the area under the CAP curve but above the diagonal to the maximum area the CAP 
can enclose above the diagonal. Thus, the maximum accuracy ratio is 1. The analysis is restricted to the area 
above the diagonal because the latter gives the expected CAP curve of an uninformative rating system which 
does not discriminate at all between low and high risks. Theoretically, accuracy ratios can lie in the range [-
1,+1]. For a rating system, the accuracy ratio should be above zero, because otherwise the rating system can be 
substituted with a random generator of grades. 
If a rating system perfectly ranks debtors according to their true default probability, it will nevertheless fail to 
achieve an accuracy ratio of 1 in extremely rare cases. The CAP(Dataset,graphics) function allows the user to 
automatize the CAP curve building. It takes a data set organized in the same way as reported in Table VIII.37 
and returns the points which constitute the curve, as well as the computation of the Accuracy Ratio. If the user 
enables the graphics flag, the script also produces a useful plot depicting the CAP curve. 
As an example, if we call the function with the analyzed data, we obtain an Accuracy Ratio of 70.84% 
 
Another analytical tool that is closely related to the CAP is the Receiver Operating Characteristic (ROC). 
The ROC curve can be obtained by plotting the fraction of defaulters ranked x or worse against the fraction of 
non-defaulters ranked x or worse. The two graphs thus differ in the abscissa definition. A common summary 
statistic of a ROC analysis is the area under the ROC curve (AUC). Reflecting the fact that the CAP is very 
similar to the ROC, there is an exact linear relationship between AR and the AUC: 
 

Accuracy Ratio = 2 × Area Under Curve − 1 (Eq. VIII.147) 
 

The choice between CAP and ROC is therefore largely a matter of habits. Both convey the same information 
in a slightly different way of representing the output. 
ROC(Dataset,graphics) works exactly in the same way as the previous Python function. The different portions 
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of code are related to the formula of the area and the definition of the x-points. Running the script, we obtain 
the plot depicted in the Figure and an AUC equal to 85.42%. We can quickly check the reliability of the 
estimation verifying the relationship: 
 

Accuracy Ratio = 2 × Area Under Curve − 1 = 2 × 0.8542 = 0.7084 
 

Typical accuracy ratios of rating systems used in practice lie between 50% and 90%, but apart from this, little 
can be said about the accuracy ratio that a “good” system should achieve. 
The reason is that the measure is strictly dependent on the portfolio structure, in particular on the heterogeneity 
of a portfolio compared to default probabilities. The interpretation of CAP/ROC curves can be easier if 
different rating methodologies are tested on the same data set. 
 

 
 

Figure VIII.35 The Receiver Operating Characteristic (ROC) and the Cumulative Accuracy Profile (CAP)  
 

A measure that is able to test both discrimination and calibration is the Brier score. It translates the common 
principle of examining squared forecast errors to probability forecasts. It is defined as follows: 
 

Brier Score =
1

𝑁
∑ (𝑑𝑖 − 𝑃𝐷𝑖)

2𝑁
𝑖=1  (Eq. VIII.148) 

 

where 𝑖 indexes the 𝑁 observations, 𝑑𝑖 is an indicator variable that takes the value 1 if borrower 𝑖 defaulted (0 

otherwise), and 𝑃𝐷𝑖 is the estimated probability of default of borrower 𝑖. 
 

To compute the Brier score, we then need probabilities of default, which we do not need for CAPs and ROCs. 
The Brier score lies between 0 and 1; better default probability forecasts are associated with lower score values. 
 

Taking into consideration the values in the Table VIII.38, we can easily calculate the Brier score using the 
BrierScore(Dataset) function. It is equal to 0.3507. 
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i 1 2 3 4 5 6 7 8 9 10 

PD 0.001 0.001 0.001 0.02 0.02 0.02 0.08 0.08 0.08 0.08 

Default 0 0 0 1 0 0 1 1 1 0 
 

Table VIII.38 The Brier score 
 

In many rating systems used by financial institutions, obligors are grouped into rating categories. The default 
probability of a rating category can then be estimated in different ways. A credit analyst can use the historical 
default rate experience of obligors in a given rating grade; he can map his own rating into the categories of the 
rating agencies and use their published default rates; or he can average individual default probability estimates 
of obligors in the grade, and so on. Regardless of the way in which a default probability for a rating grade was 
estimated, the objective remains to test whether it is in line with observed default rates, and from the perspective 
of risk management and supervisors, it is often crucial to detect whether default probability estimates are too 
low. 
Here we present one-sided tests for underestimation of default probabilities. In addition, the tests are conducted 
separately for each observation period (normally one year) and separately for each grade. We start by describing 

the methodology assuming that defaults are independent, i.e. default correlation 𝜌 is zero. The number of 

defaults, 𝐷𝑘𝑡 in a given year 𝑡 and grade 𝑘 then follows a binomial distribution. The number of trials is 𝑁𝑘𝑡, i.e. 

the number of obligors in grade 𝑘 at the start of year 𝑡; the success probability is 𝑃𝐷𝑘𝑡, i.e. the default probability 

estimated at the start of year 𝑡. 
At a significant level of 𝛼 (for instance 𝛼 = 1%), we can reject the hypothesis that the default probability is 
not underestimated if: 
 

1 − BINOM(𝐷𝑘𝑡 − 1,𝑁𝑘𝑡𝑃𝐷𝑘𝑡) ≤ 𝛼 (Eq. VIII.149) 
 

Where BINOM(𝑥,𝑁, 𝑞) denotes the binomial probability of observing 𝑥 successes out of 𝑁 trials with success 

probability 𝑞. If the last condition is true, we need to assume an unlikely scenario to explain the actual default 

count 𝐷𝑘𝑡 (or a higher one). This would lead us to conclude that 𝑃𝐷 has underestimated the true default 

probability. For a large 𝑁, the binomial distribution converges to the normal, so we can also use a normal 

approximation to the previous relation. If defaults follow a binomial distribution with default probability 𝑃𝐷𝑘𝑡, 

the default count 𝐷𝑘𝑡 has a standard deviation of √𝑃𝐷𝑘𝑡(1 − 𝑃𝐷𝑘𝑡)𝑁𝑘𝑡 ; the default count’s mean is 𝑃𝐷𝑘𝑡𝑁𝑘𝑡. 
Mean and standard deviation of the approximating normal are set accordingly. Instead of the previous relation 
we can thus examine: 

1 − Φ(
𝐷𝑘𝑡−0.5−𝑃𝐷𝑘𝑡𝑁𝑘𝑡

√𝑃𝐷𝑘𝑡(1−𝑃𝐷𝑘𝑡)𝑁𝑘𝑡
) ≤ 𝛼 (Eq. VIII.150) 

 

Where Φ denotes the cumulative standard normal distribution. 
 

To adjust the test for the presence of default correlations, we can use the one-factor asset value model. There, 
we had modeled default correlation through correlations in asset values and we had assumed that the latter can 

be fully captured by only one factor 𝑍. 
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In such a model, there are two possible reasons why the observed default rate in year t is larger than the 
underlying default probability:  
 

- many obligors happened to have individual “bad luck”. 

- year 𝑡 was generally a bad year for all credits. 
 

In the binomial test and its normal approximation, we only allowed for the first reason. We would now like to 
allow for the two reasons at the same time. As it turns out, this is possible but complex to achieve. So. we only 

consider the second explanation in judging whether a 𝑃𝐷 is too low. The logic is as follows. We assess that a 

𝑃𝐷 underestimated the default probability if we have to assume that the year was so extremely bad that it seems 
unlikely to be the right explanation. Technically, ignoring individual bad luck means assuming that the default 

rate in year 𝑡 is identical to the default probability in year 𝑡. The crucial aspect to be noted is that the latter can 

vary. In the one-factor model, the probability of default in year 𝑡, 𝑝𝑘𝑡 depends on the factor realization 𝑍𝑡 , as 

well as on the average default probability 𝑝𝑘 and the asset correlation 𝜌: 
 

𝑝𝑘𝑡 = Φ[
Φ−1(𝑝𝑘)−√𝜌𝑍𝑡

√1−𝜌
] (Eq. VIII.151) 

 

Setting the average default probability to our estimate 𝑃𝐷𝑘𝑡, and the default probability equal to the default rate 

in year 𝑡 we obtain: 
 

𝐷𝑘𝑡

𝑁𝑘𝑡
= Φ[

Φ−1(𝑃𝐷𝑘𝑡)−√𝜌𝑍𝑡

√1−𝜌
] (Eq. VIII.152) 

 

Solving this for factor 𝑍𝑡 tells us what kind of year we need in order to bring the 𝑃𝐷 in line with the default 
rate: 
 

𝑍𝑡 =
Φ−1(𝑃𝐷𝑘𝑡)−√1−𝜌Φ

−1(
𝐷𝑘𝑡
𝑁𝑘𝑡

)

√𝜌
 (Eq. VIII.153) 

 

Let us note that a negative 𝑍𝑡 will push the default rate above the 𝑃𝐷. In the one factor model, 𝑍𝑡 is standard 

normally distributed, so the probability of observing a year as bad as 𝑡 or worse is Φ(𝑍𝑡). At a significant level 

𝛼, we thus reject the 𝑃𝐷 if: 
 

Φ[
Φ−1(𝑃𝐷𝑘𝑡)−√1−𝜌Φ

−1(
𝐷𝑘𝑡
𝑁𝑘𝑡

)

√𝜌
≤ 𝛼] (Eq. VIII.154) 

 

If this relation holds, the scenario 𝑍𝑡 that reconciles the default rate and the PD is too extreme by our standard 
of significance. Therefore, we conclude that the PD estimate was too low.  
 

CalibrationTest(Dataset,rho) implements the three tests for default data coming from Standard & Poor’s.  Table 
VIII.39 shows the results of the tests performed on this sample. 
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Grade AAA AA A BBB BB B CCC/C 

Binomial - - 
42.8871 

(G) 
0.004155 

(R) 
0.048299 

(R) 
1.0675 

(Y) 
2.76e-06 

(R) 

Normal - 
99.2014 

(G) 
53.196 

(G) 
2.04e-05 

(R) 
0.008213 

(R) 
0.833726 

(R) 
3.87e-07 

(R) 

One Factor - - 
14.4642 

(G) 
1.74539 

(Y) 
6.5889 

(G) 
21.4833 

(G) 
2.04992 

(Y) 
 

Table VIII.39 Testing underestimation of default probabilities using Basel Traffic Light colors to the p-
values of the tests 

 

To obtain the default count from the observed default rates, we round the product of default rates and number 

of issuers. The asset correlation is 𝜌 = 7%. Running the script and examining the results, with the binomial 
test, we would classify three rating-specific PDs as underestimating the true default rate at a significance of 1%; 
and the number increases to four with the normal approximation. 
Once we assume an asset correlation of 7%, however, the significance levels rise as we allow for the possibility 
that the year under scrutiny was a bad year in general. Now we can no longer reject a PD at a significance of 
1%; we could, however reject two PDs at a significance of 5%. Let us note that the tests return error or null 
values if the realized default rate is zero. This makes sense because no evidence can be found for 
underestimating a default probability, if the realized default rate is at its minimum. 
Clearly, decisions on significance levels are somewhat arbitrary. Therefore, in the Basel “Traffic lights” 

approach, two rather than one significance level must be chosen. If the p-value of a test is below 𝛼𝑅𝐸𝐷, we 
assign an observation to the red zone (R), meaning that an underestimation of the default probability is very 

likely. If the p-value is above 𝛼𝑅𝐸𝐷, but below 𝛼𝑌𝐸𝐿𝐿𝑂𝑊, we interpret the result as a warning that a PD might 
be underestimated, i.e. a yellow zone (Y). Otherwise, we assign it to the green zone (G). 
 

Portfolio credit risk models produce a probability distribution for portfolio credit losses. To validate the 
quality of a given model, we can examine whether observed losses are consistent with the model’s predictions. 
Certain analysts argue that portfolio models are difficult to validate empirically. Usually, such an opinion is 
justified by a comparison to market risk models. Market risk models produce loss forecasts for a portfolio (for 
instance the trading book of a bank) as well, but the underlying horizon is much shorter - often, it is restricted 
to a single day. 
A standard validation procedure consists in checking the frequency with which actual losses exceeded the Value 
at Risk (VaR). In a market risk setting, risk managers usually examine 99% VaR. Over one year containing 

roughly 250 trading days, the expected number of exceedances of the 99% VaR is 250 × (1 − 0.99) = 2.5, 
provided that the VaR forecasts are correct. 
When we observe the number of exceedances differing significantly from the expected number, we can 
conclude that the predictions were incorrect. Significance can be assessed with a traditional binomial test. 
Obviously, such a test is not very useful for the validation of credit portfolio models, which mostly have a one-
year horizon. There is a way out though: ifwe do not confine a test to the prediction of the extreme events but 
rather test the overall fit of the predicted loss distribution, we can make better use of information and possibly 
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learn valuable information about a model’s validity with only 5 or 10 years of data. 
We then introduce the Berkowitz test, which is a powerful method that has been used both for credit risk and 
for market risk. For each period (usually a length of one year), the information needed for applying the 
Berkowitz test is: a loss figure and a forecast of the loss distribution made at the start of the period. As a result, 

for a given loss 𝐿, we can compute the probability 𝐹(𝐿) with which this loss is not exceeded. 
Obviously, the distribution can differ from year to year because of changes in portfolio composition or changes 
in the risk parameters of the portfolio constituents. The basic idea behind the Berkowitz (2001) test is to 
evaluate the entire distribution. The test involves a double transformation of observed losses, with the two 
transformations as follows: 
 

- 1st transformation: replace 𝐿𝑡, the loss in 𝑡, with the predicted probability of observing this loss or a smaller 

one. We obtain this probability by inserting the loss 𝐿𝑡 into a cumulative distribution function 𝐹(𝐿𝑡): 𝑝𝑡 =
𝐹(𝐿𝑡). 
 

- 2nd transformation: transform 𝑝𝑡 by applying Φ−1(𝑥), the inverse cumulative standard normal distribution 

function. Formally: 𝑧𝑡 = Φ
−1(𝑝𝑡). 

 

The 1st transformation produces numbers between 0 and 1. If the predicted distribution is correct, we have 
even more information: the numbers should be uniformly distributed between 0 and 1. To check this, we start 
by looking at the median of the distribution. If the model is correct, 50% of observed losses would be expected 

to end up below the median loss, which has 𝐹(median loss) = 0.5. 
Thus, the transformed variable pt should be below 0.5 in 50% of all cases. We can continue in this way. 

The 25th percentile, which has 𝐹(25% percentile) = 0.25, splits the first half into another pair of two halves, 
and again observations will be evenly spread on expectation. Similarly, we can conclude that there should be as 

many 𝑝𝑡s below 0.25 as there are 𝑝𝑡s above 0.75. 

We can use finer partitions and still conclude that the 𝑝𝑡 should be evenly spread across the intervals. 
Theoretically, we could stop after the 1st transformation and test whether the pts are actually uniformly 
distributed between 0 and 1. However, tests based on normally distributed numbers are more widespread in 
the scientific community and they are more powerful. This is the reason why we perform another 

transformation. If the model summarized by 𝐹(𝐿) is correct, transformed losses 𝑧𝑡 will be normally distributed 

with zero mean and unit variance. The intuition behind this is similar to the 1st transformation. If 𝑝𝑡 is uniform 

between 0 and 1, 2.5% of all observations will be below 2.5%, for example. Consequently, 2.5% of all 𝑧𝑡 will 

be below -1.96, i.e. Φ−1(0.025) and this is what we expect for a standard normal variable. 

Berkowitz suggested the restriction of the test to the hypothesis that 𝑧𝑡 have zero mean and unit variance. We 
could additionally test whether they are normally distributed, but tests of normality tend not to be very powerful 
if the number of observations is small, so we do not lose much information if we do not test for this property 

on 𝑧𝑡 as well. 
A convenient and powerful way of testing the joint hypothesis of zero mean and unit variance is a likelihood 
ratio test. The likelihood is the probability that we observe given data with a given model. With a likelihood 

ratio test, we test whether imposing a restriction (i.e. 𝑧𝑡 have zero mean and unit variance) leads to a significant 
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loss in the likelihood. The test statistics is based on the log-likelihood function of the transformed series 𝑧𝑡. 
Since the 𝑧𝑡 are normally distributed under the hypothesis that the model is correct, the likelihood is obtained 
through the normal density: 
 

Likelihood = ∏
1

√2𝜋𝜎2
𝑇
𝑡=1 exp [−

(𝑧𝑡−𝜇)
2

2𝜎2
] (Eq. VIII.155) 

 

That is, if we have 𝑇 observations, we multiply the probabilities of having individual observations 𝑧𝑡 to reach 

the likelihood to have the set of 𝑇 observations. This is correct if unexpected losses, which are captured here 

by 𝑧𝑡 − 𝜇, are independent across time. Although this assumption may be violated in some situations, it should 
be fulfilled if the loss forecasts make efficient use of information. It should be noted that this is not the same 
as assuming that losses themselves are independent across time. 
Also, there is no need to abandon the concept of credit cycles, as long as the notion of credit cycles relates to 

losses, not unexpected losses. It is more convenient to work with ln 𝐿, the logarithm of the likelihood: 
 

ln 𝐿 = −
𝑇

2
ln(2𝜋) −

𝑇

2
ln(𝜎2) −∑

(𝑧𝑡−𝜇)
2

2𝜎2
𝑇
𝑡=1  (Eq. VIII.156) 

 

To evaluate the log-likelihood, we calculate the maximum likelihood (ML) estimators for the mean and variance 

of the transformed variable 𝑧𝑡: �̂�𝑀𝐿 =
1

𝑇
∑ 𝑧𝑡
𝑇
𝑡=1 ,  �̂�𝑀𝐿

2 =
1

𝑇
∑ (𝑧𝑡 − �̂�𝑀𝐿)

2𝑇
𝑡=1 . 

The likelihood ratio test is then structured to test the joint hypothesis that the 𝑧𝑡 have zero mean and unit 

variance. It is given by: 𝜆 = 2[ln 𝐿 (𝜇 = �̂�𝑀𝐿, 𝜎
2 = �̂�𝑀𝐿

2 ) − ln 𝐿(𝜇 = 0, 𝜎2 = 1)]. 
If imposing the hypothesis 𝜇 = 0 and 𝜎2 = 1 leads to large loss in likelihood, 𝜆 will be large. Therefore, the 

larger 𝜆, the more evidence we have that the 𝑧𝑡 do not have mean zero and unit variance. Under usual regularity 

conditions, the test statistics 𝜆 will be asymptotically distributed as a 𝜒2 variable with two degrees of freedom. 
The CreditPortfolioValidation script allows the user to perform the Berkowitz test. 
We assume in this example to have five years of loss data and for focusing on the core of the procedure we 
also assume that the predicted loss distribution was the same for every year and the specification of the loss 
distribution is such that we can immediately determine the exact probability of each loss. 

The illustrative data are reported directly in the code. Running the script, we reach a 𝑝-value for the example 
equal to 0.329%, as a result we have to reject the hypothesis that the model which produced the outcome is 
correct. 
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